

Dave Judd and Ron MacKenzie

1=10 (1+ (Irw) cos (30 + 6, + 6, r) + $\left(\frac{4r\omega}{c}\right)^{2}\cos\left(5\theta + \delta_{3} - \delta_{5}r^{2}\right) + \left(\frac{4r\omega}{c}\right)^{2}\cos\left(7\theta + \delta_{3} - \delta_{5}r^{2}\right) +$ ----] $\times \left\{ \frac{e^{7} r^{2} ln Z}{\frac{1+(\frac{a}{2})^{7}}{4}} \right\}$ db = [sin (wt - hp) - sin he - 3 ff ff f'] ev. ... the theoretical physicist

XBD9705-02294.TIF

... the student

XBD9705-02304.TIF

... the experimental physicist

XBD9705-02297.TIF

... the electrical engineer

XBD9705-02292.TIF

... the health physicist

XBD9705-02293.TIF

... the visitor

XBD9705-02302.TIF

... the laboratory director

XBD9705-02303.TIF

XBD9705-02298.TIF

original Cyclotrons

the cyclotron as seen by the inventor

the first classical cyclotrons

The first Cyclotron 1931

E.O.Lawrence, M.S.Livingston Berkeley, California

4 inch diameter1 kV on the Dee80 keV Protons

43 years later (1974)

Ring Cyclotron 590 MeV Protons 15 m Diameter

Hans Willax, Jean Paul Blaser, Villigen, Switzerland

History of the Cyclotron

1929	Idea by E.O.Lawrence in Berkeley		
	(inspired by R.Wideroe!)		
1931	4 inch cyclotron	80 keV	р
1932	10 inch cyclotron	1.2 MeV	р
1934	26 inch cyclotron	7 MeV	р
1939	60 inch cyclotron	16 MeV	d
1946	184 inch synchrocyclotron	200 MeV	d
		400 MeV	α

1938	Idea for sector	ed cyclotron	(AVF)	by Thomas
------	-----------------	--------------	-------	-----------

1962	88 inch sector cyclotron	K=160 MeV	ion
1974	SIN/PSI Ringcyclotron	590 MeV	р
1982	supercond.cyclotron MSU	K=500 MeV	ion

2008: ca. 90 indiv. cyclotrons, ca. 200(?) commercial cyclotrons

circular orbit

In a homogeneous magnetic field B the particle has a circular orbit with radius ρ

Balance between Lorentz-force F_L and centrifugal force F_z :

$$F_L = q v B$$
, $F_r = \frac{m v^2}{\rho}$ (non relativ.)
with $p = m v$:

valid relativistically! (Bp) = "magnetic rigidity"

Basis of all circular accelerators (Cyclotron, Synchrotron, Storage Ring, Spectrometer etc.)

for electrons with $E \ge 10 \text{ MeV}$:

 $E[GeV] = pc = 0.3 B\rho [Tm]$

In <u>homogeneous</u> magnetic field the circular orbits are vertically unstable

vertical stability with

radially decreasing field B(r)

Definition of field index **n** with "logarithmic derivative"

$$\left(\frac{dB_0}{B_0}\right) \equiv -n\left(\frac{dr}{r}\right)$$

Focusing frequencies : stable for 0 < n < 1 $Q_r = \sqrt{1-n}$, $Q_y = \sqrt{n}$, $Q_r^2 + Q_y^2 = 1$ => weak focusing, horizontally and vertically

Larmor Frequency

Revolution frequency ω_0 in homogeneous magnetic field:

$$\omega_0 = v/R$$
, p = mv = q B R (non rel.):

$$\omega_0 = \frac{q}{m} B$$
 (= Larmor frequency)

$\boldsymbol{\omega}_{_{0}}$ is independent of radius R and energy E !

$$\Rightarrow$$
 Basis for classical Cyclotron (non rel.)

relativistic formula for all energies, with $E_{tot} = \gamma mc^2$ and $\omega_0 \equiv 2\pi v_0$

$$\frac{q}{2\pi m} = 15.25$$
 MHz/T for protons

$$\frac{q}{2\pi m} = 28 \text{ GHz/T}$$
 for electrons

Isochronism

Acceleration of a particle with RF frequency ν_{RF} on harmonic h:

$$v_{\mathsf{RF}}$$
 = h v_{0}

If this RF frequency stays constant during acceleration, we talk about an **isochronous cyclotron**. The condition for this is an average field which increases proportional to γ :

 $\Rightarrow B_0(R) \sim \gamma(R)$

For an azimuthally symmetric field this leads to vertical instability. The way out is:

- 1) magnetic sectors give vertical focusing $=> B(r, \vartheta)$, Thomas 1938
 - = $B_0(R)$ = field averaged over the whole orbit
- 2) synchro-cyclotron with $v_{RF}(t) \Rightarrow$ pulsed beam, reduced intensity

Thomas Cyclotron (1938)

Sectors on the pole plates of an H-magnet

> vertical edge focusing betweenHill (H) and Valley (V)

focal length f_v through edge angle Ψ :

$$\frac{1}{f_y} = \frac{[B(H) - B(V)]}{B\rho} \tan \Psi, \quad (f_x = -f_y)$$

Edge Focusing

horizontally:

the deflection of a particle with parallel

displacement x is delayed by the path length

 $ds = x \tan \Psi \implies x' = ds/R$

the effect is the same as a

defocusing quadrupole

with strength: $1/f_x = -(1/R) \tan \Psi$

vertically:

focusing with $f_y = -f_x$

Sectormagnet with edge angle Ψ

Comet Cyclotron, Spiral Sectors

250 MeV Protons for Therapy (ACCEL/ PSI)

superconducting Magnet with 4 Sectors

The spiral structure is responsible for the vertical beam focusing

0.5 m

unstable 2-sector Cyclotron

Advantages of Ring Cyclotron (Hans Willax 1963)

isochronous condition : constant revolution time, independent of energy

the magnet sectors in this hypothetical example are too narrow and would lead to vertical overfocusing !

Aerial View

72 MeV Injector 2

Accelerator Facilities with 4 Cyclotrons

Injector 1:

Nuclear Physics + Eye Tumours

Injector 2:

Injection + Isotopes for Hospitals

Ring Cyclotron:

Muons, Pions, Neutrons,

Proton Therapy

superconducting Cyclotron:

Proton Therapy

Comet Cyclotron

Radiation Therapy with 250 MeV Protons

superconducting Cyclotron: Magnet, 3m Ø Collaboration: ACCEL & PSI

The PROSCAN Facility

Injection Line 870 keV

Extraction Line 72 MeV Protons (after 100 turns)

Recipe for high Intensity

- continuos beam (cw)
- very low extraction losses
 - => separated turns with large turn separation dR at extraction
 - => high energy gain per turn, powerful RF-system with high voltage cavities

dR ~ Radius R => large machine radius !! the last 5 turns in the Injector II

Layout Injector II

Injection of 870 keV Protons into Injector II

Injector II, Central Region

Cockkroft-Walton Pre-accelerator

Voltage: 810 kV

Acceleration Tube

Proton Source inside Faraday Cage on 60 kV

590 MeV Protons

1.3 MW Beam Power (world record!)

8 Magnet à 250 Tons

4 Cavities à 700 kV (upgraded to 1MV in 2008)

Extraction \approx 99.97 %

Ring Cyclotron 72-590 MeV p

Contour lines of the magnetic field

scaling of average field: $B_0(R) \sim \gamma$ increases 55% from 72-590 MeV

Profile magnetic field 590 MeV Ringcyclotron

$$Q_{\mathbf{x}}^{2} = r^{2} = \frac{1+K+\frac{1}{2}\sum_{n=1}^{\infty} (a_{n}^{2}+b_{n}^{2}) \left\{ \left[1+\frac{\lambda^{2}}{(Nn)^{2}} \frac{(Nn)^{3}-2\sigma^{2}}{(Nn)^{2}-\sigma^{2}} \right]^{2} \frac{(Nn)^{3}}{((Nn)^{2}-4\sigma^{2})^{2}} + \frac{2(Nn)^{2}}{((Nn)^{2}-\sigma^{2})} \left[1+\frac{\lambda^{2}}{(Nn)^{2}} \frac{(Nn)^{2}-2\sigma^{2}}{(\sigma^{2})^{2}} \right] - \frac{1+3K+K'}{2\sigma^{2}} \left[\frac{3(Nn)^{2}-2+K'}{((Nn)^{2}-\sigma^{2})^{2}} \right] + \frac{3K'+K''}{2((Nn)^{2}-\sigma^{2})^{2}} - 4\sigma^{2} \frac{((Nn)^{2}-1+(K'/2))}{((Nn)^{2}-\sigma^{2})^{2} ((Nn)^{2}-\sigma^{2})} - \sigma^{2} \left[\frac{3(Nn)^{2}+2\lambda^{2}}{(Nn(Nn)^{2}-4\sigma^{2}) ((Nn)^{2}-\sigma^{2})} \right]^{2} + \frac{3\sigma^{2}}{2} \left[\frac{Nn}{(Nn)^{2}-\sigma^{2}} \right]^{2} \right\} + \sum_{n=1}^{\infty} (a_{n}a'_{n}+b_{n}b'_{n}) \left\{ \frac{(Nn)^{3}-2\sigma^{2}}{(Nn)^{2}-4\sigma^{2}} \left[1+\frac{\lambda^{2}}{(Nn)^{2}} \frac{(Nn)^{2}-2\sigma^{2}}{((Nn)^{2}-\sigma^{2})} \right]^{2} + \frac{3\sigma^{2}}{((Nn)^{2}-\sigma^{2})} \right]^{2} \right\} + \frac{(Nn)^{2}-2\sigma^{2}}{2\sigma^{2}} \left[\frac{Nn}{(Nn)^{2}-\sigma^{2}} \right] + \frac{3\sigma^{2}}{((Nn)^{2}-\sigma^{2})} - \frac{1+3K+K'}{2\sigma^{2} ((Nn)^{2}-\sigma^{2})} \left[1-\frac{\lambda^{2}}{(Nn)^{2}-\sigma^{2}} \right] \right] + \frac{3\sigma^{2}}{((Nn)^{2}-\sigma^{2})} \left[(Nn)^{2}-4\sigma^{2} \right] - \frac{1+3K+K'}{2\sigma^{2} ((Nn)^{2}-\sigma^{2})} \right] + \frac{2\sigma^{2}}{((Nn)^{2}-\sigma^{2})} + \frac{1}{(Nn)^{2}-\sigma^{2}} \left[1-\frac{\lambda^{2}}{(Nn)^{2}-(Nn)^{2}-\sigma^{2}} \right] - \frac{2\sigma^{2}}{(Nn)^{2}-\sigma^{2}} \left[(Nn)^{2}-4\sigma^{2} \right] - \frac{1+3K+K'}{2\sigma^{2} ((Nn)^{2}-\sigma^{2})} \right] + \frac{2\sigma^{2}}{(Nn)^{2}-\sigma^{2}} \left[1-\frac{\lambda^{2}}{(Nn)^{2}-(Nn)^{2}-\sigma^{2}} \right] - \frac{2\sigma^{2}}{(Nn)^{2}-\sigma^{2}} \right]$$

$$- \frac{2\sigma^{2} \left[3(Nn)^{2}+2\lambda^{2} \right]}{(Nn)^{2}-\sigma^{2} \left[((Nn)^{2}-4\sigma^{2})^{2} \right] + \frac{1}{2\sigma^{2}} \left[\frac{\alpha'n^{2}+b'n^{2}}{(Nn)^{2}-d\sigma^{2}} + \frac{1}{2} \left[\frac{\alpha'n^{2}n}{(Nn)^{2}-\sigma^{2}} \right] \right]$$

$$- \frac{2\sigma^{2} \left[3(Nn)^{2}+2\lambda^{2} \right]}{(Nn)^{2}-\sigma^{2} \left[((Nn)^{2}-4\sigma^{2})^{2} \right] + \frac{1}{2} \sum_{n=1}^{\infty} \frac{\alpha'n^{2}+b'n^{2}}{(Nn)^{2}-4\sigma^{2}} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{\alpha_{n}n''n}{(Nn)^{2}-\sigma^{2}} \right]$$

$$- \frac{2\sigma^{2} \left[3(Nn)^{2}+2\lambda^{2} \right]}{(Nn)^{2}-\sigma^{2} \left[(Nn)^{2}-4\sigma^{2} \right]^{2} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{\alpha'n^{2}+b'n^{2}}{(Nn)^{2}-4\sigma^{2}} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{\alpha_{n}n''n}{(Nn)^{2}-\sigma^{2}} \right]$$

$$- \frac{2\sigma^{2} \left[3(Nn)^{2}+2\lambda^{2} \right]}{(Nn)^{2}-\sigma^{2} \left[3(Nn)^{2}-4\sigma^{2} \right]^{2} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{\alpha'n^{2}+b'n^{2}}{(Nn)^{2}-\sigma^{2}} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{\alpha'n^{2}+b'n^{2}}{(Nn)^{$$

$$\begin{aligned}
\hat{Q}_{\mathbf{z}}^{\mathbf{z}} &= r_{z}^{\mathbf{z}} = -K + \frac{1}{2} \sum_{n=1}^{\infty} \left[a_{n}^{2} + b_{n}^{2} \right] \left\{ \frac{(Nn)^{2}}{(Nn)^{2} - (1+K)} + \frac{1}{2} \left(K + \frac{3K'}{1+K} \right) \left[\frac{Nn}{(Nn)^{2} - (1+K)} \right]^{2} - \left[K' \frac{2+K}{1+K} + \frac{K''}{2} - \frac{(K')^{2}}{2(1+K)} \right] \left[\frac{1}{(Nn)^{2} - (1+K)} \right]^{2} + \frac{K'^{2}}{(Nn)^{2} [(Nn)^{2} - (1+K)]^{2}} - \frac{4K(K')^{2}}{(Nn)^{4} [(Nn)^{2} - (1+K)]^{2}} \right] + \frac{1}{2} \sum_{n=1}^{\infty} \left[a_{n}a'_{n} + b_{n}b'_{n} \right] \left[\frac{2K'}{(Nn)^{2} ((Nn)^{2} - (1+K)]} - \frac{1+K-K'}{(1+K) [(Nn)^{2} - (1+K)]} - \frac{8KK'}{(Nn)^{4} [(Nn)^{2} - (1+K)]} \right] - \frac{1}{2} \sum_{n=1}^{\infty} \left[\frac{a_{n}a'_{n} + b_{n}b'_{n}}{(Nn)^{2} ((1+K))} + \frac{1}{2} \sum_{n=1}^{\infty} \left[a'_{n}s^{2} + b'_{n}^{2} \right] \left\{ \frac{1}{(Nn)^{2}} - \frac{4K}{(Nn)^{4}} \right\}.
\end{aligned}$$
(4)
Fig. 4. General formula for axial frequency, r_{z} .

how to scare young students!!

(Al Garren 1962)

(3)

better approach to getfocusing frequencies:1. simple approximations2. numerical calculations

$$Q_x^2 \approx 1 + \kappa$$

 $Q_y^2 \approx -k + F (1 + 2 \tan^2 \delta)$

Resonance Diagram of focusing frequencies

In the Ring Cyclotron the coupling resonance $v_r=2v_z$ is crossed twice before extraction

In the Injector I the resonance v_r =1 is used to enhance the extraction efficiency

coupling resonance

Ring cyclotron 590 MeV p

a large horizontal oscillation is transformed into a large vertical one at the coupling resonance $v_r=2v_z$

This can lead to beam losses

radial scaling

In an isochronous cyclotron: $\omega_0 = \text{const.}$

 $R = v/\omega_0 \sim \beta$, $(\beta = v/c)$

absolute radius limit at v=c: $R_{\infty}=c/\omega_0$

$$R = \beta R_{\infty} \qquad R_{\infty}[m] = h \left(\frac{47.7MHz}{v_{RF}}\right)$$

Example: protons at PSI: v_{RF} = 50.7 MHz , R_{∞} = h· 0.94m

	E[MeV]	β_{max}	h	R _∞ [m]	R _{max} [m]	B ₀ [T] (center)
Injektor I	72	0.37	3	2.83	1.05	1.1
Injektor II	72	0.37	10	9.40	3.5	0.33
Ring	590	0.79	6	5.65	4.5	0.55

RF Cavity

Ring Cyclotron 590 MeV, 50.7 MHz

original version:

aluminum , V=720 kV

300 kW power loss

216 turns

at 2 mA: 300 kW power/cavity is

delivered to the beam

new cavity:

copper , V = 1 MV

400 kW power loss

160 turns , current limit > 3 mA ?

Phase Compression / Phase Expansion due to Variation in Cavity Voltage

The radial variation of the cavity voltage produces a phase dependent magnetic field. This effects the revolution time and thus the phase of a particle.

$$E_G(R) \Delta \sin \Phi(R) = const.$$

 E_G = peak energy gain/turn Φ = phase of particle

W.Joho, Particle Accelerators 1974, Vol.6, pp. 41-52

New Copper Cavity

50 MHz, CW Voltage: 1 MV (old cavity 0.72 MV)

4 new Cu Cavities in Ringcyclotron (2008)

Flattop Voltage gives minimum energy spread

flattop RF-voltage with addition of 3.harmonic

Extraction from a Cyclotron

The intensity limit of a Cyclotron is given by the beam losses.

Important is the radial distance dR/dn between the last two turns before extraction

=> large turn separation with:

- high RF voltage (intensity limit ~ V³ !!)
- large machine radius R !

=> compact cyclotrons (supercond. !) have limited intensity (1) $E = \frac{1}{2} m v^2 = \frac{1}{2} m \omega^2 R^2 \sim R^2$ (non relativistic) (2) $E \approx n q \overline{V} \sim n$ (turn number), $\overline{V} = \text{average RF} - \text{voltage per turn}$

$$\Rightarrow R \sim \sqrt{n}, \qquad \frac{dR}{dn} = \frac{R}{2n}$$

$$\frac{dR}{dn} = \frac{\gamma}{\gamma+1} R \frac{V}{(E/e)} \frac{1}{Q_r^2} \quad \text{(exact)}$$

Particle at position A:

- => gains additional energy from space charge forces
- => moves to higher radius due to isochronous condition
- => rotation of the bunch
- => nonlinearities produce spiral shaped halos
- => production of a rotating sphere

Longitudinal Space Charge in Cyclotron

Simulation of a 1mA beam, circulating in Injector II at 3 MeV for 40 turns without acceleration.

The core stabilizes faster than the halos (calculations by Stefan Adam)

Space Charge Fields in a Cyclotron

Disc-Model

(W.Joho, Int. Cyclotron Conf. Caen 1981)

circulating protons fill a cake-like piece with azimuthal extension $\Delta \theta$. Neighbouring orbits are assumed to overlap radially.

The azimuthal electric field at the edge of the "piece of cake" at point P is approximated by the calculable field of a disc with radius w. Reasoning: the charge of the protons outside of the half circle around P is screened by the upper and lower poles and protons in the hashed area give only a small contribution to the azimuthal field ε_{θ} . The proton at P gains through ε_{θ} an additional energy/turn:

 $dE/dn = 2\pi R \in_{\theta}$

This simple model predicts, that the intensity limit from longitudinal space charge forces increases with V^3 !! (V=cavity voltage/turn)

Longitudinal space charge forces

increase the energy spread

- => higher extraction losses
- => limit on beam current

Remedy:

higher voltage V on the RF cavities

=> lower turn number n (V·n = const.)

current limit ~ V³!

There are 3 effects, each giving a factor $V(\sim 1/n)$:

- 1) beam charge density $\sim n$
- 2) total path length in the cyclotron \sim n
- 3) turn separation $\sim V$

W.Joho, 9th Int. Cyclotron conference CAEN (1981)

maximum current in ring cyclotron

Power for Current in Ring Cyclotron

Graphite Target Wheel

1.3 MW Proton Beam

creates Pions and Muons

"slow" Neutrons for Material Research

- Production of fast Neutrons
- slowing down in Moderator
- 1. Fission of Uranium (U²³⁵) in a Reactor

- Spallation of heavy Nuclei
 (e.g. lead) by Bombardment with Protons from an Accelerator
 - => safe and fast turning off !

Figure 1. Calculated neutron multiplicity on lead as a function of proton energy⁵; the insert shows a calculated energy-normalised yield.

why is the PSI Ring Cyclotron such an efficient accelerator ?

