Accelerator Facilities and R&D at SLAC

R. Hettel Deputy Director of SLAC Accelerators Accelerator Research Division Head (acting)

> Forum on Particle Accelerator Projects in Mexico: Present and Future Guanajuato, Mexico November 12, 2015

- SLAC accelerator facility overview
- Light source development
- Advanced accelerator R&D program
- Accelerator technology development for multiple applications

(medical, security, industrial, environmental)

SLAC accelerator and test facilities

SLAC linac: > 50 years old

LCLS Injector (Sector 20)

> LCLS Linac (Sectors 21-30)

> > LCLS Beam Transport

> > > LCLS Undulator Hall

> > > > LCLS Near Experimental Hall

LCLS Office Building (901)

> Endstation Systems

LCLS X-ray Transport/ Optics/Diagnostics

> Endstation Systems

LCLS Far Experimental Hall (underground)

LCLS-I and II linacs

LCLS Undulator Hall: where X-rays are produced

LCLS-II cryomodule in 3-D

- A. 2.2 K subcooled supply
- B. Gas return pipe (GRP)
- C. Low temperature intercept supply
- D. Low temperature intercept return

- E. High temperature shield supply
- F. High temperature shield return
- G. 2-phase pipe
- H. Warm-up/cool-down line

Re-purposing the SLAC tunnel

SLAC

SLAC Linac Tunnel: 11 wide x 10 feet high

It will be a tight fit!

LCLS-I and LCLS-II photocathode guns

Gun Parameters	Nominal	Range
Frequency (MHz)	2856	-
Cathode Material	Cu	
QE [10 ⁻⁴]	1.2	1-1.5
Charge [nC]	2	1-5
Peak RF Field [MV/m]	120	100-130
Peak RF Power [MW]	10	7-12
RF Repetition Rate [Hz]	120	1-360
Gun Energy [MeV]	6	5.5-6.2
Energy Spread [keV]	~1	0.1-5

186 MHz
CW
750 kV
19.47 MV/m
30887
6.5 MΩ
87.5 kW
2.3 J
24.1 MV/m
25.0 W/cm ²
LCLS-II

J. Staples, F. Sannibale, S. Virostek, CBP Tech Note 366, Oct. 2006

K. Baptiste, et al, NIM A 599, 9 (2009)

Replace existing LCLS undulator with HXR and add SXR

Future LCLS facility expansion

SLAC has extensive infrastructure that will allow expansion

- New tunnels are possible north and south of existing LCLS tunnel (complete design for LCLS-II_{Phase I}) and could be optimized for long, high pulse energy, hard X-ray FEL's
- Original research halls: ESA and ESB suitable for shorter, soft X-ray FEL's

SPEAR3: a light source for SSRL

- SSRL operates 26 BL w/32 stations
 - Full build-out ~36 beam lines
- SSRL supports ~1,600 user annually
 - Annual growth ~5%
 - Could support 2,200+ users
- >500 journal pubs/yr ~ 28% hi-impact
- ~90 thesis per year

- 3 GeV, 500 mA
- Top-off injection every 5 minutes
- 9.8 nm-rad emittance \rightarrow 6 nm-rad
- SPEAR3 MTBF 87 hrs
- 5200 hours @ 98.4% uptime (FY14)

SSRL Beamlines

- A: Applied Sciences G: Geosciences L: Life Sciences
- M: Materials Sciences P: Physical Sciences

Full/partial BES supported Non-BES supported (Structural Molecular Biology)

Beam Line	Source	Area of	Major Techniques	
	Туре	Research	······································	
BL1-5 / Facility	BM	M, A, C, G	Small and Wide Angle X-ray Scattering	
BL2-1 / Facility	BM	M, A, P	Powder/Thin Film Diffraction	
BL7-2 / Facility	ID/W	M, P, C, G	X-ray Scattering	
BL10-2b / Facility	ID/W	M, P, L, G	X-ray Scattering	
BL11-3 / Facility	ID/W	M, A, C	X-ray Diffraction	
BL6-2c / Facility	ID/W	C, M, L, A, G	Transmission X-ray Microscopy	
BL5-4 / Partner	ID/U	P, M	Angle Resolved Photoemission Spectroscopy	
BL8-1 / Facility	BM	M, A	Core Level & Valence Band Photoemission Spectroscopy	
BL8-2 / Facility	BM	M, A, C	Photoemission Spectroscopy	
BL10-1 / Facility	ID/W	M, C, L, A	Photoemission Spectroscopy, NEXAFS	
BL13-1 / Facility	ID/U	M, P	Soft X-ray Scanning Transmission X-ray Microscopy	
BL13-2 / Partner	ID/U	C, M	Soft X-ray Photoemission Spectroscopy / XAS	
BL13-3 / Facility	ID/U	M, P	Soft X-ray Coherent Scattering	
BL2-2 / Facility	BM	A, P	X-ray Absorption Spectroscopy / MicroXAS Imaging	
BL2-3 / Facility	BM	L, G, C, M	MicroXAS Imaging	
BL4-1 / Facility	ID/W	G, C, M, A	X-ray Absorption Spectroscopy	
BL4-3 / Facility	ID/W	C, G, L, M	X-ray Absorption Spectroscopy	
BL6-2b / Facility	ID/W	C, M, L, A, G	XES, RIXS, X-ray Raman, (XAS Imaging)	
BL10-2a / Facility	ID/W	M, P, L, G	XAS Imaging	
BL11-2 / Facility	ID/W	G, C	X-ray Absorption Spectroscopy	
BL14-3a / Facility	BM	L, G, C, M	Tender X-ray XAS	
BL14-3b / Facility	BM	L, G, C, M	Tender X-ray MicroXAS Imaging	
BL7-3 / Facility	ID/W	L, C	X-ray Absorption Spectroscopy	
BL9-3 / Facility	ID/W	L	X-ray Absorption Spectroscopy	
BL4-2 / Facility	ID/W	L, M	Small Angle X-ray Scattering/Diffraction	
BL7-1 / Facility	ID/W	L	Macromolecular Crystallography	
BL9-1 / Facility	ID/W	L	Macromolecular Crystallography (R&D)	
BL9-2 / Facility	ID/W	L	Macromolecular Crystallography	
BL11-1 / PRT	ID/W	L	Macromolecular Crystallography	
BL12-2 / PRT	ID/U	L	Macromolecular Crystallography	
BL14-1 / Partner	BM	L	Macromolecular Crystallography	

SLAC Electron Beam Test Facilities 5 MeV to 23 GeV

SLAC

FACET (Facility for Advanced Accelerator Experimental Tests, 20 GeV):

- High gradient acceleration techniques (e.g. PWFA)
- High brightness beam and novel radiation techniques (e.g. for FELs, THz, γ -rays)
- High speed material science (e.g. fs magnetic switching)

NLCTA (NLC Test Accelerator, ~200 MeV X-band):

- X-band technology development (gun, linac, tcav, rf undulator, etc.)
- FEL seeding and beam manipulation R&D (BES)
- Direct laser acceleration
 Medical radiation tests

ESTB (End Station Test Beam, 2-16 GeV, single e-):

• Detector R&D, LC MDI, radiation tests

ASTA (Accelerator Structure Test Area, < 50 MeV, S- and X-band power):

- Gun and RF structure testing and processing (HEP and BES)
- UED (BES)

FACET is a National User Facility

Primary Goal: Demonstrate a single-stage high-energy plasma accelerator for electrons.

- Meter scale
- High gradient
- Preserved emittance
- Low energy spread ✓
- High efficiency

Timeline:

- Commissioning (2012)
- Drive & witness e⁻ bunch (2012-2013)
- Optimization of e⁻ acceleration (2013-2015)
- First high-gradient e⁺ PWFA (2014-2016)

FACET user program is based on high-energy high-brightness beams and their interaction with plasmas and lasers

From FACET to FACET-II

Three main stages:

- electron beam photoinjector
- positron damping ring
- "sailboat" chicane

(e⁻ beam only) (e⁺ or e⁻ beams) (e⁺ and e⁻ beams)

Benefits of particle accelerators

Today, besides their role in scientific discovery, particle beams from some 30,000 accelerators are at work worldwide in areas ranging from diagnosing and treating disease to powering industrial processes

The accelerators of tomorrow promise still greater opportunities:

• Next-generation particle beams represent cheaper, greener alternatives to traditional industrial processes.

- They can clean up polluted air and water; deliver targeted cancer treatment with minimal side effects.
- They contribute to the development of new materials.
- As tools for inspecting cargo and improving the monitoring of test ban
- compliance, accelerators can strengthen the nation's security.
- And of course they serve as tools for scientific discovery for high energy physics, nuclear physics, materials and chemical sciences, etc.

Overall goals for SLAC Accelerator Directorate

Maintain world-class accelerator science program

- World-class programs in beam physics theory, advanced computation, and accelerator design
- Operate SLAC's unique accelerators and test facilities
- Develop plasma- and laser-based advanced acceleration concepts

Maintain a crucial, enabling role in technology development for future energy frontier colliders and other applications

Maintain NC technology support base for applications across OS

Develop novel RF source and accelerator technology for higher efficiency and compactness – from MHz to THz

Develop and industrialize RF sources for future accelerators

Establish customer base for RF technology developed by SLAC (including medical applications)

Train next generation of accelerator scientists and engineers

Light Source and Related Technology Development

The world is moving to ever brighter ring sources

2-bend achromat

BNL: NSLS-II (2014): 3 GeV, <1000pm x 8 pm, 500 mA (New)

1st multi-bend achromat ring upgrade

France: ESRF-II (2020): 6 GeV, 160 pm x 3 pm, 200 mA (New)

7- bend achromat

Sweden: MAX-4 (2016): 3 GeV, 230 pm x 8 pm, 500 mA (New)

5- bend achromat

SLAC

Brazil: SIRIUS (2016/17): 3 GeV, 280 pm x 8 pm, 500 mA (New)

U.S. Proposals

APS-U: 6 GeV, 60 pm x 8 pm, 200 mA (Upgrade Proposal)

ALS-U: 2 GeV, 50 pm x 50 pm, 500 mA (Upgrade proposal)

Other possible 4GSRs: Japan (Spring 8, 6 GeV), China (HEPS, 6 GeV), Germany (PETRA-IV), France (SOLEIL), Switzerland (SLS, 2.4 GeV), Italy (ELETTRA) and others are developing plans

Science case for brighter, more coherent sources

Scientific Opportunity

Understanding and control of *nanometer-scale heterogeneity and fluctuation dynamics* in matter.

Breakthrough Techniques

Transverse coherence (i) enhances **coherent diffraction imaging**, (ii) allows **nanoscale spectroscopies**, and (iii) transforms **photon correlation spectroscopy**.

Simultaneous Advances in Theory and Experiment

Length/time scales of theory and experiment are converging. DLSRs provide probes for systems that can be simulated with high fidelity.

Atomic-to-Nanoscale Control in Materials Synthesis and Functionality

Synthesis: nm Imaging and ns Dynamics via Coherent Scattering in Challenging Environments

Intrinsic Electronic Heterogeneity in Correlated Electron Materials Elect

Superconductors and Magnetic Materials: Electronic Structure with Sub 10-nm Spatial Resolution

Structure and Dynamics of Biological Materials

Lipid Rafts: Membrane Protein Structure and Dynamics in Non-Periodic Environments

Spectral brightness and coherence

Spectral brightness: photon density in 6D phase space

$$B_{avg}(\lambda) \propto \frac{N_{ph}(\lambda)}{(\varepsilon_{x}(e) \oplus \varepsilon_{r}(\lambda))(\varepsilon_{y}(e) \oplus \varepsilon_{r}(\lambda))(s \cdot \% BW)}$$

Coherent fraction:

$$f_{coh}(\lambda) = \frac{\varepsilon_r(\lambda)}{(\varepsilon_x(e^{-}) \oplus \varepsilon_r(\lambda))} \cdot \frac{\varepsilon_r(\lambda)}{(\varepsilon_y(e^{-}) \oplus \varepsilon_r(\lambda))}$$

Coherent flux:

$$F_{coh}(\lambda) = f_{coh}(\lambda) \cdot F(\lambda) = B_{avg}(\lambda) \cdot \left(\frac{\lambda}{2}\right)^2$$

$$\varepsilon_0$$
 (e-) = F(v, cell) $\frac{E^2}{N_{dip}^3} \propto \frac{E^2}{C^3}$

$$\epsilon_{\rm r}(\lambda) \approx rac{\lambda}{2\pi}$$
 (= 16 pm for λ = 1Å)

The state of SR light sources

Z. Zhao, SSRF

Properties of 4GSRs

 Small horizontal and vertical beam dimensions and the possibility of "round" beams – good for X-ray optics, minimal need for aperturing

courtesy of C. Steier

Properties of 4GSRs – cont.

4GSRs: why now and not earlier?

4GSRs: why now? – cont.

Compact magnet and vacuum technology

NEG-coated vacuum chambers enable small apertures to enable high magnet gradients

Pioneered at CERN, used extensively at Soleil, and adopted for MAX-IV and Sirius MBA lattices

 Precision magnet pole machining for small aperture magnets, combined function magnets, tolerance for magnet crosstalk (e.g. MAX-Lab)

MAX-IV Courtesy S. Leemans

heater tape for in-situ NEG bake-out sirius

SSRL Future: PEP-X?

SLAC

*15390 m² for experimental hall without extension

 soft:X
 Sem

 FEL
 *2836 m² for extension

 19 m
 Soft:X

 FEL
 *2836 m² for extension

 Soft:X
 Sem

 response
 Sem

 response
 Sem

 Soft:X
 Sem

 FEL
 *2836 m² for extension

 Soft:X
 Sem

 response
 Sem

 response
 Sem

 Soft:X
 Sem

 Soft:X
 Sem

 Soft:X
 Sem

 Soft:X
 Sem

 response
 Sem

 response
 Sem

 Soft:X
 Sem

PEP-Xtra

11 pm per plane @ 6 GeV, 200 mA

< 5 pm per plane @ 6 GeV, 200 mA

diffraction-limited emittance for 1 Å ($\lambda/4\pi - \lambda/2\pi$) = 8-16 pm-rad

Note: an ERL is also considered for PEP-X

SASE on DLSR with transverse gradient undulator

8 CEBAF SC cavities in a cryomodule produce 108 MV for longitudinal focusing

Hard XFEL oscillator? – K-J Kim

λ [nm]

Future multi-TeV circular colliders – Higgs Factory

FEL accelerator R&D

FEL research aimed at increasing photon pulse energy, reducing bandwidth, improving timing synchronization, increasing pulse repetition rate, producing 2-color photons, etc.

NLCTA: laser-electron seeding and manipulation (EEHG, ECHO, HGHG, QHG, OAM)

Raubenheimer et al

LCLS: FEL self-seeding, diagnostics, fs timing, enhanced photon power, etc.

Near-Term (~3 years) (enhance LCLS-I)	Mid-Term (~5 years) (enhance LCLS-II)	Long-Term (~10 years) (beyond LCLS-II)
Dechirper	Delta-II undulator	SCU (w/ ANL & LBNL)
Beam shaping and microbunching studies	External seeding studies	TW FEL
Multi-bunch operation	High-rep. rate timing	XFELO
Attosecond X-ray pulses		
		1

Projected R&D budget \$6M-\$7M per year including theory, simulations and design efforts.

Long-term R&D items require further investment.

Ultra-small bandwidth X-ray FEL Oscillator

- XFELO: ~meV fully Fourier-limited FELs
- X-ray recirculation builds/preserves seed, highly stable steady state output
- For MHz rep-rate machines: LCLS-II, EuXFEL, PEP-X, PETRA-IV
- Large, stable cavity a major question
- All components proven: Propose design, assemble and demo the first proof of principle, low loss, 10s m-scale HXR cavity
- Planning a science workshop next June Tim Maxwell et al., IPAC2015

Ulrafast Electron Diffraction (UED)

- UED probes lattice dynamics -
- it probes atom locations
- X-rays probes electron locations
- Electrons have high interaction crosssection – can probe dilute gases

SLAC

- 1st diffraction patterns (hours after 1st operation)
- 4-month implementation in ASTA

Bi

UED: N₂ vibration quantum revival observed

Submitted to Nature communication

Ultrafast Electron Microscopy (UEM) – proposed XJ Wang, Renkai Li

Goal: nanometer spatial resolution, picosecond time resolution

Existing instruments have 10-nanometer, few nanosecond resolution

200-MHz superconducting RF gun (WiFEL)

- High duty-factor, high average current
- Higher gradient and output energy than DC guns
- Improved stability compared to NC guns
- Low energy spread for short bunches

Advanced Accelerator R&D

Plasma wakefield acceleration (e- and e+, FACET)

HEP Mission

 Demonstrate Plasma Wakefield Acceleration Stage (10-100 GeV/m)

Vision for PWFA as ILC upgrade path:

User Facility

 High-energy high-density electron beams for user experiments

- Generation of and experiments with e⁻ beams of unprecedented brightness
- Delivering highest intensity THz fields with V/Å strength
- Unmatched gamma ray source

A cornerstone for worldwide advanced accelerator R&D leading to future HEP collisions, delivering broad range of user experiments

High-Efficiency Acceleration of an Electron Bunch in a Plasma Wakefield Accelerator

~30% efficiency

Nature **515**, 92-95 (November 2014)

Single shot with 6 GeV Energy Gain

26

Ge\

Optimization of electron PWFA in H₂ plasma is the focus of ongoing run

October 2015 Briefing for Eliane Lessner – M.J. Hogan

SLAC

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

FACET in the Middle of the 2nd Phase of PWFA

SLAC FFTB demonstrated electron acceleration with 50GeV/m for 85cm

SI AC

- FACET addresses issues of a single stage
- FACET-II staging, high-brightness beams

FACET-II program will optimize positron acceleration and investigate issues of staging multiple plasma cells for very high energy

Imagine a new generation of light sources

SLAC

Leverage high rep-rate beam drivers with plasma as source of highbrightness high-energy electrons

October 2015 Briefing for Eliane Lessner – M.J. Hogan

Record Performance for Dielectric Wakefield Acceleration (E201)

-SLAC

Drive Quartz tubes counts 15cm long 300µm diameter Energy [GeV] Witness Energy (GeV) Simulation 0.2 0.8 67% efficiency

1.3 GV/m fields from Energy loss with single bunch (FY14, FY15 Run1)250/315 MeV/m in two-bunch configuration (New FY15 Run 2)

Dielectric Laser Acceleration (DLA) Concept

laser-driven microstructures

 <u>lasers:</u> high rep rates, strong field gradients, commercial support
 <u>dielectrics</u>: higher breakdown threshold → higher gradients (1-10 GV/m), leverage industrial fabrication processes

"Accelerator-on-a-chip"

bonded silica phase reset accelerator prototypes fabricated at SLAC/ Stanford

Goal: lower cost, more compact, energy efficient, higher gradient

DLA Applications

linear collider or Higgs factory

university-scale light source

SLAC

portable cancer treatment

medical imaging

SPRING8, UNE

(2)

Accelerator Technology Development for Multiple Applications

DOE Accelerator Stewardship Program

Track 1 (results in 5-7 years):

a) Particle Therapy Beam Delivery Improvements (reduced size, increased speed, etc.);

- b) Ultrafast Laser Technology Program;
- c) Energy and Environmental (E & E) Applications of Accelerators (treating potable and waste water, removing pollutants from stack gases, increasing the energy efficiency of industrial material processing, remediating water-borne and soil-borne contaminants, replacing radioactive sources in sterilization applications)

<u> Track 2:</u>

Long-term generic accelerator R&D to improve theory, computational tools, and fundamental physical and technical understanding of accelerator science.

Applications: beam physics, advanced computational methods for accelerator design and analysis, beam diagnostics and feedback control, new superconducting materials, new materials and coatings for accelerator components, novel power sources for accelerators, new particle sources, novel magnet designs, novel lattice designs, and novel technologies for secondary beam production.

High power accelerators for E & E applications

Table 2. Target performance for high power electron accelerators for E&E applications:

	Type 1 Demo/Small	Type 2 Medium	Type 3 Medium Scale	Type 4 Large Scale
	Scale	Scale Low Energy	High Energy	High Energy
Example	R&D,	Flue Gas,	Wastewater,	Sludge, Medical
Applications	Sterilization,	Waste water	sludge, medical	waste, Env.
	industrial		waste	remediation
	effluent streams			
Electron Beam	0.5-1.5 MeV	1-2 MeV	10 MeV	10 MeV
Energy				
Electron Beam	>0.5 MW	>1 MW	>1 MW	>10 MW
Power (CW)				
Wallplug	>50%	>50%	>50%	>75%
Efficiency				
Target Capital	<\$10/W	<\$10/W	<\$10/W	<\$5/W
Cost*				
Target	<1.0M\$/yr	<1.5M\$/yr	<1.5M\$/yr	<12M\$/yr
Operating Cost [†]				

*Total cost of the accelerator, including all supporting systems (e.g. power, cooling, control, safety). †Total operating cost including all labor, supplies, repairs and electricity costs.

SLAC-affiliated response to 2015 Stewardship call

Track 1:

 Medium Scale Low Energy High Power Linac (1-2 MeV, >1MW) for E&E application (F. Wang, Z. Li)

- Extreme high efficiency normal conducting accelerators for energy and environment applications (V. Dolgashev)
- The application RF energy modulator as a fast scanning tool for Hadron Therapy Machines (S. Tantawi)
- High Efficiency Deflected Beam RF Source for Accelerator Applications (M. Franzi)
- 1-MW CW 1.3-GHz Klystron with 90% Efficiency (J. Neilson) Track 2:
- THz-Driven Electron Gun (S. Tantawi)
- Nanotip electron sources: towards a laser driven medical accelerator on a chip (R. Byer)
- Parallel Procedures to Optimize Accelerator Cavity Geometries (J. Hicken, M. Shepard)
- High Stability Synchronization and Timing Distribution Techniques for Next-
- Generation Accelerator and FEL facilities (J. Fox, P. Enge)

Novel RF technology is major contributor to stewardship applications

RF Technology

- Novel RF acceleration (high gradient, high rep rate, novel sources, high efficiency klystrons, etc.)
- L-band modulators (ILC, MAP, PX)
- X-band RF gun
- NLCTA and ASTA ops
- ECA: RF breakdown

Future Goals:

SLAC

multi-beam klystron

- Initial designs for transformational RF sources and structures, extending to THz
- Explore scientific, medical, industrial and applications using new technology

RF Undulator - Electric Field Distribution

Distributed coupling X-band linac fabrication

100-GHz open accelerating structure experiments show possibility of ~ 0.5 - 1 GeV/m accelerators

1st iris – breakdown damage, peak surface fields ~0.5 GV/m 9th iris – no breakdown damage, peak surface fields > 0.2 GV/m, pulse length ~3ns

V.A. Dolgashev, SLAC, 17 January 2015

Compact efficient RF power sources

SLAC

Most compact possible configuration:

The number of beams is (2N)2; where N is the division ratio for single splitter **No electromagnets, focusing is done with Permanent Periodic Magnets (PPM)**

- low voltage
- simplified gun structure and no oil;
- efficient inexpensive modulator
- possibility of using gridded cathodes

Multi-beam klystron

- Multi-dimensional (radial) klystron
 Beam expands under space charge forces→magnetic focusing is not required
- High current, low voltage.

- SLAC accelerator science and research programs are diverse and productive.
- SLAC accelerator expertise and test facilities are critical resources for numerous physics and stewardship programs
- SLAC accelerator expertise and test facilities are critical resources for educating the next generation of accelerator physicists and engineers.

And thank you to our MePAS hosts in Guanajuato!