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Lecture Summary Part 2 Pal

« Longitudinal single bunch collective effects
— Short-range longitudinal wakefields and broadband impedance
— Potential well distortion
— Longitudinal microwave instability
— Measurements
— CSR microbunching instability

« Transverse single bunch collective effects
— Short-range transverse wakefields and broadband impedance
— Head-tail modes and chromaticity
— Measurements
— Damping with feedback

~
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Lecture Summary 3 Yol

« Landau Damping

» Longitudinal single bunch collective effects
— Short-range longitudinal wakefields and broadband impedance
— Potential well distortion
— Longitudinal microwave instability
— Measurements
— CSR microbunching instability

« Transverse single bunch collective effects
— Short-range transverse wakefields and broadband impedance
— Head-tail modes and chromaticity
— Measurements
— Feedback

o
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Effects of single bunch instabilities "

« The brightness of a 3GLS is proportional to the total
current:

— I=Number of bunches x current/bunch

* The strategy for 3GLS is to minimize single bunch
collective effects by using many bunches.

» Exception 1: some users want to have timing gaps
between bunches of ~200 nsec
— Number of bunches reduced
— Maximize current/bunch while maintaining stable beam.

« Exception 2: some users want short bunches (<10
psec)
— Larger peak bunch current drives more collective effects

— Bunches less than ~3 psec have large effects from radiation
impedance.
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Single Bunch Collective Effects 0

« Driven by short-range wake fields (broadband
iImpedance)

* Longitudinal effects
— Potential well distortion
« Bunch length increase

— Microwave instability
« Bunch length and energy spread increase

* Transverse
— Head-tail damping
« Uses chromaticity to provide additional transverse damping. Very
good for stabilizing coupled bunch instabilities
— Transverse mode-coupling instability

» Hard limit to total bunch current. In 3GLS, driven by tapers and
small gap ID vacuum chambers.
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Short-range wakes and broadband ;=
impedance S

« Short-range wakes are those that last over the
length of the bunch.

« Generated by the many discontinuities in the
vacuum chamber: RF cavities, kickers,
pumps, tapers, resistive wall, etc.

* The wake (and impedance) of all of these

components can be calculated with modern
EM codes.

* The total wake is summed together and
assumed to act at a single point in the ring.
Valid for slow synchrotron motion.
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Example Wakes
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Broadband Impedance Model Pal

* In order to characterize the total short range wakes in the
machine for use in estimating instability thresholds, several
broadband impedance models have been developed. | mention

two below.
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Broadband resonator model

* Model the broadband impedance as a ~Q=1 resonator
* Low frequency component is inductive characterized by the inductance
Z~wL
*  Z/n~w,L where n=w/w,
— Note that this is only an approximate model which is convenient for
calculations

ZL/n [ohm]
N
<
N
o

= D
N
o
<
o
u

C
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Heifets-Bane-Zotter Model f‘*“

» Characterize the broadband impedance as a
expansion in orders of sqgrt(w). This account for
various types of impedance (inductive, capacitive,
etc.)

Z(w) = joL+ R+ (1 + jsign(w))|o B+ ]Slgn(w)zc+...

\ \ yio
T

Inductance Resistive wall

resistance _ i
High frequency cavities

The values for individual terms can be found from fitting
to the computed wakes

CEIIESAY ] e ACCELERATOR TECHNOLOGY & APPLIED PHYSICS DIVISION [



Potential Well Distortion

 The nominal bunch shape and length is determined by the linear
(almost!) restoring force of the main RF voltage. If we add the
short-range wake potential, the bunch shape can change. This is
known as PWD.

» The stable phase position also changes. This accounts for
resistive losses into the broadband impedance.

0.5 |

05 |

-10 . ‘05‘ 1 ‘15‘ 2 ‘25‘ g
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Potential well distortion

Example calculation for a purely inductive Z=wL and resistive
Z=R impedance
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Microwave Instability Por

« PWD is a static deformation of the bunch shape

« Above a threshold, instabilities develop within the bunch, increasing
the energy spread and bunch length and thus decreasing the peak
current.

« The instabilities have characteristic lengths less than a few tens of
cm. Therefore they are known as microwave instabilities.

* The details of such an instability depends on the details on the
short-range wake, and the detailed bunch parameters (energy
spread, synchrotron tune, momentum compaction.)

* There is a general characterization of the microwave threshold
known as the Boussard criterion. Turbulence starts when the slope
of the total voltage (RF plus wake-fields) becomes zero at some
point within the bunch. It can be shown that for a Gaussian bunch
and a purely inductive impedance both criteria are equivalent.
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Boussard Criterion £y

 The microwave instability can be approximated by the
Boussard criterion.

el,|Z n)/n| i

2 JTO’E o o7
Peak bunch current Momentum Effective impedance
~lpuncn/bUNCh length compaction

K Energy spread /

» Above threshold, as the bunch current, the energy
spread increases to satisfy the Boussard criterion.
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Examples (simulations) Tl

* One can visualize the dynamics of a microwave
iInstability via particle tracking including the wake
potentials.
Longitudinal Phase Space f =30 GHz
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Examples (simulations) RS

« The motion often \ 3
appears as a particular ==\ ——~—

modal oscillation of the
bunch

Karl Bane
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Example: ALS Vacuum Chamber

«200 m circumference

*12 sectors: 1 straight for injection, 1 for RF/FB kickers, 1 for pinger/
harmonic cavs

evacuum chamber w/antechamber design

2 main RF cavities (500 MHz), 5 harmonic cavities (1.5 GHz)
48 bellows with flexbend shields

4 LFB “Lambertson” style kickers, 2 transverse stripline kickers
«1 DCCT

*96 arc sector BPMs, 24 insertion device BPMs

*4 small gap insertion device chambers (8-10 mm full height) w/
tapers to 42 mm arc sector chamber.
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ALS Wakes i
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Energy Spread

Technique: measure
transverse beam size at a
point of dispersion. Zero
current beam size assumed to
be due to nominal emittance
and energy spread.

G§=#(Gi ~G o + (1N.0¢0) 2)

X

Measured at 1.5 GeV at 3
nominal RMS bunch
lengths: 4.3, 5.1, 8.7 mm

MePAS 2015, Guanajuato, 11-21 November 2015

Horizontal RMS Beam Size (um)

80

75

70

80

75

70

80

75

70

oY A )
b IS

Gl

E=1.52 GeV , Q=0.00771

—

] ]

%ﬁ%@@ﬁ

I I

3
3. 55850

E=1.52 GeV , Q=0.00648

E=1.52 GeV , Q=0.00381

] ]

Current (mA)

15 20

ATAP

19 |

ACCELERATOR TECHNOLOGY & APPLIED PHYSICS DIVISION




Energy spread summary
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Dual-Scan Streak Camera
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All bunch length measurements
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done using small test bunch
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Broadband BPM spectra Dt
ot
10 = T I I e
2 mA,c;=5mm
Prior to buying a streak camera, b e 01 |
/(J:’-’“ vy mA, 6= 14 mm

we used a broadband BPM
signal to measure bunch length.
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Sideband spectra

We also measured synchrotron
sideband amplitudes at various
frequencies. The dipole motion

| | I |
a) spectra at 5 GHz center frequency, fs=7.2 kHz

— 5mA
15 mA
25 mA
- - 40 mA

E
7 - /M
at low current is driven by RF 5
(4]
1 o
phase noise. 5
-60 |- 2
O e A\ ' BT «r\‘ F) o
=1. , = A . My 4 " a 4 ~ ‘
.z -40 : ,J,;) M\\ %Omn?A = " ] ”'nw',‘u/«’ \'w,,vw\w» H‘ny,\mm“ r“’lﬂ","‘Uu\“(\\“\*\“\‘,k\\u ‘f\mwmw Mo
g LY 20 mA
a X S el R = - - 30mA
D el i 7 s KR 1) -- 40 EA =
= A 'ﬁ‘ 5 ‘\‘\/‘\‘—‘ 1‘\3& Fl “‘\ frg\
§° S0 e ,/,( 1L‘«,;u/‘ 5 =15 g(m'»’yr' “\ 2N . = Frequency difference (kHz)
o S a0 by 41 u"mr‘w'/ ) AN e
Cg -100 if;":/"w}/,,;w‘/f vu/)n/ ripad \'M::w';') L\\}\/;i
o
N e | | | | The spectra at longer bunch
£ E=1.5 GeV, P=80 kW i
o at i sigma=4.2mm- ength shows a clear coherent
‘\. ,‘ 3 1] " [
£ sol e P e SO 4 quadrupole motion. This is also
\T—s/ ot Iy '4‘,'\\‘4 Vil ‘»‘,.‘L-"' i r \”‘“«\""‘\,\"w,w‘"“fv y Hhisar ) x“W“\'\,'nr\‘w\\‘/ \\v't’wv_,u"‘)w { L"-*/-L\"_v‘.v‘r‘;.fv‘“v'\‘“»'\'\.v gt ?,"‘«i/\‘v"" .
ED -90 A“P\(\AI/\JI\L\)”’\W'\M“PJ\Iy\r*ﬁ//{n”Vf«’q«\»'ﬁ\V‘”kll'irwul' LNNL(W "‘)J\\ﬂwl" ‘”tﬂ\wﬂ‘ldl”’”“;“\hNJ\ﬂ”\‘JL“”\)\[\\v’L“\L\)”‘/lnL’ eVIdent On Streak Camera data.
n
-100 |- >
The short bunch data does not

40

-20 0 20

show any clear modes.

~
(reeeeer "

Frequency difference (kHz)

MePAS 2015, Guanajuato, 11-21 November 2015 ATAP 25

ACCELERATOR TECHNOLOGY & APPLIED PHYSICS DIVISION




Transverse Single Bunch Effects‘“u

_4»“’
~ &))

« Transverse effects are driven by the transverse short-range
wake or the transverse broad-band impedance.

 There is a very approximate relation between the longitudinal
and transverse from the Panofsky-Wenzel theorem given by

2 (w) = 55 Z8(w)

 What beam pipe size to use?

— 3GLSs transverse broadband impedance dominated by 1D
chambers: tapers and small gaps
 The bunch current is limited by the transverse mode
coupling instability (TMCI) in the vertical direction

— - Instability threshold can be raised with chromaticity. However, this
has adverse effect on the lifetime.
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Transverse modes fat

* The transverse motion of the bunch is composed of a
set of normal modes
rigid oscillation
of the bunch
‘A
mode +1 or -1 no oscillation of
the centre of mass
, - \ - =1 head and tail are
in opposition of phase
< A mode +2 or -2
Nl ) g - head and tail are in
! opposition with the centre
ATAP °" 8
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Head-tail instability

« Consider a simple model where the bunch has two macroparticles

« Each macroparticle has an equal amplitude of synchrotron
oscillation. There is an exchange of the head and tail of the bunch
every half synchrotron period.

« |f we add a transverse wake field, the each macroparticle drives the
other when it is at the head of the bunch.

« The wake couples the motion of the macroparticles and can lead to a
variety of collective effects.

Y

Y 4 ”
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Head-tail mode coupling

* The coupling of the wake
field causes frequency shifts
of the modes.

 When the modes merge,
there is a growth of the
motion: instability.

* The physical interpretation
of this effect is that
instability occurs when the
growth rate of the tail (driven
by the head) is faster than
the synchrotron period.

1

P/®)

real((m—m

-1

-2

£=0

mode 1

coupling

mode -2
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0 0.2

CETEAY G LAE ACCELERATOR TECHNOLOGY & APPLIED PHYSICS DIVISION



rnead-tall motion witn g

chromaticity S

* If there is a nonzero chromaticity, ('/,. B i
this adds ar_l addl_tlonal effect to __{-'  — > ,\ 2 " >—
the head-tail motion. ] |

 The chromaticity adds a phase
shift between the head and tail of “'® oty
the bunch, modifying the effect of 1A\ 20\ |\
the wake. L * > é._,.)- o

 For example, some modes can | N\ A |\
be damped, and some modes
are antidamped.

- Note that increase of the J [
chromaticity lowers the dynamic Tl ~_/ [
acceptance of the storage ring e
with an adverse effect on the e e s
lifetime. 1 l

’ } 30

[ AT AR
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rnead-tadll moaes In rrequency

domain

* The spectra of head-talil
modes is analogous to those
for the longtidinal modes.

« The addition of chromaticity
shifts the mode spectrum in
frequency.

 The total wake function is the

modes power spectra

3

4 Iml

!
=,
e

’ Ye"%j‘ -
>

overlap of the mode 50
spectrum with the transverse
broadband impedance.

« The main effect of increasing
the chromaticity is a damping
of the m=0 mode.

* This is known as head-tail
damping and can be used to
damp transverse coupled
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Vertical tune shift vs. bunch
current

I I I I I I I I
Measured vertical tune shift B
vs bunch current since
beginning of ALS operations
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Measured vertical tune
spectum with swept
frequency excitation. Large
currents reached using
large vertical
chromaticity>5.

Note persistence of original
tune line.
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1/7(1/msec)
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Head-tail damping rate vs. |
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Mode-coupling threshold Yol

*VVertical mode-coupling threshold has dropped by a factor
of 2 with installation of 5 small gap vacuum chambers
*Main current-limiting mechanism due to small vertical
physical aperture.

*Unclear whether generated by resistive wall impedance or
tapers.

» Threshold depends on vertical orbit through small gap
chamber

*Threshold decreases with vertical X up to around 5 when it
vanishes. Maximum current injection limited to around 35-40
mA with very short lifetime.

*Horizontal threshold appears to be around 25 mA.
*Displays hysteretic behavior.
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Amplitude (dB)

Amplitude (dB)
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""""""" érlousgalnsbttlngs *Reconfigured existing multibunch
F M TR transverse FB system to work for

i -

777777777777777777777777777777777777777777777777777777777777777777777777777777777 ~-"__...” high current single bunch.
*FB has arbitrary phase adjustment
using 2 PUs about 60 degrees apart

vertical, I=0.7 mA
high gain, 1=155 use

~ medium gain, t=41 AL _
feedback off, 1=2.40 *Sensitive buttons and electronics

allow for high gain.
*both vertical and horizontal FB used
\j to control TMCI.

W

— """"""""""""""""" """"""" TR - in betatron phase.
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] e e — —
horizontal, I=0.7 mA
-106 high gain, 1=83.6 usec H
108 medium gain, t=280 usec ]
""" feedback off, T=2.66 msec
1o U AL T [E— —
112 1 \f 7777777777777777777777777777777777777777777777777777777777777777 -
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FB control of TMCI (cont.)

Empirical adjustment of the FB

On ' ' ' phase gives highest bunch currents
ARSI e e Rl G S P G S with FB in resistive mode. Bunch
| currents of 37 mA achieved with
R vert.+horz chromaticities of ~0.5.
e e e e S St g This gives the maximum dynamic
A aperture and the longest lifetime.
O |
e e -
A
O
e Rl s ge ooy A
.|| Tune shift vs current with and without | PR 4
FB. nghest currents operated W|th FB 2 2 |
in reS|st|ve mode | A
R ; """"""""""""""""""""""" 1 1)1‘5 """"""""""""""""""""""" Interesting questions:
-what is the effect of damping of
Bunch Current (mA)

MePAS 2015, Guanajuato, 11-21 November Z red’ d to start the growth?

the m=0 mode on the coupling?

-How much of a perturbation ';;,5'7
‘i
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