

Collective Instabilities (Part 1)

John Byrd Lawrence Berkeley National Laboratory

Lecture Summary Part 1

- Introduction to Collective Effects
- Wakefields and Impedance
- Longitudinal Multibunch collective effects and cures
 - Longitudinal coupled bunch instabilities
 - Measurements
 - Passive cures
 - The Robinson Instability
 - Harmonic RF systems
 - Feedback systems
- Transverse multibunch collective effects and cures
 - Transverse coupled bunch instabilities
 - Measurements
 - Passive cures
 - Feedback systems
 - Beam-Ion instabilities
 - Electron cloud instabilities

MePAS 2015, Guanajuato, 11-21 November 2015

Lecture Summary Part 2

- Longitudinal single bunch collective effects
 - Short-range longitudinal wakefields and broadband impedance
 - Potential well distortion
 - Longitudinal microwave instability
 - Measurements
 - CSR microbunching instability
- Transverse single bunch collective effects
 - Short-range transverse wakefields and broadband impedance
 - Head-tail modes and chromaticity
 - Measurements
 - Damping with feedback
- Not covered here: Touschek and intrabeam scattering

Introduction to storage ring collective effects

- Instabilities can significantly affect a storage ring by increasing the average transverse beam size, energy spread, and reducing the bunch and average beam current of the ring.
- Bad news! Most instabilities effecting storage rings have been understood and cures for most are available.
- Good news! Users want more! We need to push the capabilities of existing and new machines.
- This lecture provide an qualitative overview of the collective effects in accelerators, with a strong bias towards electron storage rings. The emphasis is on:
 - minimizing their negative impact wherever possible
 - experimental characterization of the effects.

Self fields and wake fields

In a real accelerator, there is another important source of e.m. fields to be considered, the **beam itself**, which circulating inside the pipe, produces additional e.m. fields called "self-fields":

Wake Potentials

$\boldsymbol{F} = q \left[E_z \hat{z} + (E_x - v B_y) \hat{x} + (E_y + v B_x) \hat{y} \right] \equiv \boldsymbol{F}_{\mu} + \boldsymbol{F}_{\perp}$

there can be two effects on the test charge :

- 1) a longitudinal force which changes its energy,
- 2) a transverse force which deflects its trajectory.

Wakes and Impedances

MePAS 2015, Gua

The *longitudinal wake function* is defined as the energy lost by the trailing charge q per unit of both charges q and q1:

$$w_{z}(r,r,\tau) = \frac{\Delta U}{qq_{1}} = -\frac{\sum_{z=0}^{+\infty} (r,z,r_{1},z_{1};t)dz}{qq_{1}}; \quad t = \frac{z_{1}}{v} + \tau \quad [V/C]$$

where qEz is the longitudinal component of the Lorentz force.

The *coupling impedance* or *beam impedance* is defined as the Fourier transform of the wake function:

$$Z(\omega) = \int w_z(\tau) e^{-j\omega\tau} d\tau$$

Effect of a bunch distribution

Assume that the charge q1 is continuously distributed over $z \cdot axis$ according to the current distribution function i(t) such that:

$$q_1 = \int_{-\infty}^{+\infty} i(\tau) d\tau$$

The wake function $w_z(t)$ being generated by a point charge is a Green function (i.e. impulse response) and allows to compute the *wake potential* of the bunch distribution:

$$W_z(\tau) = \frac{1}{q_1} \int_{-\infty}^{+\infty} i(\tau') w_z(\tau - \tau') d\tau' \quad [V/C]$$

We can use this version of *Ohm's Law* if we know the impedance and the current in the frequency domain.

A convolution in the time domain is a product in the frequency domain.

$$\rightarrow q_1 W_z(\omega) = V_z(\omega) = I(\omega) Z(\omega)$$

Example Wakes: Resonant Cavity

• The longitudinal wake of a resonant cavity is given by

$$V_b(\tau) = \begin{cases} 0, & \text{for } \tau < 0; \\ 2q_1 k e^{\gamma \tau} \left(\cos \omega_1 \tau - \frac{\gamma}{\omega_1} \sin \omega_1 \tau \right), & \text{for } \tau \ge 0 \end{cases}$$

where

$$\gamma = \frac{\omega_r}{2Q}, \, \omega_1 = \omega_r \sqrt{1 - \frac{1}{4Q^2}}, \qquad k = \omega_r R_s/2Q,$$

In the frequency domain, the wake becomes an impedance given by

9

$$Z_{\parallel}(\omega) = \frac{R_s}{1 + jQ\left(\frac{\omega}{\omega_r} - \frac{\omega_r}{\omega}\right)}.$$

Parallel Resonant Circuit Model

Treat impedance of an isolated cavity mode as a parallel LRC circuit Voltage gained is given by

Resonant cavity: Quality Factor

Quality Factor Q₀:

 $=\omega_0\tau_0=\frac{\omega_0}{1}$

 $Q_0 \equiv \frac{\text{Energy stored in cavity}}{\text{Energy dissipated in cavity walls per radian}} = \frac{\omega_0 U}{P_{diss}}$

$$\Delta \omega_0$$

$$Q_0 = \frac{\omega \mu_0}{R_s} \frac{\int_V dV \left| \mathbf{H} \right|^2}{\int_A da \left| \mathbf{H}_{\parallel} \right|^2}$$

Lower surface resistance gives higher Q. For a given R/Q, this gives higher R. Lower external power is required for a given voltage V.

Example Wakes: broadband impedance

- Short-range wakes are usually defined as those where the field damps away before the next RF bucket.
- Many vacuum chamber components contribute to the short-range wakes. In the frequency domain, these are known as the broadband impedance.
- The broadband impedance drives single bunch instabilities.
- Much more on this later.

MePAS 2015, Guanajuato, 11-21 November 2

Impedance properties

- Because the wake function is causal, the impedance has several • properties
- The impedance is a complex quantity
 - Real (resistive) and Imaginary (reactive)

 $Z(\omega) = Z_r(\omega) + j Z_i(\omega)$

 $-Z_r$ and Z_i are even and odd functions of omega, respectively

 $Z_r(\omega) = Z_r(-\omega)$ $Z_i(\omega) = -Z_i(-\omega)$

The real and imaginary parts are related via a Hilbert transform

$$\int_{-\infty}^{\infty} Z_r(\omega) \cos(\omega\tau) d\omega = \int_{-\infty}^{\infty} Z_i(\omega) \sin(\omega\tau) d\omega$$

$$Im(Z_{\parallel}(\omega))$$

MePAS 2015, Guanajuato, 11-21 November 2015 million ATAP

 $=\frac{1}{\pi}\int d\omega' \frac{Re(Z_{\parallel}(\omega))}{\omega'-\omega}.$

ACCELERATOR TECHNOLOG

Transverse Wake Potential

• The transverse wake function is the kick experienced by the trailing charge per unit of both charges: $_{q \int (E+v \times B)_{\perp} dz}^{+\infty}$ $w_{\perp}(\tau) = \frac{\Delta p_{\perp}}{qq_{1}} = \frac{-\infty}{qq_{1}}; t = \frac{z_{1}}{v} + \tau$

• The transverse coupling (beam) impedance is found by the Fourier transform of the wake function:

 $Z_{\perp}(\omega) = j \int_{-\infty}^{+\infty} w_{\perp}(\tau) e^{-j\omega\tau} d\tau \quad [\Omega]$

Since the transverse dynamics is dominated by the dipole transverse wakes, we can define the transverse dipole impedance per unit transverse displacement:

$$Z'_{\perp} = \frac{Z_{\perp}(\omega)}{r_1} \quad [\Omega/m]$$

Beam signals

- The response of the circuit to a current I is the convolution of the current with impulse response of the circuit.
- Strategy: derive the beam signal in time and frequency domain and either convolve or multiply with PU response.

$$V(t) = \int_{-\infty}^{\infty} dt' i(t') W_p(t-t')$$
$$V(\omega) = \tilde{i}(\omega) Z_p(\omega)$$

Single Particle Current

- Consider a point particle going around a storage with revolution period T₀ and rotation frequency f₀=1/T0. The current at a fixed point in the ring is given by

$$i(t) = e \sum_{n = -\infty}^{n = +\infty} \delta(t - nT_0) = e \omega_0 \sum_n e^{jn\omega_0 t}$$
$$= ef_0 + 2ef_0 \sum_{n = 1}^{\infty} \cos(n\omega_0 t)$$

The FT of this given by

 $I(\omega) = e \omega_0 \sum_{k} \delta(\omega - k\omega_0)$

(Negative frequency components can be folded onto positive frequency. AC components are 2X DC component.)

Example: resonant cavity

• Given a particular fill pattern or bunch spectrum, how do we calculate the signal induced in a RF cavity or a pickup? If the cavity or pickup represent a beam impedance Z||(w), (with a corresponding impulse response W(t)), the total signal out is a convolution of the input with the response. In the frequency domain, this is just a multiplication of the beam spectrum with the impedance.

Frequency

$$V(\omega)=I(\omega)Z_{++}(\omega)$$

$$P = \left(\frac{1}{2\pi}\right)^2 \sum_{n=0}^{\infty} |I(n\omega_0)|^2 Z_{||}(n\omega_0)$$

$$V(t) = \frac{1}{2\pi} \sum_{n=0}^{\infty} I(n\omega_0) Z_{||}(n\omega_0) e^{jn\omega_0 t}$$

Example: ALS Harmonic Cavity

The high-Q cavity modes can be tuned using the single bunch spectrum excited in the cavity probe. The Q and frequency can be found to fairly high accuracy using this method.

We regularly use this technique to tune the fundamental and TM011 (first monopole HOM).

Spectrum of bunch distribution

- The bunch is a distribution of particles
- For a single bunch passage, the spectrum is just the transform of the bunch
- For a repetitive bunch passage, the spectrum is the series of comb lines with an envelope determined by the single passage spectrum
- Assumes the bunch distribution is stationary. More on this later.

Example: Broadband bunch spectra

 Measured spectrum on a spectrum analyzer is the product of the bunch spectrum and the pickup impedance (button pickup, feedthru, cable)

Single particle signal w/synchrotron oscillations

- Now add synchrotron oscillations with an amplitude tau

 $i(t)=e\sum_{n} \delta(t-nT_0+\tau_s\cos(\omega_s t))$

The FT of this given by

$$\begin{split} I(\boldsymbol{\omega}) &= e \, \boldsymbol{\omega}_0 \sum_{n} \, e^{-jn\boldsymbol{\omega}_0(t+\tau_s \cos\boldsymbol{\omega}_s t)} \\ &= e \, \boldsymbol{\omega}_0 \sum_{m} \, j^{-m} J_m(\boldsymbol{\omega}\tau_s) \sum_{k} \, \delta(\boldsymbol{\omega} + m\boldsymbol{\omega}_s - k\boldsymbol{\omega}_0) \end{split}$$

The sideband spectrum is very similar to that of phase (or frequency) modulated signals

Single particle signal w/synchrotron oscillations

The comb spectrum has added FM sidebands which are • contained within Bessel function envelopes.

Rotation harmonics follow J_0 , first order sidebands follow J_1 , etc.

Note that J0~1 and J1~x for x<<1

Introduction to coupled bunch instabilities

RF cavity

Wake voltages which last long enough to affect a subsequent bunch can couple the synchrotron or betatron oscillations. Under certain circumstances, this results in exponential growth of the oscillations, degrading the beam quality.

In the frequency domain, the normal modes appear as upper and lower sidebands. The stability of a mode depends of the overlap with impedances.

M

Simple model of a LCBI

- Consider a single bunch with synchrotron oscillations interacting with a high-Q resonator.
- Upper and lower sidebands can be considered a part of the synchrotron oscillation with too little and too much energy, respectively. (For cases above transition)
 - Case a) Resonant mode tuned symmetrically. Upper and lower sidebands lose equal energy. No effect.
- Case b) Lower sideband (higher energy) loses more energy to resistive impedance. Oscillation damped.
- Case c) Upper sideband (lower energy) loses more energy. Oscillation anti-damped.

.....

Simple model of a LCBI: time domain

- Consider a single bunch with synchrotron oscillations interacting with a high-Q resonator.
- Early and late arrival of the
 synchrotron oscillation correspond to
 too little and too much energy,
 respectively. (For cases above
 transition)
- Case a) Resonant mode tuned
 symmetrically. Early and late arrival lose equal energy. No effect.
- Case b) Late arrival loses more energy than early arrival. Oscillation damped.
- Case c) Early arrival loses more energy than late arrival. Oscillation anti-damped.

Multibunch modes

• The long-range wakes couple the motion of successive bunches. We can describe the motion of N coupled bunches and N normal modes. Each mode, I, has a relative oscillation phase of $\Delta \phi = \frac{2\pi}{N} I$ For the case of 3 bunches, a snapshot of the ring for the 3 modes is shown below.

Multibunch spectrum

27

Even though each bunch is oscillating at its natural frequency, the multibunch modes show up as upper and lower sidebands of the rotation harmonics.

MePAS 2015, Guanajuato, 11-21 November 2015

•

Multibunch beam signal

• Each multibunch mode can appear at a number of frequencies.

Longitudinal growth rates

Longitudinal growth rate

Th

$$\frac{1}{\tau} = \frac{1}{2} \frac{1}{E} \frac{\partial V}{\partial \varepsilon} = \frac{1}{2} \frac{h\alpha}{EQ_s} \frac{\partial V}{\partial \phi}$$

$$V = I_0 \phi Z_{\parallel} = I_0 \phi_0 (\int_{\kappa} f_{\ell} \int_{\kappa} f_{\ell}) Z_{\parallel}$$

nis gives
$$\phi = \omega \tau = \frac{\omega_r}{\omega_{rf}} \omega_{rf} \tau = \frac{f_r}{f_{rf}} \phi_0$$

 $\frac{1}{\tau} = \frac{1}{2} \frac{\Gamma_0 \alpha}{(E/e)Q_s} [Z_{||}]_{eff}$

Effective impedance

$$\left[Z_{\parallel}\right]_{\text{eff}}^{1} = \sum_{p=-\infty}^{p=+\infty} \frac{\omega_p}{\omega_{rf}} e^{-(\omega_p \sigma_v)^2} Z_{\parallel}(\omega_p)$$

note frequency dependence of impedance

- General growth can be found from the fractional energy change for a small energy offset.
- Sum over all impedances
- Note that phase
 modulation for a given
 time modulation is larger
 at higher frequencies:
 higher frequencies have
 larger effective
 impedance.

Multibunch aliasing

- Because of the periodic nature of the beam pulses, the long-range wakes are aliased into the sampling bandwidth of the beam.
- For example, a beam rate of 500 MHz (2 nsec bunch spacing), all wakes are aliased into a 250 MHz bandwidth.

Example: ALS RF Cavity HOMs

Aliased Longitudinal Impedance

 Aliased longitudinal impedance with thresholds for radiation damping and feedback (at maximum damping of 3/msec.)

DIVISION

ALS Longitudinal Multibunch Spectrum

Measured spectrum of first-order synchrotron sidebands at ALS with beam longitudinal unstable (LFB off)

ALS Longitudinal Multibunch Spectrum

³hase (degrees

0.1

Spectrum of first-order synchrotron sidebands at ALS with beam longitudinally unstable (LFB off). Compare with the calculated Z_{eff} from the measured cavity modes.

This can be used to identify the driving HOMs.

1275 MHz

3260 MF

a) I=20 mA, 328 bunches

MePAS 2015, Guanajuato, 11-

Coherent Frequency Shift

35

- In general, the interaction with the impedance, creates a complex coherent frequency shift.
 - Resistive (real) impedance gives damping or anti-damping of beam oscillations
 - Reactive (imaginary) impedance shifts the frequency of the beam oscillations.
 - Assuming the growth rate and frequency shifts are small compared to the oscillation frequency, we can write the complex frequency shift as

$$j \Delta \Omega = \frac{\alpha I_0}{4\pi E/e v_s} Z_{eff}(n\omega_0 + \omega_s)$$

MePAS 2015, Guanajuato, 11-21 November 2015

 $1/\tau = \Re e \left[j \Delta \Omega \right]$

Controlling narrowband impedances

Damping of cavity High Order Modes (HOMs)

- heavy damping required to decrease growth rates
- decreases sensitivity to tuners, temperature
- most desirable approach if possible
- HOM tuning
 - done using plunger tuners or with cavity water temperature
 - requires HOM bandwidth less than revolution frequency
 - difficult for many HOMs
 - Vacuum chamber aperture (transverse only)
 - strongly affects transverse resistive wall impedance (Z~1/b³)
 - trends in insertion device design are going to small vertical aperture (<5 mm)
HOM Tuning

The ALS uses a combination of LFB and tuning of HOMs to control instabilities. Tuning of HOMs in the main cavities is done mainly with cavity water temperature. Tuning is done using 2 tuners in HCs.

This tuning scheme requires that the modes are high Q. If insufficiently damped, the growth rates could actually increase.

37

Concepts for HOM-damped cavities

Instability Threshold

$$1/I_{threshold} \propto Z_{tot} = N_c \left(\frac{R}{Q_0}\right)_{HOM} Q_{ext}$$

- Reduce impedance by
- Minimize total number of cells
 - Large R/Q for fundamental
 - Large voltage/cell
- Minimize R/Q for HOMs
 - Cavity shape design
- Minimize Q for HOMs

- HOM-damping $f_{ff} < f_{cutoff} < f_{HOM}$ MePAS 2015, Guanajuato, 11-21 INOVEILIDEL 2013

Copper cavity R_s optimisation by nose cones

HOM-damping by three wave guides

Superconducting cavity shape inherently low R/Q

HOM-damping by ferrites in the beam tube

HOM Damping

39

Modern damped normal-conducting cavity designs use waveguides coupled to the cavity body, dissipating HOM power in loads without significantly affecting the fundamental.

HOM-damped SC cavities

SOLEIL Cavity

CESR-B Cavity

Nb waveguide HEX

Nb cavity

LHe vessel

Tune

Large gate valve

- Nb sputtered on Cu
- 4 coaxial loop type HOM couplers
- 2 coaxial input couplers 200 kW each
- cooling capacity: 100 W at 4.5 K, 20 l/h LHe

- Nb sheet material
- 2 cylindrical HOM loads

RF window

- rectangular waveguide input coupler, 500 kW
- cooling capavity: 100 W at 4.2 K

Cavity used at

Pump-out box

(with two 60 l/s ion pumps)

LN2 shield

RBT transition

HOM absorber

Small gate valve

270 l/s ion pump

Elbow

CLS/Canada NSRRC/Taiwan SLS/China DIAMOND/EnglaAc0

NC HOM-damped cavities

Daphne cavity, 368.26 MHz, 250 kV, 2 MΩ

KEK ARES cavity, 509 MHz, 500 kV, 1.7 MΩ

ATF cavity, 714 MHz, 250 kV, 1.8 MΩ

Ν

PEP-II cavity, 476 MHz, 850 kV, 3.7 MΩ

BERKELEY LAB ACCELERATOR TECHNOLOGY & APPLIED PHYSICS DIVISION

Bessy HOM-damped design

42

- Developed to be a commercially available NC HOMdamped cavity design
- Used at ALBA

Prototype cavity installed in the DELTA ring

Passive techniques

- Damp instabilities by increasing synchrotron frequency spread within a bunch (Landau damping)
- Decoupling the synchrotron oscillations by varying the synchrotron frequency along a bunch train
- Modulate synchrotron motion at multiples of synchrotron frequency
- Difficult to predict effects in advance.

Longitudinal Feedback Systems

Design Issues: •Bandwidth>1/2 bunch frequency (M*revolution freq) to handle all possible unstable modes •PUs: phase or radial(energy)

•PUs in dispersive region•no phase shift required and much less signal processing.

•sensitive to DC orbit and betatron oscillations

•insensitive to beam phase shifts

•phase:

•usually more sensitive and less noisy than radial PU

•requires 90 degree phase shift (1/4 synchrotron period delay)

•AC coupling of each bunch signal

•Sufficient system gain to damp fastest growth rate

MePAS 2015, Guanajuato, 11-21 November 2015

44

ALS LFB system

•PUs operate at 3 GHz (6*Frf); phase detection following comb filter
•synchrotron oscillations downsampled by factor 20
•QPSK modulation scheme from baseband to 1 GHz (2*Frf)
•TWT 200 W amplifier drives 4 2-element drift tubes kickers.

LFB Issues: •drifting phase of beam wrt. master oscillator •variation of synchronous phase/ synch. frequency along bunch train. •strong growth rates (>1/msec) •excitation of Robinson mode

ALS LFB Kicker

ET E

Other rings have designed

a heavily loaded cavity as

a kicker. (DAFNE, BESSY-

46

II)

The ALS uses a series drift-tube structure as an LFB kicker. Thje drift tubes are connected with delay lines such that the kick is in phase.

Beam Shunt Impedance (Ω)

Beam impedance for 1,2, and 4 series drift-tubes.

LFB Diagnostics

The digital LFB system in use at ALS, PEP-II, DAFNE, PLS, Bessy-II, and many other light sources has built-in diagnostic features for recording beam transients. This is useful for measuring growth rates.

MePAS 2015, Guanajuato, 11-21 November 2015

ACCELERATOR TECHNOLOGY & APPLIED PHYSICS DIVISIO

LFB diagnostics (cont.)

The impedance of a driving mode can be determined by measuring the growth rate and frequency shift of the beam

Example: Measurements to characterize a cavity mode showed significantly higher impedance than was expected. The mode was tuned by varying the cavity water temperature. By measuring the frequency sensitivity to temperature, the Q can be found.

Effect of FB on beam quality

The effect of the feedback systems can be easily seen on a synchrotron light monitor (at a dispersive section)

Energy oscillations affect undulator harmonics

$$\left(\frac{d\omega}{\omega}\right)^2 = \left(\frac{1}{nN}\right)^2 + 2\left(\frac{d\gamma}{\gamma}\right)^2$$

Beam loading and Robinson Instabilities

- Basics of beam loading
- Examples of beam loading for ALS
- Robinson's analysis of beam cavity interaction

50

Pedersen model of BCI

Beam Cavity Interaction: Equivalent Circuit

From the point of view of a rigid beam current source, beam loading can be represented by excitation of of a parallel RLC circuit. This approximation is valid for a generator coupled to the cavity via a circulator.

The coupling to the cavity is set to make the beam-cavity load appear to be a resistive load to the external generator and matched at some beam current.

For zero beam, the optimal coupling (beta) is 1. To match at nonzero beam, the optimal beta is 1+P_{beam}/P_{cavity}: MePAS 2015, Guanajuato, 11-21 November 2015

The beam loading appears to the generator as an additional resistive and inductive load. We can adjust the cavity coupling (beta) and the detune the cavity to make it appear to be a perfect match.

.....

51

Phasor representation

The beam and generator voltages can represented as phasors. Common usage has either the cavity voltage or beam current as the reference phase.

Conditions for detuning to get minimum generator power.

$$I_{G} = \frac{I_{0} + I_{B} \sin \phi_{B}}{\cos \phi_{L}} = \frac{I_{0}(1 + Y \sin \phi_{B})}{\cos \phi_{L}} = 2\frac{P_{0} + P_{B}}{V \cos \phi_{L}}$$

 $\tan \phi_L = \frac{I_0 \tan \phi_Z - I_B \cos \phi_B}{I_0 + I_B \sin \phi_B} = \frac{\tan \phi_Z - Y \cos \phi_B}{1 + Y \sin \phi_B}$

Minimum generator current by *detuning cavity* to obtain $\phi_L = 0$:

 $\tan \phi_{Z} = (I_{B} / I_{0}) \cos \phi_{B}$

Phasor diagram

MePAS 2015, Guanajuato, 11-21 No.

& APPLIED PHYSICS DIVISION

Phase (deg)

ACCELERATOR TECHNOLOGY

Frequency (MHz)

Low current

54

High current limit

55

High current limit (cont.)

Transients beam loading effects

The unequal filling of the ring (i.e. gaps) create a transient loading of the main RF systems, causing bunches to be at different RF phases (i.e. different arrival times.)

57

For the main RF only, this effect is small (few degrees).

Lecture Summary 2

- Transverse multibunch collective effects and cures
 - Transverse coupled bunch instabilities
 - Measurements
 - Passive cures
 - Feedback systems
 - Beam-Ion instabilities
 - Electron cloud instabilities

Dipole and monopole modes

- Monopole mode (m=0, TM_{01x}) have
 - uniform azimuthal symmetry
 - Negligible dependence of longitudinal field on transverse position
- Dipole modes (m=1, TM_{11x}) have
 - Lateral symmetry with two polarizations
 - Linear dependence of long. field on transverse position.

59

Dipole modes

- Characterized by one full period of variation around the azimuth (m=1)
- For TM modes this means there is no longitudinal field on axis and that the field strength grows linearly with radius close to the center, with opposite sign either side of the axis.
- This transverse gradient to the longitudinal field gives rise to a transverse voltage kick which is proportional to the beam current and the beam offset.
- Therefore, no transverse kick to the beam without a longitudinal field gradient (Panofsky-Wenzel Theorem)

Resistive Wall Impedance

- As the beam passes through the vacuum chamber, it takes time for the beam fields to penetrate the skin depth of the metallic surface.
 - Negligible effect on long-range longitudinal wake
 - Large effect on long-range transverse wake; small gaps critical; low modes affected

Transverse growth rates

Transverse growth rate

$$\tau^{-1} = \frac{1}{2} f_0 \frac{I_0}{(E/e)} \beta_{\perp} \sum_{p=-\infty}^{p=+\infty} \operatorname{Re} \left(Z_{\perp}(\omega_p) \right)$$

The resistive wall impedance cannot be avoided by tuning.

Aliased vertical impedance for the ALS.

MePAS 2015, Guanajuato, 11-21 November 2015

62

Transverse beam spectrum

The unstable spectrum of betatron sidebands can be used to identify the driving beam modes.

MePAS 2015, Guanajua

Transverse feedback systems

Design issues: •Bandwidth>1/2 bunch frequency (M*revolution freq) to handle all possible unstable modes •Phase shift from PU to pi/2 options:

properly locate PU and kickersensitive to lattice configuration
use quadrature PUs/kickers
use multiturn delay
Suppress DC orbit offset (wastes expensive broadband power)

options

zero orbit at PUs

•electronically suppress orbit offset

notch filters

Typical transverse damping system

Total system gain must provide damping rate faster than fastest growth rate (minus radiation and Landau damping)
Noise

•total system noise must drive oscillations at small fraction of beam size

•important at high gain settings

•Amplifier power scaled to damp largest mode 64

ALS TFB system

65

•high gain/low noise receivers (3 GHz heterodyne detection), current dependent gain

- •2 PUs w/quadrature processing
- •150 W amplifiers driving stripline kickers (single plate only), maximum kick of ~1 kV
- •2-tap analog notch filter for removing DC orbit offsets

•system upgraded to homodyne detection in summer 1999.

ALS TFB Kicker

Stripline kickers at with L=30 cm are driven at baseband to gain the advantage at low frequency against the RW.

Baseband operation requires an amplifier which extends to lower frequency of lowest betatron frequency. More amplifiers are available in the higher operational bands.

MePAS 2015, Guanajuato, 11-21 November 2015

Frequency (GHz)

TFB diagnostics

verplötische 648 au

Time domain growth rates can be measured by modulating the FB on/off. Betatron mode is measured with SPA in zero-span mode.

The TFB system can be adjusted be measuring beam transfer functions on a network analyzer. Shown is an open-loop measurement of x channel.

67

Ion instabilities

- Even in ultra-vacuum, circulating electrons collide with the residual gas and ions created.
- lons may be trapped in the electrostatic potential of the electrons.
- Trapped positively charged ions perturb electron motions.
- Effects of ions on the electron beam:
 - Beam size blow-up
 - Limitation in stored beam current
 - Reduction in lifetime due to additional collisions
 - Tune shifts
 - Two-beam instability
- These undesirable effects were observed in many early light sources (DCI, ACO, SRS, KEK-PF, UVSOR, NSLS, Aladdin, ...)

Two-beam instability observed at KEK-PF (from S. Sakanaka, OHO Lecture note 1986)

68

Ion (and Dust!) Trapping

Ions are focussed in the linear part of the beam potential

 The stability of the motion can be broken by introducing gaps in the beam filling pattern, allowing ions to drift to the walls. Lighter ions are more unstable.

Th

Ion instability cures

- Introduction of beam gaps
 - Destabilize ion motion. Effective for lighter ions
- Use of clearing electrodes
 - Electric move ions to wall
- Electron beam shaking
 - Indirectly resonantly drive ions via electron beam. Shake at ion frequency.
- Shift of chromaticity to positive/Use of octupoles
- Use of positron beams. In particular, positron beams were used in a number of light sources (DCI, ACO, KEK-PF, APS, ...)
 - Although the problems of ions are cleared with positrons, high current positron operation can suffer from electron cloud instability.;

Introduction to the FBII

"classic" ion trapping occurs when the motion of ions is stable in the beam's potential well over many beam passages. The ion motion becomes unstable for large enough gap in the filling pattern (i.e. clearing gap). This is the typical "passive" solution for curing ion problems.

For high currents and low emittances, transient interactions between the beam and ions can cause significant beam oscillations.

71

Experimental Studies of FBII in Some 3rd GLSs

72

The vacuum pressure was deliberately increased (pump off/Hegas injection) and the existence of FBII as well as its characteristics were compared with theory in ALS, PLS, ESRF, ...

➔ Observed results were in qualitative agreement with theory

Dedicated FBII Expt

Setup conditions where the FBII is expected with growth rates at least an order of magnitude above growth rates from cavity HOMs and resistive wall impedance •Use He gas because it is not pumped well by passive NEG pumps

•He at 80 ntorr gives growth rates <1/msec

•Use bunch patterns where ion trapping of helium not expected (typically 1/2 ring filled with 2 nsec spacing.)

MePAS 2015, Guanajuato, 11-21

Synch light monitor image at nominal and high pressure. Vertical blowup evident but much smaller than typically vertically blowup due to HOM-driven instability.

Vertical beam size increase

•We see between a factor 2-3 increase in average vertical beam size. Horizontal size is unaffected.

Single bunch images show no increase with higher gas pressure.
Simulations show a similar saturation effect.

74

 variation of vertical FB gain has no effect on beam size or sidebands

Indirect Growth Rate Measurement

 •at a given pressure, we can vary the instability growth rate by varying the length of the bunch train (using a fixed current/bunch)

•for the experimental conditions, the theory predicts a growth rate of ~1/msec at about 8 bunches. Our FB damping rate for 0.5 mA/bunch is ~1.2 msec.

Vertical sideband spectrum

•record the amplitudes of all vert betatron sidebands over 250 MHz range

• plot the linear difference of lower-upper sideband amplitude

• peak frequency of sideband pattern agrees with calculated coherent ion frequency

coherent oscillations not always observed (decoherence? 4-pole mode?)

MePAS 2015, Guanajuato, 11-21 November 2015

v) alterence (v

Frequency of sideband spectrum

•Peak frequency of the sideband spectrum shows fair agreement with the calculated ion frequency

•Detailed agreement requires precise knowledge of the vertical beam size which is difficult to determine when the beam is unstable.

•Coherent signal is not always visible on the spectrum analyzer, even though the beam is clearly vertically unstable.

Ion instability summary

- Ion trapping was a serious issue in early light sources and many studies (theory and experiment) made to overcome it.
- Improved vacuum engineering and the use of beam gap manages to avoid ion trapping in most 3rd GLSs and no serious problems of ion trapping reported.
- No serious effect of FBII encountered in light sources
- However, FBII could become a serious issue for future light sources operating at high current with low emittance, and further studies required.

