Colliding Beams How to make them

Peter McIntyre Texas A&M University

- Motivations for high energy physics
- Beam cooling
- $\overline{p}p$ collider
- *pp* collider
- $\mu^+\mu^-$ collider

Accelerators and Colliders

2

 The name of the game: access new Bosons and new Fermions by *colliding Fermions together*.

Analyze collision dynamics as a 4-vector:

$$\prod = \left[\left(E_1 + E_2 \right), \left(\vec{p}_1 + \vec{p}_2 \right) \right]$$

$$\prod^{2} = (E_{1} + E_{2})^{2} - (\vec{p}_{1} + \vec{p}_{2})$$

Two ways to do it:Collide beam on target

$$E_2 = m_2, \qquad p_2 = 0,$$

+ Collide beams head-on $E_1 = E_2 = E, \quad \vec{p}_1 = -\vec{p}_2 \cong E, \quad \sqrt{2}$

Present state of the art

On July 4, 2012 the LHC experiments discovered the Higgs boson with mass \mathcal{M} =125 GeV/c²

LHC produces collisions at Collision energy $\sqrt{s} = 13 \ TeV$ Luminosity $\mathcal{L} = 10^{34} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}$

Example: $s^{1/2} = 14 \text{ TeV}$, $s^{1/2} = 1 \text{ TeV}$ cross section: $\sigma \sim 0.01^2$ parton luminosity ~ 0.1 pb (if couplings ~ 0.01) luminosity L=10 pb⁻¹ $\rightarrow N_{event} = L \sigma = 1$ event

New Physics channels for Run 2

Need Maximum possible collision energy

Accelerators: Linacs and Synchrotrons

• Linacs:

 β < 1: drift tube linac

• Particle beam optics

- Beam cooling
- $\overline{p}p$ collider
- *pp* collider
- $\mu^+\mu^-$ collider

Bending and focusing beams

- The physics of accelerators builds upon a common framework, in which three elements are arranged in sequence:
- dipole magnets to bend the bunches in a circular orbit (omitted for a linac);
- Quadrupole magnets to focus the bunches and confine them in transverse phase space;
- RF cavities to accelerate the bunches and confine them

Taylor series expansion

$$\phi = \sum_{n=1}^{\infty} \phi_n r^n \sin n\theta$$

Field in polar coordinates:

$$\mathbf{B}_{\mathbf{r}} = -\frac{\partial \phi}{\partial \mathbf{r}}, \quad \mathbf{B}_{\theta} = \frac{1}{\mathbf{r}} \frac{\partial \phi}{\partial \theta}$$

$$\mathbf{B}_{\mathrm{r}} = \boldsymbol{\phi}_{\mathrm{n}} \mathrm{nr}^{\mathrm{n-1}} \sin \mathrm{n} \,\boldsymbol{\theta}, \quad \mathbf{B}_{\theta} = \boldsymbol{\phi}_{\mathrm{n}} \mathrm{nr}^{\mathrm{n-1}} \cos \mathrm{n} \,\boldsymbol{\theta}$$

To get vertical field

$$\begin{split} \mathbf{B}_{z} &= \mathbf{B}_{r} \sin \theta + \mathbf{B}_{\theta} \cos \theta \\ &= -\phi_{n} n r^{n-1} [\cos \theta \cos \theta + \sin \theta \sin n \theta] \\ &= \phi_{n} n r^{n-1} \cos(n-1) \theta = \phi_{n} n x^{n-1} \quad (\text{when } \mathbf{y} = \mathbf{0}) \end{split}$$

Taylor series of multipoles

$$B_{z} = \phi_{0} + \phi_{2}.2x + \phi_{3}.3x^{2} + \phi_{4}.4x^{3} + \dots$$
$$= B_{0} + \frac{1}{1!} \frac{\partial B_{z}}{\partial x} x + 2 \frac{\partial^{2} B_{z}}{\partial x^{2}} x^{2} + \frac{1}{3!} \frac{\partial^{3} B_{z}}{\partial x^{3}} x^{3} + \dots$$
Dip. Quad Sext Octupole

Magnet types

Dipoles bend the beam

Sextupoles correct chromaticity

Faustion of motion in each coordinate

Magnetic field [T] :

Field gradient [T m-1] :

Normalized grad. [m⁻²] : 1

$$B_y = \frac{\partial B_y}{\partial x} \times x$$
$$g = \frac{\partial B_y}{\partial x}$$
$$K = \frac{g}{p_0/e} = \frac{1}{f}$$

 ∂B_u

$$x'' + K(s)x = 0$$

Hill's equation

K(s) describes the distribution of focusing strength along the lattice.

Alternating Gradient focusing \rightarrow pseudo-harmonic oscillator with s-dependent spring constant K(s).

The general linear magnet lattice can be parameterized by a 'varying spring constant', K=K(s)

Note that dipoles give a "weak focusing" term in the horizontal plane, $K(s) = K(s) + 1/\rho^2$

Transverse focusing

Fields and force in a quadrupole

Focuses in horizontal plane

(hence is linear)

Force restores

Gradient $\longrightarrow \frac{\partial B_y}{\partial x}$

Normalized:

$$k = -\frac{1}{(B\rho)} \cdot \frac{\partial B_{y}}{\partial x}$$

POWER OF LENS $\ell k = -\frac{\ell}{(B\rho)} \cdot \frac{\partial B_y}{\partial x} = \frac{1}{f}$ Equation of motion in transverse coordinates

Each quadrupole lens couples position and angle in each transverse direction

The most general representation of the matrix **M**(s) with **unit modulus** is given by the Courant-Snyder parameterization.

$$M(s) = \begin{pmatrix} \cos \Phi + \alpha \sin \Phi & \beta \sin \Phi \\ -\gamma \sin \Phi & \cos \Phi - \alpha \sin \Phi \end{pmatrix} = I \cos \Phi + J \sin \Phi$$
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad J = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}, \quad J^2 = -I, \text{ or } \beta\gamma = 1 + \alpha^2$$

The ambiguity in the sign of sin can be resolved by requiring β to be a positive definite number if $|\text{Trace}(M)| \leq 2$, and by requiring $\text{Im}(\sin \Phi) > 0$ if |Trace(M)| > 2. The definition of the phase factor is still ambiguous up to an integral multiple of 2π . This ambiguity will be resolved when the matrix is tracked along the accelerator elements. Using the property of matrix J, we obtain the De Moivere' theorem:

$$\begin{split} \mathbf{M}^k &= (\mathbf{I}\cos\Phi + \mathbf{J}\sin\Phi)^k = \mathbf{I}\cos k\Phi + \mathbf{J}\sin k\Phi,\\ \mathbf{M}^{-1} &= \mathbf{I}\cos\Phi - \mathbf{J}\sin\Phi. \end{split}$$

Drift section or dipole magnet:

$$M = \left(\begin{array}{cc} 1 & L \\ 0 & 1 \end{array}\right)$$

Focusing quadrupole:

Example: FODO cell

A FODO cell is a basic block in beam

This description works just as well for a linac as for a synchrotron or storage ring – main difference is that chromaticity and dispersion play an important role for circular machines.

Betatron phase space at various points in a lattice

Beam sections

I will present this as a personal tour through colliders I have known.

I began my career (I was once your age!) as a scientist on an experiment at CERN's Intersecting Storage Rings (ISR).

The ISR made p-p collisions up to 60 GeV collision energy, luminosity to 10³⁰ cm⁻²s⁻¹

The ISR did not produce a single important HEP discovery, but it ushered in several pivotal developments of accelerator physics and technology:

The ISR used momentum stacking to accumulate ~100 fills from PS – 20 A circulating d.c. current @ 30 GeV.

It required ultra-high vacuum for ~week-long lifetimes.

Benvenuti invented

• getter pumping, later NEG

plasma discharge cleaning for UHV

The crowning glory from ISR was stochastic cooling

FIG. 3. Variation with system gain of the coherent cooling and incoherent heating effect.

Simon van der Meer

FIG. 2. Cooling of the horizontal betatron oscillation of a single particle.

Invented stochastic cooling to cool protons in the ISR

Used it to cool 5x10¹⁰/hr antiprotons to discover the weak bosons in the $Sp\overline{p}S$

The Tevatron: Anchor for a generation of HEP discoveries

One can still obtain a mass bump from a new particle, even at 175 GeV/c² mass!

The top quark and the Higgs are intimately related through gauge couplings: $-a_{scalar} \sim m_{f}$

80.2

Tevatron the first-ever superconducting storage ring

When new beam is injected and the up-ramp begins, the currents re-distribute to the charging side: snap-back.

The sextupole component creates an instantaneous change in chromaticity that can be enough to blow the beam out of orbit.

Beam-beam tune shift

Red and green lines are sum and difference resonances up to 12th order. Yellow dots are tunes or proton bunches. Blue dots are tunes of antiproton bunches.

Schottky scans in the Tevatron

As a proton passes through a slot-gap electrode, it induces a potential across the electrode that is proportional to its displacement from the axis.

The particles of each bunch induce a noise frequency spectrum that is proportional to \sqrt{N} . The protons are also undergoing betatron oscillations, so the Schottky spectrum is modulated to form sidebands.

A 1.7 GHz Schottky pickup was used to measure the betatron tunes of each individual bunch every day. The measurements were used to correct the tunes to keep maintain optimal working point.

The longitudinal and transverse emittances of each bunch are equivalent to temperatures in the frame of the bunch. The bunch is a gas with non-equilibrium temperatures.

 $T_{\perp} << T_{\ell}$ as a natural consequence of acceleration (homework). In the bunch frame, the particles Coulomb scatter, and the scattering is heat transfer from the hot dimension to the cold dimension.

Challenges for collider operation

Example of the Tevatron magnet alignment (not common, but)

every vear survey and reset major offenders to <0.2mm and <2mrad every minute: orbit stabilization to <20 microns

Making antiprotons

Phase Rotation & Debunching

Fast Stochastic Cooling in the Debuncher

- fast 2 sec cycle time
- wide acceptance in dP
- very low signal cryogenic
- 8 PU bands, 4 kicker bands, 4-8 GHz

Debuncher stochastic cooling kicker tank

Antiproton accumulator

Pick-up Electrodes

Kicker Electrodes

Figure 2. Stacktail 1-2 GHz 3-D pickup loop array. Horizontal aperture is 30 cm.

Stacktail notch filter assemblies

Measured

Gaussian

250

4000

500

5000

Long Schotte

Figure 2. A network analyzer open loop gain (BTF) measurement of the Fermilab Accumulator 2-4 GH stochastic cooling system. The amplitude (a) and phase (b) response of a single Schottky band at harmoni 4305 is shown (dots). The curves are calculations of the response using a measurement of the longituding Schottky beam profile. The amplitude (c) and phase (d) response sampled over the system bandwidth ar also shown.

Stochastic Cooling: Accumulate $2x10^{11}\overline{p}/hr$

Main Injector & Recycler

Recycler = 8 GeV fixed-energy storage ring – *combined-function permanent magnets*

Main Injector = 150 GeV rapid-cycling synchrotron – deliver protons to \overline{p} target

Creating proton superbunches for \overline{p} targetry

Final RF Bucket

4.1e12+4.1e12 =8.2 e12 protons on target per 2.2 s MI cycle

RF barrier buckets were used to coalesce protons, manipulate mom spread

RF Chopper Cavity made of Finemet (Fermilab/KEK)

L.....∐ 0 5 10(cm)

Figure 2: A test cavity used in the measurements. It consists of a magnetic core, a metal shield, a one-turn coil and a stainless steel beam pipe with a ceramic gap.

Figure 2: Side view of the chopper. Three magnetic-alloy cores with 504nm evan x 158mm eva x 25mm thickness are used. An ore-turn coil is wound around the cores.

Figure 5: A circuit diagram of a bipolar (push-pull) high voltage source using two HTS transistors as the switches.

Figure 1: Chepper cavity installed at the HIMAC facility. A constant-energy beam from an ion source comes from the right-band side, and its energy is isodulated by $\pm 5\%$ at the chopper energy. The downstream RFQ is located at the left-hand side, which is at the other sole of the wall.

Electron Cooling Antiprotons @ 8 GeV

Electron Cooling increased \overline{p} stack x10 beyond what accumulator could hold

Coalescing antiproton bunches in the Main Injector for transfer to Tevatron

Beam Beam Tune Shift

The luminosity of collisions and the beam-beam tune shift have the same dependences on the beam emittance:

LEP - LHC

LEP (e^+e^-)

160 - 200 μ m · 2 - 4 μ m

4.0 · 10¹¹/bunch

100 GeV

 (\approx) 20 nm \cdot 0.2 nm

 (\approx) 1.25 m · 0.05 m

0.0

0.0700

16.6µm · **16.6**µm

1.15 · 10¹¹/bunch

7000 GeV

0.5 nm · 0.5 nm

 $0.55 \text{ m} \cdot 0.55 \text{ m}$

285 μ rad

0.0037

Beam sizes

Intensity N

Crossing angle

Beam-beam

 $parameter(\xi)$

Energy

 $\epsilon_x \cdot \epsilon_y$

 $\beta_x^* \cdot \beta_y^*$

There is a fundamental difference in the significance of beam-beam tune shift for an e⁺e⁻ collider and a hadron collider:

The electron emittance is damped by synchrotron damping. Each electron in LEP 'forgets' what harm was done to it on the last orbit.

But the protons in LHC have very little synchrotron damping They remember all the harm done, on all the orbits, for a day! Comparable to the Earth's orbits in its history...

Electron Lens was used on Tevatron for two purposes:

1. Gaussian-profile e-beam compensates beam-beam tune shift:

2. Hollow e-beam, notched on during gap, removes d.c. beam

Tevatron HEB-Collimator

CERN John Adams Lecture - Shiltsey - Dec

To explore advantages: • Kicks are small but not random • Halo diffusion enhancement ("smooth" scraper) • Resonant excitation is possible (pulsed e-beam) • No material damage • No ion breakup • Low impedance • Position control by magnetic field (no motors or bellows) • Established e-lens technology

Fermilab

And now for the LHC

Large Hadron Collider (CERN)

operation started in 2008

		Injection	Collision	
Beam Data				
Proton energy	[GeV]	450	7000	
Relativistic gamma		479.6	7461	
Number of particles per bunch		1.15	$\times 10^{11}$	
Number of bunches		2	808	
Longitudinal emittance (4σ)	[eVs]	1.0	2.5^{a}	
Transverse normalized emittance	$[\mu m rad]$	3.5^{b}	3.75	
Circulating beam current	[A]	0.	.582	
Stored energy per beam	[MJ]	23.3 362		
Peak Luminosity Re	lated Data			
RMS bunch length ^c	cm	11.24	7.55	
RMS beam size at the IP1 and $IP5^d$	μ m	375.2	16.7	
RMS beam size at the IP2 and $IP8^e$	μ m	279.6	70.9	
Geometric luminosity reduction factor F^{f}		-	0.836	
Peak luminosity in IP1 and IP5	$[\mathrm{cm}^{-2}\mathrm{sec}^{-1}]$	-	$1.0 imes 10^{34}$	
Peak luminosity per bunch crossing in IP1 and IP5	$[\mathrm{cm}^{-2}\mathrm{sec}^{-1}]$	-	$3.56 imes 10^{30}$	

Intra Beam Scattering						
RMS beam size in arc	[mm]	1.19	0.3			
RMS energy spread $\delta E/E_0$	$[10^{-4}]$	3.06	1.129			
RMS bunch length	[cm]	11.24	7.55			
Longitudinal emittance growth time	[hours]	30 ^a	61			
Horizontal emittance growth time	[hours]	38 ^a 80				
Total beam and luminosity lifetimes ^b						
Luminosity lifetime (due to beam-beam)	[hours]	-	29.1			
Beam lifetime (due to rest-gas scattering) c	[hours]	100	100			
Beam current lifetime (beam-beam, rest-gas)	[hours]	-	18.4			
Luminosity lifetime (beam-beam, rest-gas, IBS)	[hours]	-	14.9			
Synchrotron R	adiation	•				
Instantaneous power loss per proton	[W]	3.15×10^{-16}	1.84×10^{-11}			
Power loss per m in main bends	$[Wm^{-1}]$	0.0	0.206			
Synchrotron radiation power per ring	[W]	6.15×10^{-2}	$3.6 imes 10^3$			
Energy loss per turn	[eV]	1.15×10^{-1}	6.71×10^{3}			
Critical photon energy	[eV]	0.01	44.14			
Longitudinal emittance damping time	[hours]	48489.1	13			
Transverse emittance damping time	[hours]	48489.1	26			

The Proton Source

Duo-Plasmotron

hydrogen (metal) plasma used to create protons (ions)

LHC Injector

CERN PS (24 GeV)

Parameter name	Unit	Value
Injection kinetic energy	GeV	1.4
Maximum momentum	GeV/c	26
Dipole field at 26 GeV/c	Т	1.26
Radius	m	100.000
Curvature radius	m	70.079
gt		~ 6.1
Pipe half height	cm	3.5
Pipe half width	cm	7.0

CERN SPS 450 GeV (since 1976)

Super Proton Synchrotron, CERN

Note, a proton synchrotron (fixed orbit, varying magnetic dipole fields) have a limited range of operation (magnetic saturation, beam stability)

Whole Wire Critical Current Density (A/mm², 4.2 K)

from S.Claudet

LHC Superfluid Cryogenic Plant – the largest LHe capacity in the world

LHC Cryogenic System

ım (2K)

from S.Claudet

LHC Collimators

Task: absorb halo proton and neutrons straying around the beam

movable jaws (with RF shield)

And then...

All superconducting magnets in LHC connect their supply and return currents through current bus cables, located in conduits within the magnet cryostats. Each bus in each magnet must be spliced to the same bus in the neighboring magnets. Those splice joints must be stable against quench. The provisions for stabilizing copper, and the provisions for soldering, were inadequate in the original installation.

LHC Repair

Quench protection of the superconducting magnets

LHC dipole protection: practical implementation

It's difficult! - the main challenges are:

1) Series connection of many magnets

- In each octant, 154 dipoles are connected in series. If one magnet quenches, the combined energy of the others will be dumped in that magnet ⇒ vaporization!
- Solution 1: cold diodes across the terminals of each magnet. Diodes normally block ⇒ magnets track accurately. If a magnet quenches, it's diodes conduct ⇒ octant current by-passes.
- Solution 2: open a circuit breaker onto a resistor (several tonnes) so that octant energy is dumped in ~ 100 secs.

2) High current density, high stored energy and long length

- Individual magnets may burn out even when quenching alone.
- Solution 3: Quench heaters on top and bottom halves of every magnet.

But the quench heater leads are beginning to fail open.

It is suspected that warmup-cooldown stresses weaken the connections.

LHC quench-back heaters

- stainless steel foil 15mm x 25 μm glued to outer surface of winding
- insulated by Kapton
- pulsed by capacitor 2 x 3.3 mF at 400 V = 500 J
- quench delay at rated current = 30msec - at 60% of rated current = 50msec
- · copper plated 'stripes' to reduce resistance

CERN is evaluating a new quench protection method: CLIQ

LHC interaction-region layout

nominal bunch spacing= 7.5 m nominal collision spacing = 3.75 m → about 2x15 collisions between IP and separation dipole! tune shift would increase 30 times! solution: crossing angle

LHC: long-range beam-beam

LHC beam-beam tune footprint

electron cloud

schematic of e- cloud build up in LHC beam pipe, due to **photoemission** and **secondary emission**

→ heat load (→ quenches), instabilities, emittance growth, poor beam lifetime

also synchrotron radiation & beam image currents add to heat load

Beam scrubbing gradually reduces the secondary electron yield.

G. Rumolo

Electron cloud: δ_{max} in the arcs: results

LHC – longitudinal instability

Back in business... Discover the Higgs... Then what?

- Supersymmetry
 - Naturalness bound...

The Standard Model

 It's an effective theory with many unanswered questions

- What determines the masses?
 - particularly the 3rd generation?

Why this energy scale?

- Electroweak scale ~0.1-1.0 TeV
- The only 'natural' scale is the Planck scale (~10¹⁹ GeV)
 - m_H = 125 GeV requires extraordinary fine tuning of SM parameters

Prime candidate (is still) Supersymmetry

- SUSY provides appealing Dark Matter candidates
 - Light Supersymmetric Particles e.g. Neutralino (or Gravitino...)
- Provides remarkable unification of forces
 - At the grand unification scale ~ 10¹⁶ GeV

Predicts a standard-model-like Higgs with m_h < 130 GeV!</p>

Report card from ATLAS

ATLAS Preliminary

 $\sqrt{s} = 7.8 \text{ TeV}$

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: July 2015

	Model	e, μ, τ, γ	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	∫ <i>L dt</i> [fb	¹] Mass limit $\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$	Reference
Inclusive Searches	$ \begin{array}{l} MSUGRA/CMSSM \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\xi}_{1}^{D} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\xi}_{1}^{U} \\ (compressed) \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\xi}_{1}^{U} \\ \tilde{g}\tilde{z}, \tilde{g} \rightarrow q\tilde{g}\tilde{\xi}_{1}^{U} \rightarrow q\tilde{g}^{U}\tilde{\xi}_{1}^{U} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{g}\tilde{\xi}_{1}^{U} \rightarrow qqW^{\pm}\tilde{\xi}_{1}^{U} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\xi}_{1}^{U} \rightarrow qqW^{\pm}\tilde{\xi}_{1}^{U} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\xi}_{1}^{U} \rightarrow qqW^{\pm}\tilde{\xi}_{1}^{U} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\xi}_{1}^{U} \rightarrow qqW^{\pm}\tilde{\xi}_{1}^{U} \\ \tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{g}(U^{\pm}/V^{\prime}V^{\prime})\tilde{\xi}_{1}^{U} \\ \tilde{g}\tilde{g}\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}$	$\begin{array}{c} 0.3 \ e, \mu/1-2 \ \tau \\ 0 \\ mono-jet \\ 2 \ e, \mu \ (off-Z) \\ 0 \\ 0.1 \ e, \mu \\ 2 \ e, \mu \\ 1-2 \ \tau + 0.1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 0-3 jets 0-2 jets 1 b 2 jets 2 jets mono-jet	 Ves 	20.3 20.3 20.3 20.3 20 20 20 20.3 20.3 2	ψ. ἐ 1.8 TeV m(ψ)=m(g) ψ 850 GeV m(ξ) [*]]=0 GeV, m(1 ^a gen. m(q)=m(ξ) [*]]<0 GeV	$P <0.1 \text{ rmm, } \mu>0$ 1507.05525 1405.7875 1507.05525 1503.03290 1405.7875 1507.05525 1507.05525 1501.03555 1407.0603 1507.05493 1507.05493 $P <0.1 \text{ rmm, } \mu>0$ 1507.05493 1503.03290 $r)=1.5 \text{ TeV}$ 1502.01518
3 ^{ru} gen. <u>8</u> med.	ĒĒ, Ē→bĀŽ ¹ ĒĒ, Ē→tīŽ ¹ ĒĒ, Ē→tīŽ ¹ ĒĒ, Ē→tīŽ ¹ ĒĒ, Ē→bīŽ ¹	0 0 0-1 <i>e</i> ,μ 0-1 <i>c</i> ,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	R 1.25 TeV m(k ²)<400 GeV R 1.1 TeV m(k ²)<450 GeV	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$\begin{array}{l} \bar{b}_{1}\bar{b}_{1}, \bar{b}_{1} \rightarrow b\tilde{k}_{1}^{0} \\ \bar{b}_{1}\bar{b}_{1}, \bar{b}_{1} \rightarrow t\tilde{k}_{1}^{+} \\ \bar{i}_{1}\bar{i}_{1}, \bar{i}_{1} \rightarrow b\tilde{k}_{1}^{+} \\ \bar{i}_{1}\bar{i}_{1}, \bar{i}_{1} \rightarrow b\tilde{k}_{1}^{0} \\ \bar{i}_{1}\bar{i}_{1}, \bar{i}_{1} \rightarrow \tilde{k}_{1}^{0} \\ \bar{i}_{1}\bar{i}_{1}, \bar{i}_{1} \rightarrow \tilde{k}_{1}^{0} \\ \bar{i}_{1}\bar{i}_{1} \\ \bar{i}_{1}\bar{i}_{1} \\ \bar{i}_{1}\bar{i}_{1} \\ \bar{i}_{1}\bar{i}_{1} \\ \bar{i}_{2}\bar{i}_{2}, \bar{i}_{2} \rightarrow \tilde{i}_{1} + Z \end{array}$	0 2 e, µ (SS) 1-2 e, µ 0-2 e, µ (0 m 2 e, µ (Z) 3 e, µ (Z)	2 b 0-3 b 1-2 b 0-2 jets/1-2 1 ono-jet/c-t 1 b 1 b	Yes Yes Yes b Yes ag Yes Y a s Yes	20.1 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1308.2631 1404.2500 55GeV 1209.2102, 1407.0683 1506.08616 1407.0608 1403.5222 1403.5222
EW direct	$ \begin{array}{l} \tilde{\ell}_{1,\mathbf{R}}\tilde{\ell}_{1,\mathbf{R}},\tilde{\ell}\to\mathcal{K}_{1}^{0} \\ \tilde{k}_{1}^{+}\tilde{k}_{1}^{-},\tilde{k}_{1}^{+}\to\tilde{\ell}\nu(\ell\bar{\nu}) \\ \tilde{k}_{1}^{+}\tilde{k}_{1}^{-},\tilde{k}_{1}^{+}\to\tilde{\ell}\nu(\ell\bar{\nu}) \\ \tilde{k}_{1}^{+}\tilde{k}_{1}^{0}\to\tilde{k}_{1}\nu_{1}^{0}\nu_{1}(\bar{\nu}\nu), (\tilde{s}_{1}^{0}\ell_{1}(\bar{\nu}\nu) \\ \tilde{k}_{1}^{+}\tilde{k}_{1}^{0}\toW_{1}^{0}Z\tilde{k}_{1}^{0} \\ \tilde{k}_{1}^{+}\tilde{k}_{2}^{0}\toW_{1}^{0}\tilde{k}_{1}^{0}, h\to b\bar{b}/WW/\tau \\ \tilde{k}_{2}^{+}\tilde{k}_{2}^{0}\toW_{2}^{-}\tilde{k}_{2}^{0}\to\tilde{k}_{2}^{0} \\ GGM (wino NLSP) weak prod$	2 e,μ 2 e,μ 2 τ 3 e,μ 2·3 e,μ τ/γγ e,μ,γ 4 e,μ 1 e,μ + γ	0 0 0-2 jets 0-2 b 0	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Long-lived particles	Direct $\tilde{X}_1^{\dagger} \tilde{X}_1^{-}$ prod., long-lived \tilde{J} Direct $\tilde{X}_1^{\dagger} \tilde{X}_1^{-}$ prod., long-lived \tilde{J} Stable, stopped § R-hadron GMSB, stable \tilde{r} , $\tilde{X}_1^{0} \rightarrow \tilde{r}(\tilde{e}, \tilde{\mu})_{+1}$ GMSB, $\tilde{X}_1^{0} \rightarrow \gamma \tilde{G}$, long-lived \tilde{X}_1^{0} $\tilde{g} \tilde{g}$, $\tilde{X}_1^{0} \rightarrow eev(euv)\mu\mu\nu$ GGM $\tilde{g} \tilde{g}$, $\tilde{X}_1^{0} \rightarrow Z \tilde{G}$	t_1^{\dagger} Disapp. trk t_1^{\dagger} dE/dx trk 0 trk $t(e, \mu)$ 1-2 μ 2 γ displ. $ee/e\mu/\mu$ displ. vtx + jet	1 jel 	Yes Yes - Yes - Yes -	20.3 18.4 27.9 19.1 19.1 20.3 20.3 20.3	χ* 270 GeV m(k ² ₁)-m(k ² ₁)-160 MeV, m(k ² ₁)-m(k ² ₁)-160 MeV, m(k ² ₁)-100 GeV, 10 μs χ 832 GeV m(k ² ₁)-100 GeV, 10 μs χ* 537 GeV 10 χ* 537 GeV 2 10 χ* 537 GeV 2 2 10 3 8 8 χ* 1.0 TeV 2 2 10 435 GeV 10 430 mm, m(x) χ* 1.0 TeV 7 2 10 40 mm, m(x) 40 mm, m(x)	r(k ² ₁)=0.2 ns 1310.3675 r(k ²)<15 ns 1506.05332 r(k)<1000 s 1310.6584 1411.6795 1411.6795 del 1409.5542 k)=1.3 TeV 1504.05162 k)=1.1 TeV 1504.05162
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{\mathbf{v}}_{\tau} + X, \tilde{\mathbf{v}}_{\tau} \rightarrow e\mu/\epsilon\tau/\mu \\ Bilinear \; RPV \; CMSSM \\ \tilde{x}_1^+ \tilde{x}_1^-, \tilde{x}_1^+ \rightarrow W \tilde{x}_1^0, \tilde{x}_1^0 \rightarrow ee\tilde{v}_{\mu}, e\mu \\ \tilde{x}_1^+ \tilde{x}_1^-, \tilde{x}_1^+ \rightarrow W \tilde{x}_1^0, \tilde{x}_1^0 \rightarrow ee\tilde{v}_{\mu}, e\mu \\ \tilde{x}_2^+ \tilde{x}_2^-, \tilde{x}_1^+ \rightarrow W \tilde{x}_1^0, \tilde{x}_1^0 \rightarrow ee\tilde{v}_{\mu}, e\mu \\ \tilde{x}_2^+ \tilde{x}_2^-, \tilde{x}_1^+ \rightarrow W \tilde{x}_1^0, \tilde{x}_1^0 \rightarrow ee\tilde{v}_{\mu}, e\mu \\ \tilde{x}_2^+ \tilde{x}_2^-, \tilde{x}_1^+, \tilde{x}_1^+ \rightarrow be \\ \tilde{x}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b\ell \\ \tilde{x}_1 \tilde{t}_1, \tilde{x}_1 \rightarrow b\ell \end{array} $	$\begin{array}{c} r & e\mu, e\tau, \mu\tau \\ 2 & e, \mu (SS) \\ \bar{v}_e & 4 & e, \mu \\ \bar{v}_\tau & 3 & e, \mu + \tau \\ 0 & 0 \\ 2 & e, \mu (SS) \\ 0 \\ 2 & e, \mu \end{array}$	- 0-3 b - 5-7 jets 6-7 jets 0-3 b 2 jets + 2 l 2 b	- Yes Yes - - Yes) -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	F, 1.7 TeV $\lambda_{j_{11}}=0.11, \lambda_{j_{12j}(13j_{23j_{23}}=0}$ \bar{q}, \bar{g} 1.35 TeV m(\bar{q})-m(\bar{g}), $c_{T_{2}p}<1$ mm $\bar{\chi}_{1}^{\pm}$ 750 GeV m($\bar{\xi}_{1}^{\pm}$)>0.2xm($\bar{\xi}_{1}^{\pm}$), $\lambda_{j_{2}p}<1$ mm $\bar{\chi}_{1}^{\pm}$ 450 GeV m($\bar{\xi}_{1}^{\pm}$)>0.2xm($\bar{\xi}_{1}^{\pm}$), $\lambda_{j_{2}p}<1$ mm $\bar{\chi}_{2}^{\pm}$ 917 GeV BR(η)=BR(ρ)=BR(ρ)=0% \bar{g} 917 GeV BR(η)=BR(ρ)=0% \bar{g} 850 GeV m($\bar{\xi}_{1}^{+}$)-600 GeV $\bar{\ell}_{1}$ 100-308 GeV m($\bar{\xi}_{1}^{+}$)-600 GeV	.07 1503.04430 1404.2500 00 1405.5086 1502.05686 1502.05686 1404.250 ATLAS-CONF-2015-01 ATLAS-CONF-2015-01
Other	Scalar charm, $\delta \rightarrow c \tilde{\ell}_1^0$	0	2 ¢	Yes	20.3	<mark>∂ 490 GeV</mark> m(ξ ⁰ ₁)<200 GeV	1501.01325
					1) ⁻¹ 1 Mass s	cale [TeV]

רמי דתוח - דנוח נופאווא' בופוא פוא בוחלמתוחוא - חהם וווחפווחבום (חרוכם)

ъ

Report card from CMS

Summary of CMS SUSY Results* in SMS framework

Events taken at random (filled) bunch crossings

16992111 2295 2010

O(2) Pile-up events

150 ns bunch spacing

O(5-10) Pile-up events

O(20-30) Pile-up events

50 ns bunch spacing

vileup beyond design value

The pileup challenge

Runs 2 and 3: O(50-60) PU
 ⇒ Phase 1 upgrades
 At HL-LHC PU O(140-200)

 \Rightarrow Phase 2 upgrades

Luminosity upgrades

luminosity leveling at the HL-LHC

example: maximum pile up 140

 pile up high (80-120) in 2015-2017 with 50 ns spacing (50-ns pile up >2x more than for 25 ns spacing)

Nb₃Sn Superconducting Magnets for the Luminosity Upgrade

Fig. 2. RRP108/127 and RRP150/169 strands and 40-strand cored cable.

Fig. 3. Impregnated coil (left) and coil cross-section (right).

11 T dipoles to free space for dispersion suppressors in the arc lattice.

Fig. 4. Stainless steel collars (left) and collared coil assembly (right).

ets

200 T/m quadrupoles with 120 mm aperture for the low-beta triplets flanking each IP.