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The material of this talk is SPARC
based on:

* Lectures of Joint Accelerator School on Beam Loss and Accelerator
Protections. (http://uspas.fnal.gov/programs/JAS/JAS14.shtml)

Specially in the Lectures of R. Schmidt and F. Willeke

* Beam Loss Monitor by K. Wittenburg (http://cas.web.cern.ch/cas/France-
2008/Lectures/Wittenburg-BLM.pdf)
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Introduction to Machine Protection
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Motivation

JPRRC

* Nowadays, many machines operate with high power intensity and/or high particle energy
(J-PARC, LHC, SNS and ESS) and the future projects (HL-LHC, FCC). Therefore, the
Machine Protection System (MPS) becomes more important for the good performance of

the accelerator.
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Energy and Power

Every generation of accelerators increase in beam intensity and/or particle Energy
® For storage rings and synchrotrons, the energy stored in the beam increases.

* For linear accelerator and fast cycling machines, the beam power increased.

For example:
* 90 kg of TNT g—_g‘a_

360 MJ: the energy stored in
one LHC beam corresponds - 8 litres of gasoline
approximately to...

» 15 kg of chocolate

It matters most how easy and
fast the energy is released !

“If something goes wrong, the beam energy or power must to be safely deposited”

R. Schmidt
Courtesy of R. Schmidt
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©Why It IS necessary a BLM system?

Courtesy of LBL Image Library.

“You do not need a BLM System as long as you have a perfect machine without any
problems. However, you probably do not have such a nice machine, therefore you better
install one”.

K. Wittenburg
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What is beam lost?

JPRRC

Beam loss particles can be defined as the particles accidentally interact with the elements of

the accelerator producing radiation.
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Types of beam losses ) /AN

®* The beam losses can be classified as: Controlled and Uncontrolled.

e Controlled losses (regular or slow) are commonly concentrated on the collimator system
(injection, Touschek effect, tune scans, etc ).

* These progressively losses occur during operation and correspond to the lifetime/
transport efficiency.

* The lowest possible loss rate is defined by the theoretical beam lifetime limitation due to
various effects, e.g., Touschek effect, beam-beam interactions, collisions, etc.

e Uncontrolled losses (irregular or fast) are often the result of malfunctioning or erroneous
of the accelerators devices and a misaligned beam (superconducting quench, trip of the
RF, vacuum).

* These losses can occur spontaneously during the operation and can produce an
irreversible damaged or shut down in the accelerator.
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Failures classification
in the LHC

SI oW C'?‘ﬂi‘-"ﬂm IIH.'IHEITI This classification is different for
: * Transverse beam lﬂﬂlbm another machines.
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. s Veryfast crab cavity failure (HL-LHC)
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Courtesy of T. Baer.

19/11/2015 MEPAS-2015 B. Yee-Rendon 11



&

C

Goal of the Machine Protection ###c

For J-PARC the Personnel Protection System is in charge

o Safety of the people (workers and civilians). < of that.

For J-PARC the
® Protection of the environment (avoid the leaking outside of the secure areas).«—— Radiation Safety

System is in charge
of that.

¢ Protection of the equipment/machine (from the beam-induced damage and elements
activation)

¢ Protect the beam (reducing the numbers of false beam trips).
* Provide Evidence (post-mortem analysis).

e Etc.
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S Reliability /A

“Reliability is the probability of fulfilling the Major Design Function (MDF) of the system,
continuously and without interruption, for a predefined period of time”

R. Andersson

“Reliability is the machine's ability to run safely and without interruptions for a specified period
of time”

Machine protection at ESS

R(t)=e

where A is the failure rate and t the predefined time period.
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S Availability ».

“Availability is the probability to find the machine fulfilling its MDF, when it is claimed to be in
operation”

R. Andersson

“Availability refers to the percentage of the planned operation time that the machine is actually
operation as it is supposed to”

Machine protection at ESS

Alt|=1—_MTBF
MTBF+MDT

where MTBF is the Mean Time Between Failures and MDT is the Mean DownTime.
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C BLM system SPAAC

* A BLM system consists of an equipment which detect the radiation produced due to the
particle loss.

* An efficient BLM is able to distinguish the radiation produced by the beam loss particles
(unintentional, LINAC -Xray RF at J-PARC) from the one generated by the interaction

between the beam and the beam diagnostic instrument (Collimators, scrapers,
intentional).

* The BLM works using the principle of energy deposition (Bethe-Bloch equation), this
consists in the interaction of the particles with the material, the beam energy ionizes the
medium. The way that the losses can be detected is by ionization or by fluorescence.
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BLM examples SPAAC
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Active Protection

Example for Active Protection - Traffic

e A monitor detects a
dangerous situation

e An action is triggered

e The energy stored in
the system is safely
dissipated

Ridiger Schmidt JAS 2014
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BIS

o PRARC

The Beam Interlock System (BIS) is in charge to allow the injection and the circulation of
the particles in the accelerator and in the case of abnormal beam behavior, its extraction.
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@ BDS /A

The Beam Dump System (BDS) is in charge of the safe extraction of all the beam
bunches in case of a failure.

LHC BDS

Septum magnet
deflecting the
extracted beam  H_V/ kicker

Q : fﬁr p;)ainting Beam dump
the beam block
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magnet S
E

Courtesy of M. Gyr
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Passive Protection

Example for Passive Protection

* The monitor fails to
detect a dangerous
situation

 The reaction time is
too short

 Active protection not
possible — passive
protection by
bumper, air bag,
safety belts

Courtesy of R. Schmidt
page 81

Ridiger Schmidt JAS 2014
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© Collimator o

The collimation system is designed to protect the accelerator components (the cold
superconducting magnets) against unwanted beam loss. The collimators remove the
particles beyond a certain transverse amplitude, which could eventually impact on the
beam pipes or magnets.

LHC Collimation system

principle of multi-stage cleaning
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Machine Protection is not an objective in itself, it is to

Remember SPARC

e maximise operational availability by minimising down-time (quench, repairs)
e avoid expensive repair of equipment and irreparable damage

&
@3\9 operational availability versus equipment safety

%> 100 - Downtime dominated
..f

90 - Downtime for repairs due by too complex

80 | to insufficient protection Protection Systems

70 - systems
60 -
50 -
40 -
30 -
20 -
10 -
0

operational availability [%]

machine safety

Side effects from LHC Machine Protection System compromising
operational efficiency must be minimised

Example: For J-PARC Main Ring, during machine study time beam losses are allowed. MPS by BLMs are masked.
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My experience to Machine Protection
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Studies of Machine Protections for Fast Crab
Cavity Failures in the High Luminosity Large
Hadron Collider
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« Physics driven requirements:
— Increase luminosity limiting Pile-Up (PU) to ~140 events/crossing
e L=5x10%¢cm=2g!

— Limit PU linear density to ~1 event/mn'}
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Summary

CCs that closed
the crati bump
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C Conclusions & future work

* This beam tracking study shows the first results of crab cavity failures scenarios considering a realistic
steady-state beam distribution in the LHC.

* The effect of the CCs in the global inefficiency is negligible.

* The CC failures produces large losses for the distribution with long tails on the plane that the CCs apply
the kick.

* To estimate an upper limit for the energy deposited in our simulations, we can assume that all the
particle energy is deposited on the element.

* The test of the CCs prototypes in the SPS in 2017 will allow to develop more realistic CC failure models
which will help to obtain more accurate results of CC failures in the HL-LHC.

* More special runs for beam scraping or another beam measurements are necessary to have a better
description of the particle distributions which emphasis in the tails.

* Finally, halo monitoring and control during LHC operation become essential operational tools for
guaranteeing the machine safety with crab cavities operation.
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Beam lost monitor study in MR at
J-PARC

19/11/2015 MEPAS-2015 B. Yee-Rendon 28



19/11/2015

Matriiazrl;.s;l'id Life Science
Experlmental Facility

Nuclear
Transmutation

(Phase 2)
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Courtesy of J-PARC

Parameters LINAC RCS MR
Particle H- p p

E [GeV] 0.4 3 30

Length [m] 340 348.333 1567.5
Frq [Hz] 50 25 0.3
Intensity [x 10%] 8.3 3.3
Beam power [MW] 1.0 0.75
Avg Beam Current [pA] 700 333 15
MEPAS-2015 B. Yee-Rendon
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C Topic works ) /A

e “LARGE RESIDUAL RADIATION BUT SMALL BEAM LOSS SIGNAL AT J-PARC
MR))

e “ELECTRON CLOUD OBSERVED DURING DEBUNCHING FOR SLOW BEAM
EXTRACTION AT J-PARC MAIN RING”

e “RESIDUAL RADIATION MEASUREMENT WITH THE BLMS IN J-PARC MR”
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E-« LARGE RESIDUAL RADIATION BUT SMALL 772
BEAM LOSS SIGNAL AT J-PARC MR

e For FX (fast extraction), we measured a o
large residual radiation at address 45 and

52 (ARC A), however, the signal for the o
BLM is small.

e The figure 1 presents the residual

radiation in 11/Mar/2015 (blue) and
17/Mar/2015 (red). It seen a different Al
results from beam loss signal and residual

radiation.

Residual radiation

[mSv/h]

Figure 1: Beam loss signals during operation vs.
residual radiation measured with the BLMs.
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My contribution
(Simulations with SAD)
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(b) Horizontal: Gaussian, vertical: hollow distribution. (b) Horizontal: Gaussian, vertical: hollow distribution.
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(Thank so much)
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