

Introduction to Free Electron Lasers (Part 2)

John Byrd Lawrence Berkeley National Laboratory

Intro to SASE FELs

20 40 60 80 100 Z (m.) 50.00/ 86.96 1.2F+0 2.5E+1 1.0E+0 2.0E+1 5.0E+0 .5E+10 Q.OF+0 1.0E+1 4.0E+0 2 ØE+0 5.0E+0 Time (fs) Time (fs) Time (fs)

Avg. Field Power vs. Z

The Linac Coherent Light Source

LCLS accelerator parameters:

Electron energy range	2.5-15.8 GeV
Electron charge	20-250 pC
Slice emittance (normalized)	0.2-0.4 um
Electron pulse length	~5-500 fs
Peak current	1-3 kA
Initial slice energy spread	1-2 MeV
Electron energy jitter	0.04-0.07 %
Undulator period	3 cm
Number of undulator periods	3000
Gain length	1.5-3 m

LCLS Parameters

LCLS X-ray performance:

Parameter	Value
Photon energy range (fundamental)	0.3-11.2 keV
Photon wavelength range	0.11-4 nm
Typical pulse energy	2 mJ
Typical number of photons	10 ¹² - 10 ¹³
Bandwidth (non-seeded)	0.1-0.5 %
Pulse length	<10-400 fs
Focused beam size	100 nm – 50 um

Beam size

Need high energy, high peak current, low emittance, and small energy spread

→ Need bright beam both transversely and longitudinally Slide from P. Emma MePAS 2015, Guanajuato, 11-21 November 2015

Radio Frequency Photo-Cathode Gun

UV laser \rightarrow electron emission from cathode RF (GHz) accelerates before space-charge of Produces very bright e^- beam

Dispersion in accelerators

Bunch Compression

Microbunching Instability

Microbunching Instability

X-Band Transverse Cavity

ΔΤΔ

PLIED PHYSICS DIVISION

X-Band Transverse Cavity

ΔΤΔΡ

Full phase coherence requires a laser seed

High-gain harmonic generation (HGHG)

HGHG makes harmonics of optical laser seed

FERMI proposal: Multiple-stage, Super-Radiant Harmonic Cascade Amplifier

Requirements:

FEL scheme for generation of precisely timed pulses of 10⁸ - 10¹² photons/pulse over range of 20 - 2 nm

FERMI @ Elettra: a seeded, HGHG cascade

Photon energy range 20 eV to 600 eV, fully coherent

MePAS 2015, Guanajuato, 11-21 November 2015 and ATAP

Self-Seeding

Self-Seeding: First half of FEL seeds second half

Two components:

a) Monochromator makes narrow-bandwidth seed

b) Chicane resets electron bunch

Soft X-ray Self-Seeding Design

Seeded FELs

Self-Seeding: Hard X-rays

Diamond Bragg reflection produces monochromatic wake

TeraWatt FELs

XFEL dream: Single molecule imaging ...but need TW FEL!!

LCLS currently saturates around 10 GW

- 1. Bunching maximal
 - \rightarrow exponential growth ends
- 2. e- energy drops
 - ➔ Resonant frequency changes

Offset with drop in K

$$\lambda_{sat} = \lambda_u \frac{\left[1 + K^2 / 2\right]}{2(\gamma_0 - \Delta \gamma)^2} > \lambda$$

Tapering the Undulator allows further lasing

Major effort to increase average FEL power

- The best way to increase average power is to increase repetition rate. The only way to do this is to use a superconducting linac.
- LCLS-II is a high average power FEL photon science facility under construction at SLAC
- Unique capabilities derive from CW high repetition rate and high brightness electron bunches, superconducting accelerator, and two tunable undulator lines and delivering CW ultrafast X-ray pulses of very high brightness over a broad energy spectrum

Modeling and control of the microbunching instability are critical in optimizing LCLS-II performance.

Start simulation with smooth beam model at exit of BC2

Macroparticle simulation of **flat-top** model beam with **gaussian** uncorrelated energy spread at exit of BC2

representing short section of **Q** = **100 pC** bunch with Laser Heater turned on.

Microbunching on **sub-\mum scale** develops through the first dogleg (DL1) and the transport section between μ -wall and FEL.

MePAS 2015, Guanajuato, 11-21 November 2015

Beam as observed at HXU FEL is strongly microbunched

ACCELERATOR TECHNOLOGY & APPLIED PHYSICS DIVISION

High-resolution, multi-physics, start-to-end modeling tools critical to modern FEL design.

based LCLS-II injector design

in the LCLS-II linac

self-seeded); sensitivity to µBI

APPLIED PHYSICS DIVISION

Compact FELs

Grand challenge in FELs: Miniaturize the X-ray laser!

25

Compact FELs

Transmission

grating

Gold

Phosphor screen 2

Path to a Miniature X-ray FEL: Miniaturize the Accelerator

Small step: X-band guns, accelerators

Big step: Novel acceleration methods

e.g. Laser wakefield and dielectrics:

quadrupole

Gas cell

Laser beam

November 2013

Undulato

M. Fuchs et al., Nature 2009

Compact FELs

Path to a Miniature X-ray FEL: Miniaturize the Undulator

Smaller periods:

Undulators for compact accelerators:

In vacuum

Micromachining

Electromagnetic undulators

Mechanical Structure

LPA advances have triggered FEL applications Efforts across the globe underway

Last decade: LPAs have matured

- High peak-current (>kA)
- Ultra-short (few-fs)
- sub-GeV to multi-GeV energies
- Excellent emittance
- Stability improvements

→Compact Free Electron Laser
(coherent X-rays)
→Few femtosecond
→High peak power
→Hyper-spectral synchronization

LPA-FEL benefits from intrinsic synchronization and hyperspectral capabilities

Potential advantages of LPA-driven FEL

- Small facility footprint: ultra-compact accelerator producing fs, kA e-beams
- Hyper-spectral source for pump-probe
 - e-beam ions, high-field THz (CTR), hard x-rays (betatron radiation), gamma-rays (Thomson scattering)

29

ΔΤΔΡ

- Ultra-short durations
- Intrinsically small timing jitter (sub-fs)
- Layout flexibility

Schematic of LPA-driven (seeded) FEL for pump-probe AMO experiments

LPA electron beam subject to stringent requirements

Key requirements

- Sub-% $\Delta E/E$ required for lasing slice
- Disperse/stretch electron beam
- Charge 2-3 pC/MeV
- Beam size: ~10-µm-level over several meters (low emittance or additional transport)

Capillary-discharge active plasma lens provides compact focusing

Active Plasma Lens

- Introduced 1950s (ion beams)
- Symmetric focusing
- Tunable

Gas jet

Lasei

- Gradients >3000 T/m
- Rely on negligible wakefields

Electrode

Capillary

Electron

beam

Δ

Таре

HNOLOGY &

Panofski *et al*. RSI 1950 van Tilborg *et al*. PRL **115**, 184802 (2015)

Office of

Science

F

Superconducting Undulators

- SCUs can provide the best performance characteristics for X-ray facilities
 - High-field, short-period devices provide spectral range with shortest FEL footprint, lowest beam energy
 - Fine trajectory and phase-shake correction provides requisite field quality and access to harmonics (minimize errors through fabrication tolerances and field correction scheme)
- Various types of facilities can benefit from the development of SCU technology
 - FEL facilities
 - FELs based on advanced accelerator concepts

YBCO Tape Undulator could reach <10 mm period

- Commercial tape from SuperPower Inc.
- Masks designed for photolithography process
- Chemical etching used to remove Copper, Silver, and YBCO layers where desired
- Solderable thin film heaters were developed for efficient and reliable fabrication
- Laser cutting is used to separate joint section

- Silver Overlayer (2 μm) · (RE)BCO - HTS (epitaxial) (1 μm)
 - Buffer Stack (0.2 µm)
- Substrate (50 µm)
- Silver Overlayer (1.8 µm)
- Copper Stabilizer (20 µm)

0.1 mm

FEL References

References:

K.-J. Kim and Z. Huang, FEL lecture note, available electronically upon request (<u>zrh@slac.stanford.edu</u>)

Saldin, Schneidmiller, Yurkov, The Physics of Free Electron Lasers (Springer, 1999), more SASE but much more technical

