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Syllabus

• Six lectures:
• Two on Friday 13th.
• Two on Saturday 14th.
• Two on Tuesday 17th.

• We will focus on circular machines.

• Homework:
• Assigned each lecture.
• Collected at the start of the

following day.
• Work in groups.
• Assigned time at the end of the

day for doing homework.

• Final exam: similar to homework.
Notes allowed?

• MePAS grade: 60% homework,
40% final exam.

• Our emails:
a.castilla@cern.ch
lmedinam@cern.ch

Begging for caffeine and eating churros
at the Ferney market...
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Bibliography

This course is mostly based on the USPAS
courses by Todd Satogata (JLAB), available
at http://toddsatogata.net/, which in
turn follows

M. Conte, W. W. MacKay, An Introduction to
the Physics of Particle Accelerators. Second
Edition. World Scientific. Singapore, 2008.

Some extracts has been taken from the JUAS
2015 courses on Transverse Dynamics
Andrea Latina (CERN) and on Longitudinal
Dynamics by Elias Metral (CERN). Both of
them are available at
https://indico.cern.ch/event/
356897/

Of course, Wiedemann’s book and the Chao
and Tigner’s Handbook are the canonical
bibliography on Beam Dynamics...

Also... Free lectures1 on accelerators and more (on demand)! Visit
https://www.cockcroft.ac.uk/lectures

1Please send an email to graeme.burt@cockroft.ac.uk and tell Graeme you are using them (this is only
for internal statistics).
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Relativity review

Particle accelerators: applied
electromagnetism and special
relativity.

It will come in handy writing
down some of the useful formulas,

Lorentz factors

βr ≡
v
c
, γr ≡

1√
1− β2

r
(1.1)

where v is the speed of the object
and c is the speed of light,

c = 299, 792, 458
m
s

≈ 3× 108 m
s

(1.2)

Note that βr and γr are
dimensionless.
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Relativity review

Particle accelerators: applied
electromagnetism and special
relativity.

It will come in handy writing
down some of the useful formulas,

Lorentz factors

βr ≡
v
c
, γr ≡

1√
1− β2

r
(1.1)

where v is the speed of the object
and c is the speed of light,

c = 299, 792, 458
m
s

≈ 3× 108 m
s

(1.2)

Note that βr and γr are
dimensionless.

Example: Lorentz factors
For a car traveling at 150 km/h,

v = 150
km
h
·

1000 m
km

·
3600 s

h
= 41.7

m
s

βr =
41.7 m/s

3× 108 m/s
= 0.00000014

γ =
1√

1− (1.4× 10−7)2
≈ 1

The Helios-2 probe (the fastest man- made
object), travels at 70.2 km/s, This
corresponds to the Lorentz factors

βr = 0.00023, γr = 1.00000003

Compare both results to

βr = 0.99999999, γr = 7453.56

corresponding to a proton in the LHC.
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Relativity review (cont.)

Rest energy

E0 = mc2 (1.3)

Total energy

E = γr mc2 (1.4)

Kinetic energy

EK = E − E0 = (γr − 1)mc2 (1.5)

Momentum

p = γr m(βr c) = βr
E
c

(1.6)

for an object with mass m.

The unit of energy in the International
System is the joule (J). A more suitable
unit in particle Physics is the

Electron-volt (eV)

1 eV = (1.602× 10−19 C)(1 V)

= 1.602× 10−19 J (1.7)

It corresponds to the amount of energy
gained/lost by a particle with a charge
e (the elementary charge), when it is
moved across an electric potential
difference of one volt.

.
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Relativity review (cont.)

Rest energy

E0 = mc2 (1.3)

Total energy

E = γr mc2 (1.4)

Kinetic energy

EK = E − E0 = (γr − 1)mc2 (1.5)

Momentum

p = γr m(βr c) = βr
E
c

(1.6)

for an object with mass m.

The unit of energy in the International
System is the joule (J). A more suitable
unit in particle Physics is the

Electron-volt (eV)

1 eV = (1.602× 10−19 C)(1 V)

= 1.602× 10−19 J (1.7)
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Energy units

Prefix Sym. Value

tera- T 1012

giga- G 109

mega- M 106

kilo- k 103

mili- m 10−3

micro- µ 10−6

nano n 10−9

pico p 10−12

Table 1: SI prefixes.

Unit
Energy eV
Mass eV/c2

Momentum eV/c

Table 2: Units of energy, mass
and momentum in terms of eV.
Note: it is often set c = 1.

Example: Energies in eV
The mass of an electron is 1.673× 10−27 kg.

According to (7), its rest energy is

E0 = (1.673× 10−27 kg)(3× 108 m/s)2

= 8.19× 10−14 J ·
1 eV

1.602× 10−19 J
≈ 511, 000 eV

Since E0 = mc2, the mass can also be written in
terms of eV (instead of kg). So, for an electron,

m =
E0

c2
= 0.511 MeV/c2

If it is traveling at 10% of the speed of light, then

v = 0.1c, βr = 0.1, γr = 1.005

Thus, the total energy of the electron is

E = 1.005 · 0.511
MeV
c2
· c2 = 0.513 MeV
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Electromagnetism review

The

Newton’s second law

~F = m~a =
d~p
dt

(1.8)

describes the motion of a
particle of mass m due to
an external force ~F .

The

Lorentz force

~F = q~E + q~v × ~B (1.9)

defines the force
experienced by a charge q
under and electric and
magnetic fields.

Example: Electric vs. magnetic forces
Typical values for the strength of electric and

magnetic fields are

|~E | ≈ 1
MV
m
, |~B| ≈ 1 T = 1

Vs
m2

Suppose we have a particle with the elementary
charge and velocity equal to v = βr c. Then, the
ratio between the magnetic and electric forces is

Fm

Fe
=

q|~v ||~B|
q|~E |

=
e(βr c)(1 Vs

m2 )

e(1 MV
m )

=
βr
(
3× 108 m

s

) Vs
m2

1× 106 V
m

= 300βr

What can we conclude from this?
For charged particles with speeds close to c,

βr ≈ 1. Then, if we want to exert a force to change
its motion, we better use magnetic forces (they’re
300× stronger!).
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The cyclotron I

Equating (1.8) and (1.9) in the absence of
electric field (~E = 0),

q~v × ~B =
d~p
dt

=
d(γr m~v)

dt

= m
(
γr

d~v
dt

+
dγr

dt
~v
)

= γr m
d~v
dt

since βr = |~βr | is constant, which implies
dγr/dt = 0. Now, with the aid of the
angular velocity ~ω, defined by ~v ≡ ~ω × ~ρ,

q~v × ~B = γr m
d(~ω × ~ρ)

dt

= γr m
(
~ω ×

d~ρ
dt

+
d~ω
dt
× ~ρ
)
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The cyclotron II

or

q~v × ~B = γr m~ω ×
d~ρ
dt

since ω is constant for a central force of
constant magnitude. Now, the
cyclotron (or bending) radius ρ is just
the radius of the particle’s orbit, then,

q~v × ~B = γr m~ω × ~v

In the particular case when ~B and ~v
are perpendicular,

qvB = γr mωv =
γr mv2

ρ
(1.10)

with ω = v/ρ. Arranging this equation,

qB =
γr mv
ρ

=
p
ρ

(1.11)

we get the

Rigidity

(Bρ) =
p
q

(1.12)

and its units are Tm.

The rigidity give us an idea on how
hard/easy is a particle to deflect, Note
how relates machines properties (left)
with beam properties (right).

When working with particles with the
elementary charge, we can rewrite the

Rigidity (in practical units)

p [GeV/c] ≈ 0.3 B [T] ρ [m] (1.13)
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The cyclotron III

Example: Rigidity
Let us consider an electron ring with

radius R = 200 m. If only 50% of the
circumference C = 2πR is occupied by
bending magnets, this length has to
correspond to a circumference given by
2πρ. In other words,

0.5C = 0.5 · 2πR = 2πρ

or
ρ = 0.5R = 100 m

If the momentum of the electrons is
12 GeV/c, the rigidity is

Bρ ≈
p[GeV/c]

0.3
= 40 Tm

and therefore B = 0.4 T.

Rearranging (1.10) in a different way,
we obtain the

Cyclotron (angular) frequency

ω =
qB
γr m

, f =
ω

2π
(1.14)

which gives us the number of turns a
particle can perform in the cyclotron,
per unit of time.

In order to accelerate the particles, an
RF voltage has to be provided, and its
frequency has to match the revolution
frequency,

frf = f =
ω

2π
(1.15)

N

S

V(t)
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Parametrization and approximations

The ideal particle defines a
trajectory, the design orbit.

To describe the motion of a given
particle, we use a local coordinate
system (x̂ , ŷ , ŝ) that moves (rotates)
with the ideal particle, the so-called
Frenet-Serret frame.

From the figure,

R = ρ+ x (2.1)

where

θ =
s
R

=
(βr c)t

R
(2.2)

The slope

x ′ ≡
dx
ds

=
1
R

dx
dθ

(2.3)

is the local trajectory angle. Also note

x ′ =
vx

vz
=

px

ps
≈

py

p
(2.4)
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Parametrization and approximations

The ideal particle defines a
trajectory, the design orbit.

To describe the motion of a given
particle, we use a local coordinate
system (x̂ , ŷ , ŝ) that moves (rotates)
with the ideal particle, the so-called
Frenet-Serret frame.

From the figure,

R = ρ+ x (2.1)

where

θ =
s
R

=
(βr c)t

R
(2.2)

The slope

x ′ ≡
dx
ds

=
1
R

dx
dθ

(2.3)

is the local trajectory angle. Also note

x ′ =
vx

vz
=

px

ps
≈

py

p
(2.4)

Approximations

1 No local currents (near-vacuum).

2 Paraxial approximation:

x ′, y ′ � 1, or px , py � ps (2.5)

3 Perturbative coordinates:

x , y � ρ (2.6)

4 Transverse linear ~B field:

~B = Bx x̂ + By ŷ

= B0ŷ + (xŷ + yx̂)
∂By

∂x
(2.7)

where B0 6= 0.

5 Negligible ~E field: γr ≈ constant.
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Equations of motion I

We begin with the Lorentz force equation of motion,

~F = q~v × ~B =
d(γr m~v)

dt
(2.8)

Given the position vector,

~r = Rx̂ + yŷ (2.9)

we need to calculate the corresponding velocity and
acceleration as follows,

~v = ~̇r = Ṙx̂ + R ˙̂x + ẏ ŷ = Ṙx̂ + Rθ̇ŝ + ẏ ŷ (2.10)

~a = ~̇v = R̈x̂ + (2Ṙθ̇ + Rθ̈)ŝ + Rθ̇ ˙̂s + ÿ ŷ (2.11)

If we calculate ˙̂s,

˙̂s = −θ̇x̂ = −
v
R

x̂ (2.12)

and insert it in (2.11), we obtain

~a = (R̈ − Rθ̇2)x̂ + (2Ṙθ̇ + Rθ̈)ŝ + ÿ ŷ

=

(
ẍ −

v2

R

)
x̂ +

2ẋv
R

ŝ + ÿ ŷ (2.13)

s1 s2

x̂1
x̂1

ŝ1

ŝ2

∆θ = s2−s1
ρ

x̂1 x̂2

∆x̂ = ∆θŝ
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Equations of motion II

We study each component separately.
For the vertical motion,

Fy = qβr cBx = γr mÿ (2.14)

Solving for ÿ ,

ÿ −
qβr cBx

γr m
= 0 (2.15)

We can change the derivative w.r.t.
(with respect to) time, to a derivative
w.r.t. the angle θ:

t =
R
βr c

θ ⇒
d
dt

=
βr c
R

d
dθ

(2.16)

By doing so,(
βr c
R

)2 d2y
dθ2
−

qβr cBx

γr m
= 0 (2.17)

After dropping the common term βr c,
and multiplying the equation by R2,

d2y
dθ2
−

qBx

γr mβr c
R2 = 0 (2.18)

Following a similar procedure in the
horizontal plane, we get

Fx = −qβr cBy

= γr m
(

ẍ −
v2

R

)
(2.19)

or

d2x
dθ2

+

(
qBy

p
R − 1

)
R = 0 (2.20)

We know from the rigidity that

p = qB0ρ (2.21)

and we can also replace R by (2.1) with
the paraxial aproximation,

R = ρ

(
1 +

x
ρ

)
(2.22)
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Equations of motion III

to get
d2x
dθ2

+

[
By

B0

(
1 +

x
ρ

)
− 1
]

R = 0 (2.23)

Since the approximation on the linearization of the magnetic field is
~B = Bx x̂ + By ŷ , where

Bx =

(
∂By

∂x

)
y , By = B0 +

(
∂By

∂x

)
x (2.24)

then, in the case of the horizontal equation of motion, we obtain

d2x
dθ2

+

[(
1 +

1
B0

∂By

∂x
x
)(

1 +
x
ρ

)
− 1
]
ρ

(
1 +

x
ρ

)
= 0

After performing the multiplications, we will ignore terms of second order on x and
higher. On the vertical equation, we apply of course the same series of
approximations. The resulting equations gives us what is known as the

Betatron motion
d2x
dθ2

+ (1− n)x = 0 (2.25)
d2y
dθ2

+ ny = 0 (2.26)
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Stability condition

where n is the

Field index

n ≡ −
ρ

B0

(
∂By

∂x

)
(2.27)

Note that in order to have a stable
motion in both planes, the following
conditions must be satisfied:

0 < n < 1 (2.28)

r

By

F

ByBx

F

N

S

Equations (2.25) and (2.26) describe the weak focusing. Note that they are
simple harmonic oscillators, therefore their solutions are well known. In particular,
for the horizontal plane,

x(θ) = A cos(θ
√

1− n) + B sin(θ
√

1− n) (2.29)

with derivative

dx
dθ

=
√

1− n[−A sin(θ
√

1− n) + B cos(θ
√

1− n)] (2.30)
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Stability condition

where n is the

Field index

n ≡ −
ρ

B0

(
∂By
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Note that in order to have a stable
motion in both planes, the following
conditions must be satisfied:

0 < n < 1 (2.28)

r

By

F

N

S

ByBx

F

Equations (2.25) and (2.26) describe the weak focusing. Note that they are
simple harmonic oscillators, therefore their solutions are well known. In particular,
for the horizontal plane,

x(θ) = A cos(θ
√

1− n) + B sin(θ
√

1− n) (2.29)

with derivative

dx
dθ

=
√

1− n[−A sin(θ
√
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√

1− n)] (2.30)
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Betatron motion

Applying the initial conditions

x0 = x(θ = 0) = A, x ′0 =
1
ρ

(
dx
dθ

)
θ=0

=

√
1− n
ρ

B (2.31)

the constants are given in terms of them,

A = x0, B =
ρ

√
1− n

x ′0 (2.32)

Substituting the last equations in the equation of motion,

x(θ) = cos(θ
√

1− n)x0 +
ρ

√
1− n

sin(θ
√

1− n)x ′0 (2.33)

x ′(θ) =
1
ρ

dx
dθ

1
ρ

= −
√

1− n
ρ

sin(θ
√

1− n)x0 + cos(θ
√

1− n)x ′0 (2.34)

we can write the solution in matrix form (for the vertical plane follow the same steps),(
x
x ′

)
=

(
cosφx

ρ√
1−n

sinφx

−
√

1−n
ρ

sinφx cosφx

)(
x0
x ′0

)
= MH

(
x0
x ′0

)
(2.35)

(
y
y ′

)
=

(
cosφy

ρ√
n

sinφy

−
√

n
ρ

sinφy cosφy

)(
y0
y ′0

)
= MV

(
y0
y ′0

)
(2.36)
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Betatron tune

where the phase advances are given by

φx (s) ≡ θ
√

1− n =
s
ρ

√
1− n (2.37)

φy (s) ≡ θ
√

n =
s
ρ

√
n (2.38)

Particles move in transverse betatron
oscillations around the design trajectory.

The number of oscillations performed by a
particle in a particular plane (horizontal or
vertical), is accounted by the

Betatron tune

Qx,y =
φx,y (2π)

2π
(2.39)

Note that the weak focusing condition can be
written as

Q2
x + Q2

y = 1 (2.40)
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Field expansion

The transverse magnetic field is

~B = Bx x̂ + By ŷ (3.1)

Making a Taylor expansion of the
field components we get

Bx = B0x +
∂Bx

∂y
y +

1
2!

∂2Bx

∂y2
y2 + . . .

(3.2)

By = B0y +
∂By

∂x
x +

1
2!

∂2By

∂x2
x2 + . . .

(3.3)
The first terms in both expansions
correspond to dipole terms, the second
terms to quadrupoles, then
sextupoles, and so on.

Due to the Maxwell’s equation for
∇× ~H, in the absence of electric fields
and currents,

∂By

∂x
=
∂Bx

∂y
(3.4)

Most of the time we are not interested
in vertical bending dipoles, then
B0x = 0, and we label B0y = B0.

We can write the linear field as

~B =

(
∂By

∂x
y
)

x̂ +

(
B0 +

∂By

∂x
x
)

ŷ

= B0ŷ + (xŷ + yx̂)

(
∂By

∂x

)
(3.5)

Another way to make the expansion,
via multipoles (in complex notation):

Bx + iBy = B0

∞∑
n=0

(an + ibn)

(
x + iy

a

)n

(3.6)
where n = 0 corresponds to dipoles,
n = 1 to quadrupoles, etc. The
coefficients bn and an are called normal
and skew, respectively.

Unfortunately, this is not the only
convention!
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Linear optical elements

We can have two types of optical elements (magnets) with a linear magnetic field:

Dipoles
• Long magnets that bend the design trajectory.
• They may or may not include focusing

(combined function).
• Special case: drifts (no field).

~B = B0ŷ+(xŷ + yx̂)

(
∂By

∂x

)
(3.7)

Quadrupoles
• Design trajectory is straight.
• Focus particles moving out of the design orbit.
• Special case: thin lens approximation.

~B = (xŷ + yx̂)

(
∂By

∂x

)
(3.8)

The solution of the equation of motion of a particle that passes along each of them
can be described with their corresponding transport matrix. We have already found
the one for the dipole.
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Linear optical elements

We can have two types of optical elements (magnets) with a linear magnetic field:

Dipoles
• Long magnets that bend the design trajectory.
• They may or may not include focusing

(combined function).
• Special case: drifts (no field).

~B = B0ŷ+(xŷ + yx̂)

(
∂By

∂x
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Quadrupoles
• Design trajectory is straight.
• Focus particles moving out of the design orbit.
• Special case: thin lens approximation.

~B = (xŷ + yx̂)

(
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)
(3.8)

The solution of the equation of motion of a particle that passes along each of them
can be described with their corresponding transport matrix. We have already found
the one for the dipole.



Beam
Dynamics

A. Castilla
L. Medina

Prerequisites

I. Weak
Focusing

II. Optical
Elements

Transport matrices

Therefore, we can build the accelerator
optics out of Lego transport matrices.

Let ~w0 be the set of initial transverse
coordinates. They are transformed to
~w after crossing a system represented
by the matrix M according to

~w = M~w0 (3.9)

A lattice is usually made of
substructures or cells, an array of
magnets repeating along the machine.

To describe the motion of a particle
along the accelerator, we can simply
multiply the piecewise solutions given
by the transport matrices.

Take for example the machine on the
right. Each cell is made of a drift and a
dipole (bending),

Mcell = MBMD

The order in which we have to
perform the matrices is from right to
left, since it is the order in which the
particle encounters the elements. For
the machine composed of 4 cells,

M = (Mcell )
4 = (MBMD)4

gives the solution after one turn.
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Dipoles

We know the general transport matrix for a dipole without focusing,


x
x ′
y
y ′

 =


cosφx

ρ√
1−n

sinφx 0 0

−
√

1−n
ρ

sinφx cosφx 0 0
0 0 cosφy

ρ√
n

sinφy

0 0 −
√

n
ρ

sinφy cosφy




x0
x ′0
y0
y ′0

 (3.10)

Remember that the phase advances are given by

φx (s) =
s
ρ

√
1− n, φy (s) =

s
ρ

√
n

Then, taking the field index to zero (n→ 0), we have the transport of a

Dipole (no focusing)


x(θ)
x ′(θ)
y(θ)
y ′(θ)

 =


cos θ ρ sin θ 0 0
− 1
ρ

sin θ cos θ 0 0
0 0 1 ρθ
0 0 0 1




x0
x ′0
y0
y ′0


(3.11)

with bending angle θ and no focusing.

Note: In a circular
machine composed of
N dipoles of length LB ,
the integrated dipole
field over one turn is∮

B ds ≈ NBLB = 2π
p
q

(3.12)

Careful with units!
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Drifts

The sub-matrix for the vertical plane
represents a field-free drift where no
bending is performed. This is valid in
general for x or y when there is no field:

Drift


x(s)
x ′(s)
y(s)
y ′(s)

 =


1 s 0 0
0 1 0 0
0 0 1 s
0 0 0 1




x0
x ′0
y0
y ′0


(3.13)

where s is the length of the drift.

s

x

L

slope = x′0

x0

Interlude:
Note that we have switched to 4 × 4

matrices. In fact, a more complete study
requires 6 coordinates and thus, 6× 6
matrices): x , x ′, y , y ′, s, δ (as we will
see later).

Nevertheless, when horizontal and
vertical motions are uncoupled (that is,
they are independent of each other), we
can split our 4× 4 matrices,

x
x ′
y
y ′

 =

 Mx
0 0
0 0

0 0
0 0 My




x0
x ′0
y0
y ′0


(3.14)

in pure horizontal/vertical motion, with
our usual 2× 2 matrices:

~X = Mx ~X0, ~Y = My ~Y0 (3.15)
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For the quadrupoles, the components
of the magnetic field (3.8) are commonly
written as

Bx = Gy , By = Gx (3.16)

where G, measured in T/m, is the

Quadrupole gradient

G =
Bpole

a
=

2µ0NI
a2

≈
∂By

∂x
(3.17)

Bpole is the field at the pole tips, a is the
inner radius of the quadrupole, µ0 is the
vacuum magnetic permeability,

µ0 = 4π × 10−7 Tm
A

(3.18)

and N is the number of turns of current I
around the poles.

We simply follow a similar procedure
(and approximations) to the derivation
of the equations of betatron motion.

The corresponding horizontal and
vertical forces

Fx = −qβr cGx (3.19)

and
Fy = qβr cGy (3.20)

lead to the equations

x ′′ +
G

B0ρ
x = 0 (3.21)

and

y ′′ −
G

B0ρ
y = 0 (3.22)
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where we have replaced the derivatives w.r.t. θ to derivatives w.r.t. s,

d
dθ

=
1
R

d
ds

(3.23)

By using the

Quadrupole strength2

K ≡
1

(B0ρ)

(
∂By

∂x

)
=

G
(Bρ)

≡ k2 (3.24)

with units of m−2, the equations of motion are

x ′′ + Kx = 0, y ′′ − Ky = 0 (3.25)

where ′′ denotes derivation w.r.t. s.

The horizontal equation of motion in (3.25) is again a harmonic oscillator and its
solution is given in terms of sine and cosine. In the vertical plane, the solution is
given by hyperbolic sine and cosine.

We can then express the general transport matrix of a

2Two remarks: 1) Careful with K vs. k ! 2) Some authors define K with a negative sign!
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Quadrupoles: Focusing and defocusing

Quadrupole (horizontal focusing / vertical defocusing)


x(s)
x ′(s)
y(s)
y ′(s)

 =


cos(ks) 1

k sin(ks) 0 0
−k sin(ks) cos(ks) 0 0

0 0 cosh(ks) 1
k sinh(ks)

0 0 k sinh(ks) cosh(ks)




x0
x ′0
y0
y ′0

 (3.26)

This represent a horizontal focusing / vertical defocusing quadrupole.

To compensate this, quadrupoles are commonly placed in pairs, being the second
quadrupole horizontal defocusing / vertical focusing.

Quadrupole (horizontal defocusing / vertical focusing)


x(s)
x′(s)
y(s)
y ′(s)

 =


cosh(ks) 1

k sinh(ks) 0 0
k sinh(ks) cosh(ks) 0 0

0 0 cos(ks) 1
k sin(ks)

0 0 −k sin(ks) cos(ks)




x0
x′

0
y0
y ′

0

 (3.27)

Another important remark: k =
√

K , and K is always taken positive, so for defocusing
quads corresponding to negative K , the sign is explicitly written: −K .
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Note that this correspond to change K
(defined positive) to −K since

sinh u = −i sin(iu)

cosh u = cos(iu) (3.28)

Physically, this represents a 90◦ rotation
of the quadrupole, so the north and
south poles end up interchanged.

In the thin lens approximation, we
make s = L→ 0 while keeping KL
constant. In addition, the focal length
of the quadrupole is given by

f ≡
1

KL
=

1
k2L

(3.29)

The corresponding matrices are then

Thin quadrupole (horizontal
focusing / vertical defocusing)


x
x ′
y
y ′

 =


1 0 0 0
− 1

f 1 0 0
0 0 1 0
0 0 1

f 1




x0
x ′0
y0
y ′0


(3.30)

and

Thin quadrupole (horizontal
defocusing / vertical focusing)


x
x ′
y
y ′

 =


1 0 0 0
1
f 1 0 0
0 0 1 0
0 0 − 1

f 1




x0
x ′0
y0
y ′0


(3.31)

when we change f → −f .
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In general, a quadrupole can be
treated as a thin quadrupole when

|f | � L (3.32)

and then we can use the simpler

transport matrices (3.30)-(3.31) instead
of (3.26)-(3.27) where the trigonometric
functions make the oscillatory motion
evident (as in the thick quadrupole in
the bottom left corner).
.
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Example: Doublet
A doublet is a system formed by a pair of quadrupoles, separated by a drift.

Consider only the horizontal plane. If the first quadrupole is focusing and the second
is defocusing, the transfer matrix of the system is

Mdoublet =

(
1 0
1
fD

1

)(
1 L
0 1

)(
1 0
− 1

fF
1

)
=

(
1− L

fF
L

1
fD
− 1

fF
− L

fF fD
1 + L

fD

)
(3.33)

The element m12 gives us the inverse of
the focal length of this system,

1
fdoublet

≡
1
fD
−

1
fF
−

L
fF fD

(3.34)

In the particular case that fD = fF = f ,

1
fdoublet

= −
L
f 2

(3.35)

s

QF QD

L

s

QD QF

An alternating gradient system as this one provides net focusing, a fundamental
feature for accelerator strong focusing.
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Example: Doublet (cont.)
Consider an incoming paraxial ray (x0, 0). Then, after passing the doublet,(

x
x ′

)
= Mdoublet

(
x0
0

)
=

((
1− L

f

)
x0

− L
f 2 x0

)
=

(
1− L

f
− L

f 2

)
x0 (3.36)

In order this to be focusing, x and x ′ must have opposite signs. Since both L and f
are positive, we can analyse two cases:

If x0 > 0, x0 < 0,
then the slope x ′ = − L

f 2 x0 < 0, x ′ = − L
f 2 x0 > 0,

which demands x =
(

1− L
f

)
x0 > 0. x =

(
1− L

f

)
x0 < 0 .

Now, since (again) x0 > 0, x0 < 0,
then 1− L

f > 0 1− L
f > 0

or f > L. f > L.

That is, an equal-strength doublet is net focusing under condition that the focal
length of each lens is greater than the distance between them.

In the reversed case (defocusing quad first, followed by the focusing one), the same
condition is reached after following a same procedure. Then, alternating quadrupoles
continuously produces a system that is overall net focusing and stable.
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Dispersion I

So far we have assumed that the
design trajectory particle and our
particle have the same momentum.

What happen when this is not the
case? Let us suppose that

p = p0 + ∆p = p0(1 + δ) (3.37)

where

Momentum deviation

δ ≡
∆p
p0
� 1 (3.38)

Then, the equation of motion for the
dipole in the horizontal plane is

d2x
dθ2

+

(
qBy

p0(1 + δ)
R − 1

)
R = 0

(3.39)
Compare this equation with (2.20).
Using the approximation

1
1 + ε

≈ 1− ε (3.40)

we get

d2x
dθ2

+

(
qBy

p0
(1− δ)R − 1

)
R = 0

(3.41)
Rearranging,

d2x
dθ2

+

(
qBy

p0
R − 1

)
R =

qBy

p0
R2δ

(3.42)
we obtain

d2x
dθ2

+ (1− n)x = ρδ (3.43)

where n is the field index defined in
(2.27) and δ is constant.

The momentum effect is called
dispersion.
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We can see that the only change is the addition of an inhomogeneous term to the
ordinary differential equation. Therefore, the solution of is given by the sum of the
homogeneous solution xh (already derived, a harmonic oscillator) and the
particular solution xp ,

x(θ) = xh(θ) + xp(θ) (3.44)

Based on the form of the differential equation, we propose xp = C, with C a constant,
as particular solution. Substituting into the equation,

d2C
dθ2

+ (1− n)C = 0 + (1− n)C = ρδ (3.45)

where we can solve for C,

xp = C =
ρδ

1− n
(3.46)

The complete solution is then

x(θ) = A cos(θ
√

1− n) + B sin(θ
√

1− n) +
ρ

1− n
δ (3.47)

We now get its derivative,

dx
dθ

=
√

1− n[−A sin(θ
√

1− n) + B cos(θ
√

1− n)] (3.48)
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in order to get A and B in terms of the initial conditions (x0, x ′0). By doing so, we
obtain the constants

A = x0 −
ρ

1− n
δ, B =

ρ
√

1− n
x ′0 (3.49)

The solution can be written with a 3× 3-matrix: x
x ′
δ

 =

 cosφx
ρ√
1−n

sinφx
ρ

1−n (1− cosφx )

−
√

1−n
ρ

sinφx cosφx
1

1−n sinφx

0 0 1


x0

x ′0
δ0

 (3.50)

where φx = θ
√

1− n. Note that δ has become a “coordinate”. If we take n→ 0, we
obtain the transport matrix for a

Dipole (no focusing, with dispersion)

 x
x ′
δ

 =

 cos θ ρ sin θ ρ(1− cos θ)

− 1
ρ

sin θ cos θ sin θ
0 0 1

x0
x ′0
δ0

 (3.51)

The momentum deviation does not gives rise to vertical dispersion in the presence
of horizontal dipoles, as can be verified by carrying similar calculations out for the
vertical plane.
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Example: 180◦ spectrometer magnet
A mass spectrometer separates particles according to their energy.

Suppose a 180◦ bending magnet (π rad); its corresponding transport matrix is then

M =

 cosπ ρ sinπ ρ(1− cosπ)

− 1
ρ

sinπ cosπ sinπ
0 0 1

 =

−1 0 ρ[1− (−1)]
0 −1 0
0 0 1


In this magnet, a particle with initial coordinates (0, 0,±δ), will experience

deflection and, at the exit of the dipole its final coordinates will be x
x ′
δ

 = M

x0
x ′0
δ0

 =

−1 0 2ρ
0 −1 0
0 0 1

 0
0
±δ

 =

±2ρδ
0
±δ


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Example: 180◦ spectrometer magnet
A mass spectrometer separates particles according to their energy.

Suppose a 180◦ bending magnet (π rad); its corresponding transport matrix is then

M =

 cosπ ρ sinπ ρ(1− cosπ)

− 1
ρ

sinπ cosπ sinπ
0 0 1

 =

−1 0 ρ[1− (−1)]
0 −1 0
0 0 1


In this magnet, a particle with initial coordinates (0, 0,±δ), will experience

deflection and, at the exit of the dipole its final coordinates will be x
x ′
δ

 = M

x0
x ′0
δ0

 =

−1 0 2ρ
0 −1 0
0 0 1

 0
0
±δ

 =

±2ρδ
0
±δ


Consider a 0.1 T magnet, used in a 20 MeV/c beam. Then, particles at the

reference position, but with 1% deviation of momentum, will be displaced a distance

x = 2ρδ = 2 ·
p[GeV/c]

0.3B[T]
· δ = 2 ·

0.02 GeV/c
0.3(0.1 T)

· 0.01 = 2(0.67 m)(0.01) ≈ 1.33 cm

from the ideal orbit at the exit of the spectrometer.
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