
MePAS 2015, Guanajuato, 11-21 November 2015 1 

Collective Instabilities (Part 2) 
John Byrd 

Lawrence Berkeley National Laboratory 



MePAS 2015, Guanajuato, 11-21 November 2015

Lecture Summary Part 2 
•  Longitudinal single bunch collective effects 

–  Short-range longitudinal wakefields and broadband impedance 
–  Potential well distortion 
–  Longitudinal microwave instability 
–  Measurements 
–  CSR microbunching instability 

•  Transverse single bunch collective effects 
–  Short-range transverse wakefields and broadband impedance 
–  Head-tail modes and chromaticity 
–  Measurements 
–  Damping with feedback 
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Lecture Summary 3 

•  Landau Damping 
•  Longitudinal single bunch collective effects 

–  Short-range longitudinal wakefields and broadband impedance 
–  Potential well distortion 
–  Longitudinal microwave instability 
–  Measurements 
–  CSR microbunching instability 

•  Transverse single bunch collective effects 
–  Short-range transverse wakefields and broadband impedance 
–  Head-tail modes and chromaticity 
–  Measurements 
–  Feedback 
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Effects of single bunch instabilities 

•  The brightness of a 3GLS is proportional to the total 
current:  
–  I=Number of bunches x current/bunch 

•  The strategy for 3GLS is to minimize single bunch 
collective effects by using many bunches. 

•  Exception 1: some users want to have timing gaps 
between bunches of ~200 nsec 
–  Number of bunches reduced 
–  Maximize current/bunch while maintaining stable beam. 

•  Exception 2: some users want short bunches (<10 
psec) 
–  Larger peak bunch current drives more collective effects 
–  Bunches less than ~3 psec have large effects from radiation 

impedance.  
4 
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Single Bunch Collective Effects 

•  Driven by short-range wake fields (broadband 
impedance) 

•  Longitudinal effects   
–  Potential well distortion 

•  Bunch length increase 
–  Microwave instability 

•  Bunch length and energy spread increase 

•  Transverse 
–  Head-tail damping  

•  Uses chromaticity to provide additional transverse damping. Very 
good for stabilizing coupled bunch instabilities 

–  Transverse mode-coupling instability 
•  Hard limit to total bunch current. In 3GLS, driven by tapers and 

small gap ID vacuum chambers.  
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Short-range wakes and broadband 
impedance 

•  Short-range wakes are those that last over the 
length of the bunch.  

•  Generated by the many discontinuities in the 
vacuum chamber: RF cavities, kickers, 
pumps, tapers, resistive wall, etc.  

•  The wake (and impedance) of all of these 
components can be calculated with modern 
EM codes.  

•  The total wake is summed together and 
assumed to act at a single point in the ring. 
Valid for slow synchrotron motion.  

6 



MePAS 2015, Guanajuato, 11-21 November 2015

- 66 -

Using (26) we obtain the expression for the loss factor:

K στ( ) = B
πστ

3/2
Γ 3 / 4( )

2
(238)

with Γ(1/4)/2 = 1.8128...
The parameters L, R, B, Zc of the broad-band model are extracted from TBCI, ABCI or

MAFIA results by fitting the numerical functions W(τ) and K(στ) to above analytical ex-
pressions. In Fig. 35 we show an example of wake function for a cavity with attached tubes
where the high frequency behaviour is dominant.
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 Fig. 35 - Cavity with attached tubes and wake function for cστ = 2 cm
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Example Wakes 

•  Small cavity 
•  V~dI/dt 
•  Inductive 
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  Fig. 32 - Shallow cavity and wake function for cστ = 5 cm

 The wake-field for the resistive term Z(ω) = R is:

Wz τ( ) = − R
2πστ
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The ratio -Wz(τ)/|Wz|max is shown in Fig. 33. In storage rings such a wake is expected
for deep cavities for bunches with length comparable with the beam pipe radius. Fig. 33
reproduces an example of wake for SLC damping ring cavity [55].
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Fig. 33  - Deep cavity and wake function for cστ = 1.4 cm

For good resistors the expression for the loss factor has a simple form:

K στ( ) = R
2 πστ

(233)
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For good resistors the expression for the loss factor has a simple form:

K στ( ) = R
2 πστ

(233)

•  Large cavity, 
small beam pipe 

•  V~I 
•  Resistive 

•  Large cavity, big 
beam pipe 

•  V~∫I 
•  Capacitive 7 
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Broadband Impedance Model 

•  In order to characterize the total short range wakes in the 
machine for use in estimating instability thresholds, several 
broadband impedance models have been developed. I mention 
two below.  
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Broadband resonator model 

•  Model the broadband impedance as a ~Q=1 resonator 
•  Low frequency component is inductive characterized by the inductance 

Z~wL 
•  Z/n~w0L where n=w/w0 

–  Note that this is only an approximate model which is convenient for 
calculations 
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Heifets-Bane-Zotter Model 

•  Characterize the broadband impedance as a 
expansion in orders of sqrt(w). This account for 
various types of impedance (inductive, capacitive, 
etc.) 

 
The values for individual terms can be found from fitting 
to the computed wakes 
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   It has a maximum at x = ω/ω1 = 4/3 and becomes proportional to ω-3/2 at high frequen-
cies. The Hilbert transform gives the impedance imaginary part:

          

   

Zi x( ) = R
x2 1 + x − 1 − x − x[ ]; x < 1

Zi x( ) = R
x2 1 + x − x[ ]; x > 1

(226)

  A similar impedance model (2b) has an asymptotic decrease of the real part proportional
to the inverse square root of frequency at high frequencies. The real part is given by:

 

  

Zr x( ) = R
x − 1
x

; x > 1

Zr x( ) = 0; x < 1

   (227)       

   
which has a maximum at x=2. The expression for the imaginary part is:

  

Zi x( ) = R
x

2 − 1 + x − 1 − x[ ]; x < 1

Zi x( ) = R
x

2 − 1 + x[ ]; x > 1

(228)

 The loss factor for both models, 2a and 2b, can be easily obtained by numerical
integration. It drops exponentially with bunch length for the two models for long Gaussian
bunches.

8.3  Heifets-Bane impedance model

Recently, a new broad-band impedance model was proposed by S. Heifets [53] as the
further development of K. Bane's approach used in his analysis of the impedance of the SLC
damping ring [54,55]. The longitudinal impedance is described phenomenologically by ex-
pansion over √ω :

  
Z ω( ) = jωL + R + 1 + jsign ω( )( ) ω B + 1 − jsign ω( )

ω
Z̃c +...

 (229)

Inductance Resistive wall 

resistance 
High frequency cavities 

10 
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Potential Well Distortion 

•  The nominal bunch shape and length is determined by the linear 
(almost!) restoring force of the main RF voltage. If we add the 
short-range wake potential, the bunch shape can change. This is 
known as PWD.  

•  The stable phase position also changes. This accounts for 
resistive losses into the broadband impedance.  POTENTIAL WELL DISTORTION

(bunch lengthening)
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The normalization constant K is defined by:

dt tλ( )∫ =
−∞

+∞
1

The line density λ(t) is Gaussian for vanishing bunch current
and the Gaussian distribution can be substantially deformed at
high bunch current.
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Potential well distortion 
•  Example calculation for a purely inductive Z=wL and resistive 

Z=R impedance 

BUNCH LENGTHENING FOR Z(ω) = jωL

BUNCH LENGTHENING FOR Z(ω) = jωL

BUNCH LENGTHENING FOR Z(ω) = R

BUNCH LENGTHENING FOR Z(ω) = R

12 
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Microwave Instability 

•  PWD is a static deformation of the bunch shape 
•  Above a threshold, instabilities develop within the bunch, increasing 

the energy spread and bunch length and thus decreasing the peak 
current.  

•  The instabilities have characteristic lengths less than a few tens of 
cm. Therefore they are known as microwave instabilities.   

•  The details of such an instability depends on the details on the 
short-range wake, and the detailed bunch parameters (energy 
spread, synchrotron tune,  momentum compaction.) 

•  There is a general characterization of the microwave threshold 
known as the Boussard criterion. Turbulence starts when the slope 
of the total voltage (RF plus wake-fields) becomes zero at some 
point within the bunch. It can be shown that for a Gaussian bunch 
and a purely inductive impedance both criteria are equivalent. 

13 
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Boussard Criterion 

•  The microwave instability can be approximated by the 
Boussard criterion.  

 

•  Above threshold, as the bunch current, the energy 
spread increases to satisfy the Boussard criterion.   
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Examples (simulations) 

•  One can visualize the dynamics of a microwave 
instability via particle tracking including the wake 
potentials.  

15/03/00 ESRF BIW March 13-15 2000     C.Limborg SSRL / SLAC 15

Broadband impedance

fr = 30 GHz

Rs = 42 kΩ

Q = 1

Cecile Limborg 15 
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Examples (simulations) 

15/03/00 ESRF BIW March 13-15 2000     C.Limborg SSRL / SLAC 17

• K.Bane simulations of
SLC damping ring;
• Uses the numerically
computed wakefield
• Exhibit quadrupole form
of perturbation
(but 3% of total intensity)

•  The motion often 
appears as a particular 
modal oscillation of the 
bunch  

Karl Bane 16 
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Example: ALS Vacuum Chamber 
• 200 m circumference 
• 12 sectors: 1 straight for injection, 1 for RF/FB kickers, 1 for pinger/
harmonic cavs 
• vacuum chamber w/antechamber design 
• 2 main RF cavities (500 MHz), 5 harmonic cavities (1.5 GHz) 
• 48 bellows with flexbend shields 
• 4 LFB “Lambertson” style kickers, 2 transverse stripline kickers 
• 1 DCCT 
• 96 arc sector BPMs, 24 insertion device BPMs 
• 4 small gap insertion device chambers (8-10 mm full height) w/
tapers to 42 mm arc sector chamber.  

17 
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ALS Wakes 
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Energy Spread 
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Energy spread summary 

5

6

7

8

9

0.001

R
M

S 
Fr

ac
tio

na
l E

ne
rg

y 
Sp

re
ad

2 3 4 5 6 7 8 9
0.01

2 3 4 5 6 7 8 9
0.1

IbQs/E (mA/GeV)

E=1.52,Qs=7.71e-3
E=1.52,Qs=6.5e-3
E=1.52,Qs=3.8e-3

σε= (2.28±0.08) x10-3 (IbQs /E (mA/GeV))0.32±0.01)

Plot data at 1.5 GeV using 
Chao-Boussard scaling 

   
σε

3= 1
2πα2

IbQs
(E/e)

Z/ /
n + Im Z/ /

n Z/n=0.08 Ω 

20 



MePAS 2015, Guanajuato, 11-21 November 2015

Dual-Scan Streak Camera 

All bunch length measurements 
done using Hamamatsu C5680 
Streak camera w/dual 
synchroscan 

Phase shift measurements 
done using small test bunch 

21 
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Bunch length vs. current 
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Bunch length and synchronous phase shift 
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higher currents.  23 



MePAS 2015, Guanajuato, 11-21 November 2015

Broadband BPM spectra 
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We also measured synchrotron 
sideband amplitudes at various 
frequencies. The dipole motion 
at low current is driven by RF 
phase noise. 

sigma=8.2 mm 

sigma=4.2 mm 

The spectra at longer bunch 
length shows a clear coherent 
quadrupole motion. This is also 
evident on streak camera data. 
The short bunch data does not 
show any clear modes. 
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Transverse Single Bunch Effects 
•  Transverse effects are driven by the transverse short-range 

wake or the transverse broad-band impedance.  
•  There is a very approximate relation between the longitudinal 

and transverse from the Panofsky-Wenzel theorem given by 

•  What beam pipe size to use? 
–  3GLSs transverse broadband impedance dominated by ID 

chambers: tapers and small gaps 
•  The bunch current is limited by the transverse mode 

coupling instability (TMCI) in the vertical direction  
–  Instability threshold can be raised with chromaticity. However, this 

has adverse effect on the lifetime.  

26 
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Transverse modes 

•  The transverse motion of the bunch is composed of a 
set of normal modes 
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z

z
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Head-tail instability 

•  Consider a simple model where the bunch has two macroparticles 
•  Each macroparticle has an equal amplitude of synchrotron 

oscillation. There is an exchange of the head and tail of the bunch 
every half synchrotron period.  

•  If we add a transverse wake field, the each macroparticle drives the 
other when it is at the head of the bunch.  

•  The wake couples the motion of the macroparticles and can lead to a 
variety of collective effects.  

11/29/01 USPAS Lecture 24 1

LECTURE 24

Collective instabilities

Bunched beam instabilities driven by short-range
wakefields:

Head-tail instabilities in synchrotrons

11/29/01 USPAS Lecture 24 2

Collective instabilities
Bunched beam instabilities driven by short-range

wakefields:
Head-tail instabilities in synchrotrons

“Strong” head-tail instability
The “head-tail” instability is a transverse instability in which
the transverse wake field generated by the head of a bunch

exerts a force on the tail of the bunch. Such a condition may
lead to unstable motion of the tail, resulting in breakup of the

bunch.
It should be clear that such an instability will be driven most

easily by short-range wakefields, which extend over a distance
of order the length of the bunch.  As we have seen, such

11/29/01 USPAS Lecture 24 3

wakefields are generated by the relatively high frequency
impedance of broad band resonators. We will take a very

simple model for the wake function that drives the head tail
instability, namely:

W z
W z

1
0
0

( )
  

 
=

− > > −⎧
⎨
⎩

⎫
⎬
⎭

if bunch length
otherwise

The transverse wake potential generated by a total charge Q,
undergoing vertical motion with a dipole moment y , will then

be (Lect 24, p. 16)
F eQW yy =

(We’ll only discuss vertical oscillations here, but the treatment
for the horizontal case is essentially identical).

11/29/01 USPAS Lecture 24 4

We will use a “two-macroparticle” model for the beam. One
macroparticle, labeled “1”, will represent the head of the beam,
and the other, labeled “2”, will represent the tail of the beam.

Each macroparticle contains charge Ne 2.

s

z

y

1
2

yy
2

1

If we ignore wakefields, then each macroparticle can execute
free betatron oscillations about y=0.  If we focus on a particular

28 
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Head-tail mode coupling 

•  The coupling of the wake 
field causes frequency shifts 
of the modes.  

•  When the modes merge, 
there is a growth of the 
motion: instability. 

•  The physical interpretation 
of this effect is that 
instability occurs when the 
growth rate of the tail (driven 
by the head) is faster than 
the synchrotron period.  
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Head-tail motion with 
chromaticity 

•  If there is a nonzero chromaticity, 
this adds an additional effect to 
the head-tail motion. 

•  The chromaticity adds a phase 
shift between the head and tail of 
the bunch, modifying the effect of 
the wake.  

•  For example, some modes can 
be damped, and some modes 
are antidamped.  

•  Note that increase of the 
chromaticity lowers the dynamic 
acceptance of the storage ring 
with an adverse effect on the 
lifetime.  
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Head-tail modes in frequency 
domain 

•  The spectra of head-tail 
modes is analogous to those 
for the longtidinal modes.  

•  The addition of chromaticity 
shifts the mode spectrum in 
frequency.  

•  The total wake function is the 
overlap of the mode 
spectrum with the transverse 
broadband impedance.  

•  The main effect of increasing 
the chromaticity is a damping 
of the m=0 mode.  

•  This is known as head-tail 
damping and can be used to 
damp transverse coupled 
bunch instabilities.  
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Vertical tune shift vs. bunch 
current 
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 dQy (no small gap), dQy/dI=1.71±0.05e-4/mA
 dQy (one small gap), dQy/dI=2.29±0.05e-4/mA
 dQy (two small gaps), dQy/dI=2.97±0.06e-4/mA
 14 Dec 98 (four small gaps), dQy/dI=3.63±0.07e-4/mA
 3 May 99 (four small gaps), dQy/dI=3.65±0.07e-4/mA
 28 June 99 (5 THCs), dQy/dI=3.71±0.1e-4/mA

   dQ
dI = R

4 π (E/e)σ l
βZeff

Measured vertical tune shift 
vs bunch current since 
beginning of ALS operations 
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Tune shift vs. bunch current 
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Measured vertical tune 
spectum with swept 
frequency excitation. Large 
currents reached using 
large vertical 
chromaticity>5.  
 
Note persistence of original 
tune line. 
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Head-tail damping rate vs. I 
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Measure vertical and 
horizontal damping rates vs. 
X and I.  
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Mode-coupling threshold 

• Vertical mode-coupling threshold has dropped by a factor 
of 2 with installation of 5 small gap vacuum chambers 
• Main current-limiting mechanism due to small vertical 
physical aperture.  
• Unclear whether generated by resistive wall impedance or 
tapers. 
•  Threshold depends on vertical orbit through small gap 
chamber 
• Threshold decreases with vertical X up to around 5 when it 
vanishes. Maximum current injection limited to around 35-40 
mA with very short lifetime. 
• Horizontal threshold appears to be around 25 mA. 
• Displays hysteretic behavior. 
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Feedback control of TMCI 
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 feedback off,  τ=2.66 msec

Measured h+v damping rates for various gain settings • Reconfigured existing multibunch 
transverse FB system to work for 
high current single bunch. 
• FB has arbitrary phase adjustment 
using 2 PUs about 60 degrees apart 
in betatron phase.  
• Sensitive buttons and electronics 
allow for high gain. 
• both vertical and horizontal FB used 
to control TMCI.  
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FB control of TMCI (cont.) 
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Tune shift vs current with and without 
FB. Highest currents operated with FB 
in resistive mode 

Empirical adjustment of the FB 
phase gives highest bunch currents 
with FB in resistive mode. Bunch 
currents of 37 mA achieved with 
vert.+horz chromaticities of ~0.5. 
This gives the maximum dynamic 
aperture and the longest lifetime.  

Interesting questions: 
-what is the effect of damping of 
the m=0 mode on the coupling? 
-How much of a perturbation is 
req’d to start the growth? 37 


