Beam Dynamics: Lectures I - V

Alejandro Castilla ${ }^{124} \quad$ Luis Medina ${ }^{34}$

I. Weak Focusing

Alejandro Castilla ${ }^{124}$	Luis Medina ${ }^{34}$
1 CERN	${ }^{3}$ CERN
Beam Department - RF	Beam Department - ABP
${ }^{2}$ OLD DOMINION UNIVERSITY	
Center for Accelerator Science	4UNIVERSIDAD DE GUANAJUATO
División de Ciencias e Ingenierías	

Guanajuato, GTO, Mexico | November, 2015

- Six lectures:
- Two on Friday 13th.
- Two on Saturday 14th.
- Two on Tuesday 17th.
- We will focus on circular machines.
- Homework:
- Assigned each lecture.
- Collected at the start of the following day.
- Work in groups.
- Assigned time at the end of the day for doing homework.
- Final exam: similar to homework. Notes allowed?
- MePAS grade: 60% homework, 40\% final exam.
- Our emails:

```
a.castilla@cern.ch
```

lmedinam@cern.ch

Begging for caffeine and eating churros at the Ferney market...

This course is mostly based on the USPAS courses by Todd Satogata (JLAB), available at http://toddsatogata.net/, which in turn follows
M. Conte, W. W. MacKay, An Introduction to the Physics of Particle Accelerators. Second Edition. World Scientific. Singapore, 2008.

Some extracts has been taken from the JUAS 2015 courses on Transverse Dynamics Andrea Latina (CERN) and on Longitudinal Dynamics by Elias Metral (CERN). Both of them are available at
https://indico.cern.ch/event/ 356897/

Of course, Wiedemann's book and the Chao and Tigner's Handbook are the canonical bibliography on Beam Dynamics...

Also... Free lectures ${ }^{1}$ on accelerators and more (on demand)! Visit https://www. cockcroft.ac.uk/lectures

[^0](1) Prerequisites
(2) Lecture I: Weak Focusing
(3) Lecture II: Optical Elements
(4) Lecture III: Strong Focusing I
(5) Lecture IV: Strong Focusing II

6 Lecture V: Longitudinal Dynamics

1. Weak

Focusing
II. Optical

Elements
III. Strong Focusing I
IV. Strong Focusing II
(1) Prerequisites

Particle accelerators: applied electromagnetism and special relativity.

It will come in handy writing down some of the useful formulas,

Lorentz factors

$$
\begin{equation*}
\beta_{r} \equiv \frac{v}{c}, \quad \gamma_{r} \equiv \frac{1}{\sqrt{1-\beta_{r}^{2}}} \tag{1.1}
\end{equation*}
$$

where v is the speed of the object and c is the speed of light,

$$
\begin{align*}
c & =299,792,458 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \approx 3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \tag{1.2}
\end{align*}
$$

Note that β_{r} and γ_{r} are dimensionless.
 $\mathrm{v}[\mathrm{m} / \mathrm{s}]$

Particle accelerators: applied electromagnetism and special relativity.

It will come in handy writing down some of the useful formulas,

Lorentz factors

$$
\begin{equation*}
\beta_{r} \equiv \frac{v}{c}, \quad \gamma_{r} \equiv \frac{1}{\sqrt{1-\beta_{r}^{2}}} \tag{1.1}
\end{equation*}
$$

where v is the speed of the object and c is the speed of light,

$$
\begin{align*}
c & =299,792,458 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \approx 3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \tag{1.2}
\end{align*}
$$

Note that β_{r} and γ_{r} are dimensionless.

Example: Lorentz factors

For a car traveling at $150 \mathrm{~km} / \mathrm{h}$,

$$
\begin{gathered}
v=150 \frac{\mathrm{~km}}{\mathrm{~h}} \cdot \frac{1000 \mathrm{~m}}{\mathrm{~km}} \cdot \frac{3600 \mathrm{~s}}{\mathrm{~h}}=41.7 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\beta_{r}=\frac{41.7 \mathrm{~m} / \mathrm{s}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}=0.00000014 \\
\gamma=\frac{1}{\sqrt{1-\left(1.4 \times 10^{-7}\right)^{2}}} \approx 1
\end{gathered}
$$

The Helios-2 probe (the fastest man- made object), travels at $70.2 \mathrm{~km} / \mathrm{s}$, This corresponds to the Lorentz factors

$$
\beta_{r}=0.00023, \quad \gamma_{r}=1.00000003
$$

Compare both results to

$$
\beta_{r}=0.99999999, \quad \gamma_{r}=7453.56
$$

corresponding to a proton in the LHC.

Rest energy

$$
\begin{equation*}
E_{0}=m c^{2} \tag{1.3}
\end{equation*}
$$

Total energy

$$
\begin{equation*}
E=\gamma_{r} m c^{2} \tag{1.4}
\end{equation*}
$$

Kinetic energy

$$
\begin{equation*}
E_{K}=T=E-E_{0}=\left(\gamma_{r}-1\right) m c^{2} \tag{1.5}
\end{equation*}
$$

Momentum

$$
\begin{equation*}
p=\gamma_{r} m\left(\beta_{r} c\right)=\beta_{r} \frac{E}{c} \tag{1.6}
\end{equation*}
$$

for an object with mass m.
The unit of energy in the International System is the joule (J). A more suitable unit in particle Physics is the

Electron-volt (eV)

$$
\begin{align*}
1 \mathrm{eV} & =\left(1.602 \times 10^{-19} \mathrm{C}\right)(1 \mathrm{~V}) \\
& =1.602 \times 10^{-19} \mathrm{~J} \tag{1.7}
\end{align*}
$$

It corresponds to the amount of energy gained/lost by a particle with a charge e (the elementary charge), when it is moved across an electric potential difference of one volt.

Rest energy

$$
\begin{equation*}
E_{0}=m c^{2} \tag{1.3}
\end{equation*}
$$

Total energy

$$
\begin{equation*}
E=\gamma_{r} m c^{2} \tag{1.4}
\end{equation*}
$$

Kinetic energy

$$
\begin{equation*}
E_{K}=T=E-E_{0}=\left(\gamma_{r}-1\right) m c^{2} \tag{1.5}
\end{equation*}
$$

Momentum

$$
\begin{equation*}
p=\gamma_{r} m\left(\beta_{r} c\right)=\beta_{r} \frac{E}{c} \tag{1.6}
\end{equation*}
$$

for an object with mass m.
The unit of energy in the International System is the joule (J). A more suitable unit in particle Physics is the

Electron-volt (eV)

$$
\begin{align*}
1 \mathrm{eV} & =\left(1.602 \times 10^{-19} \mathrm{C}\right)(1 \mathrm{~V}) \\
& =1.602 \times 10^{-19} \mathrm{~J} \tag{1.7}
\end{align*}
$$

Prefix	Sym.	Value
tera-	T	10^{12}
giga-	G	10^{9}
mega-	M	10^{6}
kilo-	k	10^{3}
mili-	m	10^{-3}
micro-	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}

Table 1: SI prefixes.

	Unit
Energy	eV
Mass	eV / c^{2}
Momentum	eV / c

Table 2: Units of energy, mass and momentum in terms of eV . Note: it is often set $c=1$.

Example: Energies in eV

The mass of an electron is $1.673 \times 10^{-27} \mathrm{~kg}$. According to (7), its rest energy is

$$
\begin{aligned}
E_{0} & =\left(1.673 \times 10^{-27} \mathrm{~kg}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2} \\
& =8.19 \times 10^{-14} \mathrm{~J} \cdot \frac{1 \mathrm{eV}}{1.602 \times 10^{-19} \mathrm{~J}} \\
& \approx 511,000 \mathrm{eV}
\end{aligned}
$$

Since $E_{0}=m c^{2}$, the mass can also be written in terms of eV (instead of kg). So, for an electron,

$$
m=\frac{E_{0}}{c^{2}}=0.511 \mathrm{MeV} / \mathrm{c}^{2}
$$

If it is traveling at 10% of the speed of light, then

$$
v=0.1 c, \quad \beta_{r}=0.1, \quad \gamma_{r}=1.005
$$

Thus, the total energy of the electron is

$$
E=1.005 \cdot 0.511 \frac{\mathrm{MeV}}{\mathrm{c}^{2}} \cdot c^{2}=0.513 \mathrm{MeV}
$$

The

Newton's second law

$$
\begin{equation*}
\vec{F}=m \vec{a}=\frac{d \vec{p}}{d t} \tag{1.8}
\end{equation*}
$$

describes the motion of a particle of mass m due to an external force \vec{F}.

The

Lorentz force

$$
\begin{equation*}
\vec{F}=q \vec{E}+q \vec{v} \times \vec{B} \tag{1.9}
\end{equation*}
$$

defines the force experienced by a charge q under and electric and magnetic fields.

Example: Electric vs. magnetic forces

Typical values for the strength of electric and magnetic fields are

$$
|\vec{E}| \approx 1 \frac{\mathrm{MV}}{\mathrm{~m}}, \quad|\vec{B}| \approx 1 T=1 \frac{\mathrm{Vs}}{\mathrm{~m}^{2}}
$$

Suppose we have a particle with the elementary charge and velocity equal to $v=\beta_{r} c$. Then, the ratio between the magnetic and electric forces is

$$
\begin{aligned}
\frac{F_{m}}{F_{e}} & =\frac{q|\vec{v}||\vec{B}|}{q|\vec{E}|}=\frac{e\left(\beta_{r} c\right)\left(1 \frac{\mathrm{~V}}{\mathrm{~m}^{2}}\right)}{e\left(1 \frac{\mathrm{MV}}{\mathrm{~m}}\right)} \\
& =\frac{\beta_{r}\left(3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}\right) \frac{\mathrm{Vs}}{\mathrm{~m}^{2}}}{1 \times 10^{6} \frac{\mathrm{~V}}{\mathrm{~m}}}=300 \beta_{r}
\end{aligned}
$$

What can we conclude from this?
For charged particles with speeds close to c, $\beta_{r} \approx 1$. Then, if we want to exert a force to change its motion, we better use magnetic forces (they're $300 \times$ stronger!).

The cyclotron I

Equating (1.8) and (1.9) in the absence of electric field ($\vec{E}=0$),

$$
\begin{aligned}
q \vec{v} \times \vec{B} & =\frac{d \vec{p}}{d t}=\frac{d\left(\gamma_{r} m \vec{v}\right)}{d t} \\
& =m\left(\gamma_{r} \frac{d \vec{v}}{d t}+\frac{d \gamma_{r}}{d t} \vec{v}\right) \\
& =\gamma_{r} m \frac{d \vec{v}}{d t}
\end{aligned}
$$

since $\beta_{r}=\left|\vec{\beta}_{r}\right|$ is constant, which implies $d \gamma_{r} / d t=0$. Now, with the aid of the angular velocity $\vec{\omega}$, defined by $\vec{v} \equiv \vec{\omega} \times \vec{\rho}$,

$$
\begin{aligned}
q \vec{v} \times \vec{B} & =\gamma_{r} m \frac{d(\vec{\omega} \times \vec{\rho})}{d t} \\
& =\gamma_{r} m\left(\vec{\omega} \times \frac{d \vec{\rho}}{d t}+\frac{d \vec{\omega}}{d t} \times \vec{\rho}\right)
\end{aligned}
$$

or

$$
q \vec{v} \times \vec{B}=\gamma_{r} m \vec{\omega} \times \frac{d \vec{\rho}}{d t}
$$

since ω is constant for a central force of constant magnitude. Now, the cyclotron (or bending) radius ρ is just the radius of the particle's orbit, then,

$$
q \vec{v} \times \vec{B}=\gamma_{r} m \vec{\omega} \times \vec{v}
$$

In the particular case when \vec{B} and \vec{v} are perpendicular,

$$
\begin{equation*}
q v B=\gamma_{r} m \omega v=\frac{\gamma_{r} m v^{2}}{\rho} \tag{1.10}
\end{equation*}
$$

with $\omega=v / \rho$. Arranging this equation,

$$
\begin{equation*}
q B=\frac{\gamma_{r} m v}{\rho}=\frac{p}{\rho} \tag{1.11}
\end{equation*}
$$

we get the

Rigidity

$$
\begin{equation*}
(B \rho)=\frac{p}{q} \tag{1.12}
\end{equation*}
$$

and its units are Tm.
The rigidity give us an idea on how hard/easy is a particle to deflect, Note how relates machines properties (left) with beam properties (right).

When working with particles with the elementary charge, we can rewrite the

Rigidity (in practical units)

$$
\begin{equation*}
p[\mathrm{GeV} / \mathrm{c}] \approx 0.3 B[\mathrm{~T}] \rho[\mathrm{m}] \tag{1.13}
\end{equation*}
$$

The cyclotron III

Example: Rigidity

Cyclotron (angular) frequency

Let us consider an electron ring with radius $R=200 \mathrm{~m}$. If only 50% of the circumference $C=2 \pi R$ is occupied by bending magnets, this length has to correspond to a circumference given by $2 \pi \rho$. In other words,

$$
0.5 C=0.5 \cdot 2 \pi R=2 \pi \rho
$$

or

$$
\rho=0.5 R=100 \mathrm{~m}
$$

If the momentum of the electrons is $12 \mathrm{GeV} / \mathrm{c}$, the rigidity is

$$
B \rho \approx \frac{p[\mathrm{GeV} / \mathrm{c}]}{0.3}=40 \mathrm{Tm}
$$

and therefore $B=0.4 \mathrm{~T}$.
Rearranging (1.10) in a different way, we obtain the

$$
\begin{equation*}
\omega=\frac{q B}{\gamma_{r} m}, \quad f=\frac{\omega}{2 \pi} \tag{1.14}
\end{equation*}
$$

which gives us the number of turns a particle can perform in the cyclotron, per unit of time.

In order to accelerate the particles, an RF voltage has to be provided, and its frequency has to match the revolution frequency,

$$
\begin{equation*}
f_{r f}=f=\frac{\omega}{2 \pi} \tag{1.15}
\end{equation*}
$$

(2) Lecture I: Weak Focusing

Parametrization and approximations

The ideal particle defines a trajectory, the design orbit.

To describe the motion of a given particle, we use a local coordinate system ($\hat{x}, \hat{y}, \hat{s}$) that moves (rotates) with the ideal particle, the so-called Frenet-Serret frame.
where

$$
\begin{equation*}
\theta=\frac{s}{R}=\frac{\left(\beta_{r} c\right) t}{R} \tag{2.2}
\end{equation*}
$$

The slope

$$
\begin{equation*}
x^{\prime} \equiv \frac{d x}{d s}=\frac{1}{R} \frac{d x}{d \theta} \tag{2.3}
\end{equation*}
$$

is the local trajectory angle. Also note

$$
\begin{equation*}
x^{\prime}=\frac{v_{x}}{v_{z}}=\frac{p_{x}}{p_{s}} \approx \frac{p_{y}}{p} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta=\frac{s}{R}=\frac{\left(\beta_{r} c\right) t}{R} \tag{2.2}
\end{equation*}
$$

The slope

$$
\begin{equation*}
x^{\prime} \equiv \frac{d x}{d s}=\frac{1}{R} \frac{d x}{d \theta} \tag{2.3}
\end{equation*}
$$

is the local trajectory angle. Also note
From the figure,

$$
\begin{equation*}
R=\rho+x \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
x^{\prime}=\frac{v_{x}}{v_{z}}=\frac{p_{x}}{p_{s}} \approx \frac{p_{y}}{p} \tag{2.4}
\end{equation*}
$$

Approximations

(1) No local currents (near-vacuum).
(2) Paraxial approximation:

$$
\begin{equation*}
x^{\prime}, y^{\prime} \ll 1, \text { or } p_{x}, p_{y} \ll p_{s} \tag{2.5}
\end{equation*}
$$

(3) Perturbative coordinates:

$$
\begin{equation*}
x, y \ll \rho \tag{2.6}
\end{equation*}
$$

(4) Transverse linear \vec{B} field:

$$
\begin{aligned}
\vec{B} & =B_{x} \hat{x}+B_{y} \hat{y} \\
& =B_{0} \hat{y}+(x \hat{y}+y \hat{x}) \frac{\partial B_{y}}{\partial x}(2.7)
\end{aligned}
$$

where $B_{0} \neq 0$.
(5) Negligible \vec{E} field: $\gamma_{r} \approx$ constant.

We begin with the Lorentz force equation of motion,

$$
\begin{equation*}
\vec{F}=q \vec{v} \times \vec{B}=\frac{d\left(\gamma_{r} m \vec{v}\right)}{d t} \tag{2.8}
\end{equation*}
$$

Given the position vector,

$$
\begin{equation*}
\vec{r}=R \hat{x}+y \hat{y} \tag{2.9}
\end{equation*}
$$

we need to calculate the corresponding velocity and acceleration as follows,

$$
\begin{gather*}
\vec{v}=\dot{\vec{r}}=\dot{R} \hat{x}+R \dot{\hat{x}}+\dot{y} \hat{y}=\dot{R} \hat{x}+R \dot{\theta} \hat{s}+\dot{y} \hat{y} \tag{2.10}\\
\vec{a}=\dot{\vec{v}}=\ddot{R} \hat{x}+(2 \dot{R} \dot{\theta}+R \ddot{\theta}) \hat{s}+R \dot{\theta} \dot{\hat{s}}+\ddot{y} \hat{y} \tag{2.11}
\end{gather*}
$$

If we calculate $\dot{\hat{s}}$,

$$
\begin{equation*}
\dot{\hat{s}}=-\dot{\theta} \hat{x}=-\frac{v}{R} \hat{x} \tag{2.12}
\end{equation*}
$$

and insert it in (2.11), we obtain

$$
\begin{align*}
\vec{a} & =\left(\ddot{R}-R \dot{\theta}^{2}\right) \hat{x}+(2 \dot{R} \dot{\theta}+R \ddot{\theta}) \hat{s}+\ddot{y} \hat{y} \\
& =\left(\ddot{x}-\frac{v^{2}}{R}\right) \hat{x}+\frac{2 \dot{x} v}{R} \hat{s}+\ddot{y} \hat{y} \tag{2.13}
\end{align*}
$$

min

We study each component separately. For the vertical motion,

$$
\begin{equation*}
F_{y}=q \beta_{r} c B_{x}=\gamma_{r} m \ddot{y} \tag{2.14}
\end{equation*}
$$

Solving for \ddot{y},

$$
\begin{equation*}
\ddot{y}-\frac{q \beta_{r} c B_{x}}{\gamma_{r} m}=0 \tag{2.15}
\end{equation*}
$$

We can change the derivative w.r.t. (with respect to) time, to a derivative w.r.t. the angle θ :

$$
\begin{equation*}
t=\frac{R}{\beta_{r} c} \theta \quad \Rightarrow \quad \frac{d}{d t}=\frac{\beta_{r} c}{R} \frac{d}{d \theta} \tag{2.16}
\end{equation*}
$$

By doing so,

$$
\begin{equation*}
\left(\frac{\beta_{r} c}{R}\right)^{2} \frac{d^{2} y}{d \theta^{2}}-\frac{q \beta_{r} c B_{x}}{\gamma_{r} m}=0 \tag{2.17}
\end{equation*}
$$

After dropping the common term $\beta_{r} c$, and multiplying the equation by R^{2},

$$
\begin{equation*}
\frac{d^{2} y}{d \theta^{2}}-\frac{q B_{x}}{\gamma_{r} m \beta_{r} c} R^{2}=0 \tag{2.18}
\end{equation*}
$$

Following a similar procedure in the horizontal plane, we get

$$
\begin{align*}
F_{X} & =-q \beta_{r} c B_{y} \\
& =\gamma_{r} m\left(\ddot{x}-\frac{v^{2}}{R}\right) \tag{2.19}
\end{align*}
$$

or

$$
\begin{equation*}
\frac{d^{2} x}{d \theta^{2}}+\left(\frac{q B_{y}}{p} R-1\right) R=0 \tag{2.20}
\end{equation*}
$$

We know from the rigidity that

$$
\begin{equation*}
p=q B_{0} \rho \tag{2.21}
\end{equation*}
$$

and we can also replace R by (2.1) with the paraxial aproximation,

$$
\begin{equation*}
R=\rho\left(1+\frac{x}{\rho}\right) \tag{2.22}
\end{equation*}
$$

to get

$$
\begin{equation*}
\frac{d^{2} x}{d \theta^{2}}+\left[\frac{B_{y}}{B_{0}}\left(1+\frac{x}{\rho}\right)-1\right] R=0 \tag{2.23}
\end{equation*}
$$

Since the approximation on the linearization of the magnetic field is $\vec{B}=B_{x} \hat{x}+B_{y} \hat{y}$, where

$$
\begin{equation*}
B_{x}=\left(\frac{\partial B_{y}}{\partial x}\right) y, \quad B_{y}=B_{0}+\left(\frac{\partial B_{y}}{\partial x}\right) x \tag{2.24}
\end{equation*}
$$

then, in the case of the horizontal equation of motion, we obtain

$$
\frac{d^{2} x}{d \theta^{2}}+\left[\left(1+\frac{1}{B_{0}} \frac{\partial B_{y}}{\partial x} x\right)\left(1+\frac{x}{\rho}\right)-1\right] \rho\left(1+\frac{x}{\rho}\right)=0
$$

After performing the multiplications, we will ignore terms of second order on x and higher. On the vertical equation, we apply of course the same series of approximations. The resulting equations gives us what is known as the

Betatron motion

$$
\begin{equation*}
\frac{d^{2} x}{d \theta^{2}}+(1-n) x=0 \quad \text { (2.25) } \quad \frac{d^{2} y}{d \theta^{2}}+n y=0 \tag{2.25}
\end{equation*}
$$

Stability condition

where n is the

Field index

$$
\begin{equation*}
n \equiv-\frac{\rho}{B_{0}}\left(\frac{\partial B_{y}}{\partial x}\right) \tag{2.27}
\end{equation*}
$$

Note that in order to have a stable motion in both planes, the following conditions must be satisfied:

$$
\begin{equation*}
0<n<1 \tag{2.28}
\end{equation*}
$$

Equations (2.25) and (2.26) describe the weak focusing. Note that they are simple harmonic oscillators, therefore their solutions are well known. In particular, for the horizontal plane,

$$
\begin{equation*}
x(\theta)=A \cos (\theta \sqrt{1-n}) \quad+B \sin (\theta \sqrt{1-n}) \tag{2.29}
\end{equation*}
$$

with derivative

$$
\begin{equation*}
\frac{d x}{d \theta}=\sqrt{1-n}[-A \sin (\theta \sqrt{1-n})+B \cos (\theta \sqrt{1-n})] \tag{2.30}
\end{equation*}
$$

where n is the

Field index

$$
\begin{equation*}
n \equiv-\frac{\rho}{B_{0}}\left(\frac{\partial B_{y}}{\partial x}\right) \tag{2.27}
\end{equation*}
$$

Note that in order to have a stable motion in both planes, the following conditions must be satisfied:

$$
\begin{equation*}
0<n<1 \tag{2.28}
\end{equation*}
$$

Equations (2.25) and (2.26) describe the weak focusing. Note that they are simple harmonic oscillators, therefore their solutions are well known. In particular, for the horizontal plane,

$$
\begin{equation*}
x(\theta)=A \cos (\theta \sqrt{1-n}) \quad+B \sin (\theta \sqrt{1-n}) \tag{2.29}
\end{equation*}
$$

with derivative

$$
\begin{equation*}
\frac{d x}{d \theta}=\sqrt{1-n}[-A \sin (\theta \sqrt{1-n})+B \cos (\theta \sqrt{1-n})] \tag{2.30}
\end{equation*}
$$

Applying the initial conditions

$$
\begin{equation*}
x_{0}=x(\theta=0)=A, \quad x_{0}^{\prime}=\frac{1}{\rho}\left(\frac{d x}{d \theta}\right)_{\theta=0}=\frac{\sqrt{1-n}}{\rho} B \tag{2.31}
\end{equation*}
$$

the constants are given in terms of them,

$$
\begin{equation*}
A=x_{0}, \quad B=\frac{\rho}{\sqrt{1-n}} x_{0}^{\prime} \tag{2.32}
\end{equation*}
$$

Substituting the last equations in the equation of motion,

$$
\begin{align*}
x(\theta) & =\cos (\theta \sqrt{1-n}) x_{0}+\frac{\rho}{\sqrt{1-n}} \sin (\theta \sqrt{1-n}) x_{0}^{\prime} \tag{2.33}\\
x^{\prime}(\theta) & =\frac{1}{\rho} \frac{d x}{d \theta} \frac{1}{\rho}=-\frac{\sqrt{1-n}}{\rho} \sin (\theta \sqrt{1-n}) x_{0}+\cos (\theta \sqrt{1-n}) x_{0}^{\prime} \tag{2.34}
\end{align*}
$$

we can write the solution in matrix form (for the vertical plane follow the same steps),

$$
\begin{align*}
& \binom{x}{x^{\prime}}=\left(\begin{array}{cc}
\cos \phi_{x} & \frac{\rho}{\sqrt{1-n}} \sin \phi_{x} \\
-\frac{\sqrt{1-n}}{\rho} \sin \phi_{x} & \cos \phi_{x}
\end{array}\right)\binom{x_{0}}{x_{0}^{\prime}}=M_{H}\binom{x_{0}}{x_{0}^{\prime}} \tag{2.35}\\
& \binom{y}{y^{\prime}}=\left(\begin{array}{cc}
\cos \phi_{y} & \frac{\rho}{\sqrt{n}} \sin \phi_{y} \\
-\frac{\sqrt{n}}{\rho} \sin \phi_{y} & \cos \phi_{y}
\end{array}\right)\binom{y_{0}}{y_{0}^{\prime}}=M_{V}\binom{y_{0}}{y_{0}^{\prime}} \tag{2.36}
\end{align*}
$$

where the phase advances are given by

$$
\begin{align*}
\phi_{x}(s) & \equiv \theta \sqrt{1-n}=\frac{s}{\rho} \sqrt{1-n} \tag{2.37}\\
\phi_{y}(s) & \equiv \theta \sqrt{n}=\frac{s}{\rho} \sqrt{n} \tag{2.38}
\end{align*}
$$

Particles move in transverse betatron oscillations around the design trajectory.

The number of oscillations performed by a particle in a particular plane (horizontal or vertical), is accounted by the

Betatron tune

$$
\begin{equation*}
Q_{x, y}=\frac{\phi_{x, y}(2 \pi)}{2 \pi} \tag{2.39}
\end{equation*}
$$

Note that the weak focusing condition can be written as

$$
\begin{equation*}
Q_{x}^{2}+Q_{y}^{2}=1 \tag{2.40}
\end{equation*}
$$

(3) Lecture II: Optical Elements

Field expansion

The transverse magnetic field is

$$
\begin{equation*}
\vec{B}=B_{x} \hat{x}+B_{y} \hat{y} \tag{3.1}
\end{equation*}
$$

Making a Taylor expansion of the field components we get

$$
\begin{align*}
& B_{x}=B_{0 x}+\frac{\partial B_{x}}{\partial y} y+\frac{1}{2!} \frac{\partial^{2} B_{x}}{\partial y^{2}} y^{2}+\ldots \\
& B_{y}=B_{0 y}+\frac{\partial B_{y}}{\partial x} x+\frac{1}{2!} \frac{\partial^{2} B_{y}}{\partial x^{2}} x^{2}+\ldots \tag{3.2}
\end{align*}
$$

The first terms in both expansions correspond to dipole terms, the second terms to quadrupoles, then sextupoles, and so on.

Due to the Maxwell's equation for $\nabla \times \vec{H}$, in the absence of electric fields and currents,

$$
\begin{equation*}
\frac{\partial B_{y}}{\partial x}=\frac{\partial B_{x}}{\partial y} \tag{3.4}
\end{equation*}
$$

Most of the time we are not interested in vertical bending dipoles, then $B_{0 x}=0$, and we label $B_{0 y}=B_{0}$.

We can write the linear field as

$$
\begin{align*}
\vec{B} & =\left(\frac{\partial B_{y}}{\partial x} y\right) \hat{x}+\left(B_{0}+\frac{\partial B_{y}}{\partial x} x\right) \hat{y} \\
& =B_{0} \hat{y}+(x \hat{y}+y \hat{x})\left(\frac{\partial B_{y}}{\partial x}\right) \tag{3.5}
\end{align*}
$$

Another way to make the expansion, via multipoles (in complex notation):
$B_{x}+i B_{y}=B_{0} \sum_{n=0}^{\infty}\left(a_{n}+i b_{n}\right)\left(\frac{x+i y}{a}\right)^{n}$
where $n=0$ corresponds to dipoles, $n=1$ to quadrupoles, etc. The coefficients b_{n} and a_{n} are called normal and skew, respectively.

Unfortunately, this is not the only convention!

We can have two types of optical elements (magnets) with a linear magnetic field:

Dipoles

- Long magnets that bend the design trajectory.
- They may or may not include focusing (combined function).
- Special case: drifts (no field).

$$
\begin{equation*}
\vec{B}=B_{0} \hat{y}+(x \hat{y}+y \hat{x})\left(\frac{\partial B_{y}}{\partial x}\right) \tag{3.7}
\end{equation*}
$$

Quadrupoles

- Design trajectory is straight.
- Focus particles moving out of the design orbit.
- Special case: thin lens approximation.

$$
\begin{equation*}
\vec{B}=(x \hat{y}+y \hat{x})\left(\frac{\partial B_{y}}{\partial x}\right) \tag{3.8}
\end{equation*}
$$

The solution of the equation of motion of a particle that passes along each of them can be described with their corresponding transport matrix. We have already found the one for the dipole.

We can have two types of optical elements (magnets) with a linear magnetic field:

Dipoles

- Long magnets that bend the design trajectory.
- They may or may not include focusing (combined function).
- Special case: drifts (no field).

$$
\begin{equation*}
\vec{B}=B_{0} \hat{y}+(x \hat{y}+y \hat{x})\left(\frac{\partial B_{y}}{\partial x}\right) \tag{3.7}
\end{equation*}
$$

Quadrupoles

- Design trajectory is straight.
- Focus particles moving out of the design orbit.
- Special case: thin lens approximation.

$$
\begin{equation*}
\vec{B}=(x \hat{y}+y \hat{x})\left(\frac{\partial B_{y}}{\partial x}\right) \tag{3.8}
\end{equation*}
$$

The solution of the equation of motion of a particle that passes along each of them can be described with their corresponding transport matrix. We have already found the one for the dipole.

Transport matrices

Therefore, we can build the accelerator optics out of Lego transport matrices.

Let \vec{w}_{0} be the set of initial transverse coordinates. They are transformed to \vec{w} after crossing a system represented by the matrix M according to

$$
\begin{equation*}
\vec{w}=M \vec{w}_{0} \tag{3.9}
\end{equation*}
$$

A lattice is usually made of substructures or cells, an array of magnets repeating along the machine.

To describe the motion of a particle along the accelerator, we can simply multiply the piecewise solutions given by the transport matrices.

Take for example the machine on the right. Each cell is made of a drift and a dipole (bending),

$$
M_{\text {cell }}=M_{B} M_{D}
$$

The order in which we have to perform the matrices is from right to left, since it is the order in which the particle encounters the elements. For the machine composed of 4 cells,

$$
M=\left(M_{\text {cell }}\right)^{4}=\left(M_{B} M_{D}\right)^{4}
$$

gives the solution after one turn.

We know the general transport matrix for a dipole without focusing,

$$
\left(\begin{array}{c}
x \tag{3.10}\\
x^{\prime} \\
y \\
y^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\cos \phi_{x} & \frac{\rho}{\sqrt{1-n}} \sin \phi_{x} & 0 & 0 \\
-\frac{\sqrt{1-n}}{\rho} \sin \phi_{x} & \cos \phi_{x} & 0 & 0 \\
0 & 0 & \cos \phi_{y} & \frac{\rho}{\sqrt{n}} \sin \phi_{y} \\
0 & 0 & -\frac{\sqrt{n}}{\rho} \sin \phi_{y} & \cos \phi_{y}
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
x_{0}^{\prime} \\
y_{0} \\
y_{0}^{\prime}
\end{array}\right)
$$

Remember that the phase advances are given by

$$
\phi_{x}(s)=\frac{s}{\rho} \sqrt{1-n}, \quad \phi_{y}(s)=\frac{s}{\rho} \sqrt{n}
$$

Then, taking the field index to zero $(n \rightarrow 0)$, we have the transport of a

Dipole (no focusing)

$$
\left(\begin{array}{c}
x(\theta) \tag{3.11}\\
x^{\prime}(\theta) \\
y(\theta) \\
y^{\prime}(\theta)
\end{array}\right)=\left(\begin{array}{cccc}
\cos \theta & \rho \sin \theta & 0 & 0 \\
-\frac{1}{\rho} \sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & \rho \theta \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
x_{0}^{\prime} \\
y_{0} \\
y_{0}^{\prime}
\end{array}\right)
$$

Note: In a circular machine composed of N dipoles of length L_{B}, the integrated dipole field over one turn is

$$
\begin{equation*}
\oint B d s \approx N B L_{B}=2 \pi \frac{p}{q} \tag{3.12}
\end{equation*}
$$

with bending angle θ and no focusing.

The sub-matrix for the vertical plane represents a field-free drift where no bending is performed. This is valid in general for x or y when there is no field:

Drift

III. Strong Focusing I
IV. Strong Focusing II

$$
\left(\begin{array}{c}
x(s) \tag{3.13}\\
x^{\prime}(s) \\
y(s) \\
y^{\prime}(s)
\end{array}\right)=\left(\begin{array}{cccc}
1 & s & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & s \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x_{0} \\
x_{0}^{\prime} \\
y_{0} \\
y_{0}^{\prime}
\end{array}\right)
$$

where s is the length of the drift.

Interlude:

Note that we have switched to 4×4 matrices. In fact, a more complete study requires 6 coordinates and thus, 6×6 matrices): $x, x^{\prime}, y, y^{\prime}, s, \delta$ (as we will see later).

Nevertheless, when horizontal and vertical motions are uncoupled (that is, they are independent of each other), we can split our 4×4 matrices,

$$
\left(\begin{array}{c}
x \tag{3.14}\\
x^{\prime} \\
y \\
y^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
M_{x} & 0 & 0 \\
0 & 0 & 0 \\
0 \\
0 & 0 & M_{y}
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
x_{0}^{\prime} \\
y_{0} \\
y_{0}^{\prime}
\end{array}\right)
$$

in pure horizontal/vertical motion, with our usual 2×2 matrices:

$$
\begin{equation*}
\vec{X}=M_{x} \vec{X}_{0}, \quad \vec{Y}=M_{y} \vec{Y}_{0} \tag{3.15}
\end{equation*}
$$

Quadrupoles: Quadrupole gradient

For the quadrupoles, the components of the magnetic field (3.8) are commonly written as

$$
\begin{equation*}
B_{x}=G y, \quad B_{y}=G x \tag{3.16}
\end{equation*}
$$

where G, measured in T / m, is the

Quadrupole gradient

$$
\begin{equation*}
G=\frac{B_{\text {pole }}}{a}=\frac{2 \mu_{0} N I}{a^{2}} \approx \frac{\partial B_{y}}{\partial x} \tag{3.17}
\end{equation*}
$$

$B_{\text {pole }}$ is the field at the pole tips, a is the inner radius of the quadrupole, μ_{0} is the vacuum magnetic permeability,

$$
\begin{equation*}
\mu_{0}=4 \pi \times 10^{-7} \frac{\mathrm{Tm}}{\mathrm{~A}} \tag{3.18}
\end{equation*}
$$

and N is the number of turns of current I around the poles.

We simply follow a similar procedure (and approximations) to the derivation of the equations of betatron motion.

The corresponding horizontal and vertical forces

$$
\begin{equation*}
F_{x}=-q \beta_{r} c G x \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{y}=q \beta_{r} c G y \tag{3.20}
\end{equation*}
$$

lead to the equations

$$
\begin{equation*}
x^{\prime \prime}+\frac{G}{B_{0} \rho} x=0 \tag{3.21}
\end{equation*}
$$

and

$$
\begin{equation*}
y^{\prime \prime}-\frac{G}{B_{0} \rho} y=0 \tag{3.22}
\end{equation*}
$$

Quadrupoles: Quadrupole strength

where we have replaced the derivatives w.r.t. θ to derivatives w.r.t. s,

$$
\begin{equation*}
\frac{d}{d \theta}=\frac{1}{R} \frac{d}{d s} \tag{3.23}
\end{equation*}
$$

By using the

Quadrupole strength ${ }^{2}$

$$
\begin{equation*}
K \equiv \frac{1}{\left(B_{0} \rho\right)}\left(\frac{\partial B_{y}}{\partial x}\right)=\frac{G}{\left(B_{0} \rho\right)} \equiv k^{2} \tag{3.24}
\end{equation*}
$$

with units of m^{-2}, the equations of motion are

$$
\begin{equation*}
x^{\prime \prime}+K x=0, \quad y^{\prime \prime}-K y=0 \tag{3.25}
\end{equation*}
$$

where " denotes derivation w.r.t. s.
The horizontal equation of motion in (3.25) is again a harmonic oscillator and its solution is given in terms of sine and cosine. In the vertical plane, the solution is given by hyperbolic sine and cosine.

We can then express the general transport matrix of a

[^1]
Quadrupoles: Focusing and defocusing

Quadrupole (horizontal focusing / vertical defocusing)

$$
\left(\begin{array}{c}
x(s) \tag{3.26}\\
x^{\prime}(s) \\
y(s) \\
y^{\prime}(s)
\end{array}\right)=\left(\begin{array}{cccc}
\cos (k s) & \frac{1}{k} \sin (k s) & 0 & 0 \\
-k \sin (k s) & \cos (k s) & 0 & 0 \\
0 & 0 & \cosh (k s) & \frac{1}{k} \sinh (k s) \\
0 & 0 & k \sinh (k s) & \cosh (k s)
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
x_{0}^{\prime} \\
y_{0} \\
y_{0}^{\prime}
\end{array}\right)
$$

This represent a horizontal focusing / vertical defocusing quadrupole.
To compensate this, quadrupoles are commonly placed in pairs, being the second quadrupole horizontal defocusing / vertical focusing.

Quadrupole (horizontal defocusing / vertical focusing)

$$
\left(\begin{array}{c}
x(s) \tag{3.27}\\
x^{\prime}(s) \\
y(s) \\
y^{\prime}(s)
\end{array}\right)=\left(\begin{array}{cccc}
\cosh (k s) & \frac{1}{k} \sinh (k s) & 0 & 0 \\
k \sinh (k s) & \cosh (k s) & 0 & 0 \\
0 & 0 & \cos (k s) & \frac{1}{k} \sin (k s) \\
0 & 0 & -k \sin (k s) & \cos (k s)
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
x_{0}^{\prime} \\
y_{0} \\
y_{0}^{\prime}
\end{array}\right)
$$

Another important remark: $k=\sqrt{K}$, and K is always taken positive, so for defocusing quads corresponding to negative K, the sign is explicitly written: $-K$.

Note that this correspond to change K (defined positive) to $-K$ since

$$
\begin{align*}
\sinh u & =-i \sin (i u) \\
\cosh u & =\cos (i u) \tag{3.28}
\end{align*}
$$

Physically, this represents a 90° rotation of the quadrupole, so the north and south poles end up interchanged.

In the thin lens approximation, we make $s=L \rightarrow 0$ while keeping $K L$ constant. In addition, the focal length of the quadrupole is given by

$$
\begin{equation*}
f \equiv \frac{1}{K L}=\frac{1}{k^{2} L} \tag{3.29}
\end{equation*}
$$

The corresponding matrices are then

Thin quadrupole (horizontal focusing / vertical defocusing)

$$
\left(\begin{array}{c}
x \tag{3.30}\\
x^{\prime} \\
y \\
y^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-\frac{1}{f} & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & \frac{1}{f} & 1
\end{array}\right)\left(\begin{array}{c}
x_{0} \\
x_{0}^{\prime} \\
y_{0} \\
y_{0}^{\prime}
\end{array}\right)
$$

and

Thin quadrupole (horizontal defocusing / vertical focusing)

$$
\left(\begin{array}{c}
x \tag{3.31}\\
x^{\prime} \\
y \\
y^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\frac{1}{f} & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{f} & 1
\end{array}\right)\left(\begin{array}{c}
x_{0} \\
x_{0}^{\prime} \\
y_{0} \\
y_{0}^{\prime}
\end{array}\right)
$$

when we change $f \rightarrow-f$.

Quadrupoles: Focal Length

In general, a quadrupole can be treated as a thin quadrupole when

$$
\begin{equation*}
|f| \gg L \tag{3.32}
\end{equation*}
$$

and then we can use the simpler
transport matrices (3.30)-(3.31) instead of (3.26)-(3.27) where the trigonometric functions make the oscillatory motion evident (as in the thick quadrupole in the bottom left corner).

Quadrupoles: Focal Length

In general, a quadrupole can be treated as a thin quadrupole when

$$
\begin{equation*}
|f| \gg L \tag{3.32}
\end{equation*}
$$

and then we can use the simpler
transport matrices (3.30)-(3.31) instead of (3.26)-(3.27) where the trigonometric functions make the oscillatory motion evident (as in the thick quadrupole in the bottom left corner).

Quadrupoles: Doublet I

Example: Doublet

A doublet is a system formed by a pair of quadrupoles, separated by a drift.
Consider only the horizontal plane. If the first quadrupole is focusing and the second is defocusing, the transfer matrix of the system is

$$
M_{\text {doublet }}=\left(\begin{array}{cc}
1 & 0 \tag{3.33}\\
\frac{1}{f_{D}} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & L \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f_{F}} & 1
\end{array}\right)=\left(\begin{array}{cc}
1-\frac{L}{f_{F}} & L \\
\frac{1}{f_{D}}-\frac{1}{f_{F}}-\frac{L}{f_{F} f_{D}} & 1+\frac{L}{f_{D}}
\end{array}\right)
$$

The element m_{12} gives us the inverse of the focal length of this system,

$$
\begin{equation*}
\frac{1}{f_{\text {doublet }}} \equiv \frac{1}{f_{D}}-\frac{1}{f_{F}}-\frac{L}{f_{F} f_{D}} \tag{3.34}
\end{equation*}
$$

In the particular case that $f_{D}=f_{F}=f$,

$$
\begin{equation*}
\frac{1}{f_{\text {doublet }}}=-\frac{L}{f^{2}} \tag{3.35}
\end{equation*}
$$

An alternating gradient system as this one provides net focusing, a fundamental feature for accelerator strong focusing.

Quadrupoles: Doublet II

Example: Doublet (cont.)

Consider an incoming paraxial ray ($x_{0}, 0$). Then, after passing the doublet,

$$
\begin{equation*}
\binom{x}{x^{\prime}}=M_{\text {doublet }}\binom{x_{0}}{0}=\binom{\left(1-\frac{L}{f}\right) x_{0}}{-\frac{L}{f^{2}} x_{0}}=\binom{1-\frac{L}{f}}{-\frac{L}{f^{2}}} x_{0} \tag{3.36}
\end{equation*}
$$

In order this to be focusing, x and x^{\prime} must have opposite signs. Since both L and f are positive, we can analyse two cases:

If	$x_{0}>0$,	$x_{0}<0$,
then the slope	$x^{\prime}=-\frac{L}{f^{2}} x_{0}<0$,	$x^{\prime}=-\frac{L}{f^{2}} x_{0}>0$,
which demands	$x=\left(1-\frac{L}{f}\right) x_{0}>0$.	$x=\left(1-\frac{L}{f}\right) x_{0}<0$.
Now, since (again)	$x_{0}>0$,	$x_{0}<0$,
then	$1-\frac{L}{f}>0$	$1-\frac{L}{f}>0$
or	$f>L$.	$f>L$.

That is, an equal-strength doublet is net focusing under condition that the focal length of each lens is greater than the distance between them.

In the reversed case (defocusing quad first, followed by the focusing one), the same condition is reached after following a same procedure. Then, alternating quadrupoles continuously produces a system that is overall net focusing and stable.

So far we have assumed that the design trajectory particle and our particle have the same momentum.
What happen when this is not the case? Let us suppose that

$$
\begin{equation*}
p=p_{0}+\Delta p=p_{0}(1+\delta) \tag{3.37}
\end{equation*}
$$

where

Momentum deviation

$$
\begin{equation*}
\delta \equiv \frac{\Delta p}{p_{0}} \ll 1 \tag{3.38}
\end{equation*}
$$

Then, the equation of motion for the dipole in the horizontal plane is

$$
\begin{equation*}
\frac{d^{2} x}{d \theta^{2}}+\left(\frac{q B_{y}}{p_{0}(1+\delta)} R-1\right) R=0 \tag{3.39}
\end{equation*}
$$

Compare this equation with (2.20). Using the approximation

$$
\begin{equation*}
\frac{1}{1+\epsilon} \approx 1-\epsilon \tag{3.40}
\end{equation*}
$$

we get

$$
\begin{equation*}
\frac{d^{2} x}{d \theta^{2}}+\left(\frac{q B_{y}}{p_{0}}(1-\delta) R-1\right) R=0 \tag{3.41}
\end{equation*}
$$

Rearranging,

$$
\begin{equation*}
\frac{d^{2} x}{d \theta^{2}}+\left(\frac{q B_{y}}{p_{0}} R-1\right) R=\frac{q B_{y}}{p_{0}} R^{2} \delta \tag{3.42}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\frac{d^{2} x}{d \theta^{2}}+(1-n) x=\rho \delta \tag{3.43}
\end{equation*}
$$

where n is the field index defined in (2.27) and δ is constant.

The momentum effect is called dispersion.

We can see that the only change is the addition of an inhomogeneous term to the ordinary differential equation. Therefore, the solution of is given by the sum of the homogeneous solution x_{h} (already derived, a harmonic oscillator) and the particular solution x_{p},

$$
\begin{equation*}
x(\theta)=x_{h}(\theta)+x_{p}(\theta) \tag{3.44}
\end{equation*}
$$

Based on the form of the differential equation, we propose $x_{p}=C$, with C a constant, as particular solution. Substituting into the equation,

$$
\begin{equation*}
\frac{d^{2} C}{d \theta^{2}}+(1-n) C=0+(1-n) C=\rho \delta \tag{3.45}
\end{equation*}
$$

where we can solve for C ,

$$
\begin{equation*}
x_{p}=C=\frac{\rho \delta}{1-n} \tag{3.46}
\end{equation*}
$$

The complete solution is then

$$
\begin{equation*}
x(\theta)=A \cos (\theta \sqrt{1-n})+B \sin (\theta \sqrt{1-n})+\frac{\rho}{1-n} \delta \tag{3.47}
\end{equation*}
$$

We now get its derivative,

$$
\begin{equation*}
\frac{d x}{d \theta}=\sqrt{1-n}[-A \sin (\theta \sqrt{1-n})+B \cos (\theta \sqrt{1-n})] \tag{3.48}
\end{equation*}
$$

in order to get A and B in terms of the initial conditions $\left(x_{0}, x_{0}^{\prime}\right)$. By doing so, we obtain the constants

$$
\begin{equation*}
A=x_{0}-\frac{\rho}{1-n} \delta, \quad B=\frac{\rho}{\sqrt{1-n}} x_{0}^{\prime} \tag{3.49}
\end{equation*}
$$

The solution can be written with a 3×3-matrix:

$$
\left(\begin{array}{c}
x \tag{3.50}\\
x^{\prime} \\
\delta
\end{array}\right)=\left(\begin{array}{ccc}
\cos \phi_{x} & \frac{\rho}{\sqrt{1-n}} \sin \phi_{x} & \frac{\rho}{1-n}\left(1-\cos \phi_{x}\right) \\
-\frac{\sqrt{1-n}}{\rho} \sin \phi_{x} & \cos \phi_{x} & \frac{1}{1-n} \sin \phi_{x} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x_{0} \\
x_{0}^{\prime} \\
\delta_{0}
\end{array}\right)
$$

where $\phi_{x}=\theta \sqrt{1-n}$. Note that δ has become a "coordinate". If we take $n \rightarrow 0$, we obtain the transport matrix for a

Dipole (no focusing, with dispersion)

$$
\left(\begin{array}{c}
x \tag{3.51}\\
x^{\prime} \\
\delta
\end{array}\right)=\left(\begin{array}{ccc}
\cos \theta & \rho \sin \theta & \rho(1-\cos \theta) \\
-\frac{1}{\rho} \sin \theta & \cos \theta & \sin \theta \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x_{0} \\
x_{0}^{\prime} \\
\delta_{0}
\end{array}\right)
$$

The momentum deviation does not gives rise to vertical dispersion in the presence of horizontal dipoles, as can be verified by carrying similar calculations out for the vertical plane.

Dispersion IV

Example: 180° spectrometer magnet

A mass spectrometer separates particles according to their energy.
Suppose a 180° bending magnet ($\pi \mathrm{rad}$); its corresponding transport matrix is then

$$
M=\left(\begin{array}{ccc}
\cos \pi & \rho \sin \pi & \rho(1-\cos \pi) \\
-\frac{1}{\rho} \sin \pi & \cos \pi & \sin \pi \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 0 & \rho[1-(-1)] \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

In this magnet, a particle with initial coordinates $(0,0, \pm \delta)$, will experience deflection and, at the exit of the dipole its final coordinates will be

$$
\left(\begin{array}{c}
x \\
x^{\prime} \\
\delta
\end{array}\right)=M\left(\begin{array}{c}
x_{0} \\
x_{0}^{\prime} \\
\delta_{0}
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 0 & 2 \rho \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
\pm \delta
\end{array}\right)=\left(\begin{array}{c}
\pm 2 \rho \delta \\
0 \\
\pm \delta
\end{array}\right)
$$

Dispersion IV

Example: 180° spectrometer magnet

A mass spectrometer separates particles according to their energy.
Suppose a 180° bending magnet (π rad); its corresponding transport matrix is then

$$
M=\left(\begin{array}{ccc}
\cos \pi & \rho \sin \pi & \rho(1-\cos \pi) \\
-\frac{1}{\rho} \sin \pi & \cos \pi & \sin \pi \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 0 & \rho[1-(-1)] \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

In this magnet, a particle with initial coordinates $(0,0, \pm \delta)$, will experience deflection and, at the exit of the dipole its final coordinates will be

$$
\left(\begin{array}{c}
x \\
x^{\prime} \\
\delta
\end{array}\right)=M\left(\begin{array}{c}
x_{0} \\
x_{0}^{\prime} \\
\delta_{0}
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 0 & 2 \rho \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
\pm \delta
\end{array}\right)=\left(\begin{array}{c}
\pm 2 \rho \delta \\
0 \\
\pm \delta
\end{array}\right)
$$

Consider a 0.1 T magnet, used in a $20 \mathrm{MeV} / \mathrm{c}$ beam. Then, particles at the reference position, but with 1% deviation of momentum, will be displaced a distance

$$
x=2 \rho \delta=2 \cdot \frac{p[\mathrm{GeV} / \mathrm{c}]}{0.3 B[\mathrm{~T}]} \cdot \delta=2 \cdot \frac{0.02 \mathrm{GeV} / \mathrm{c}}{0.3(0.1 \mathrm{~T})} \cdot 0.01=2(0.67 \mathrm{~m})(0.01) \approx 1.33 \mathrm{~cm}
$$

from the ideal orbit at the exit of the spectrometer.

Lorentz factors:

$$
\beta_{r} \equiv \frac{v}{c}, \quad \gamma_{r} \equiv \frac{1}{\sqrt{1-\beta_{r}^{2}}}
$$

Rest energy:

$$
E_{0}=m c^{2}
$$

Total energy:

$$
E=\gamma_{r} m c^{2}
$$

Kinetic energy:

$$
E_{K}=T=E-E_{0}=\left(\gamma_{r}-1\right) m c^{2}
$$

Momentum:

$$
p=\gamma_{r} m\left(\beta_{r} c\right)=\beta_{r} \frac{E}{c}
$$

Electron-volt (eV):

$$
1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}
$$

Rigidity (in Tm):

$$
(B \rho)=p / q
$$

Rigidity (in practical units, valid only for a particle with $q=e$):

$$
p[\mathrm{GeV} / \mathrm{c}] \approx 0.3 B[\mathrm{~T}] \rho[\mathrm{m}]
$$

Cyclotron (angular) frequency:

$$
\omega=\frac{q B}{\gamma_{r} m}, \quad f=\frac{\omega}{2 \pi}
$$

Betatron tunes:

$$
Q_{x, y}=\frac{\phi_{x, y}(2 \pi)}{2 \pi}
$$

Integrated dipole field over a circumference:

$$
N B L_{B}=2 \pi \frac{p}{q}
$$

Remember that $T=\frac{V_{s}}{m^{2}}$.

Dipole (no focusing):

$$
M_{B}=\left(\begin{array}{cccc}
\cos \theta & \rho \sin \theta & 0 & 0 \\
-\frac{1}{\rho} \sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & \rho \theta \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Drift:

$$
M_{D}=\left(\begin{array}{llll}
1 & s & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & s \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Quadrupole gradient:

$$
G=\frac{B_{\text {pole }}}{a}=\frac{2 \mu_{0} N I}{a^{2}} \approx \frac{\partial B_{y}}{\partial x}
$$

Quadrupole strength:

$$
K \equiv \frac{1}{\left(B_{0} \rho\right)}\left(\frac{\partial B_{y}}{\partial x}\right)=\frac{G}{\left(B_{0} \rho\right)} \equiv k^{2}
$$

Focusing quadrupole:

$$
M_{Q F}=\left(\begin{array}{cc}
\cos (k s) & \frac{1}{k} \sin (k s) \\
-k \sin (k s) & \cos (k s)
\end{array}\right)
$$

Defocusing quadrupole:

$$
M_{Q D}=\left(\begin{array}{cc}
\cosh (k s) & \frac{1}{k} \sinh (k s) \\
k \sinh (k s) & \cosh (k s)
\end{array}\right)
$$

Thin focusing quadrupole:

$$
M_{Q F}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right)
$$

Thin defocusing quadrupole:

$$
M_{Q D}=\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{f} & 1
\end{array}\right)
$$

Quadrupole focal length:

$$
f=\frac{1}{K L}=\frac{1}{k^{2} L}
$$

Thin lens approximation:

$$
|f| \gg L
$$

Momentum deviation:

$$
\delta=\frac{\Delta p}{p_{0}} \ll 1
$$

Dipole (no focusing, with dispersion):

$$
M_{B}=\left(\begin{array}{ccc}
\cos \theta & \rho \sin \theta & \rho(1-\cos \theta) \\
-\frac{1}{\rho} \sin \theta & \cos \theta & \sin \theta \\
0 & 0 & 1
\end{array}\right)
$$

(4) Lecture III: Strong Focusing I

In general, when we obtain the equations of motion in the transverse planes we get, after normalizing to $B_{0} \rho$,

$$
\begin{align*}
x^{\prime \prime}+\left[K_{0 x} x+K_{1 x} x+K_{2 x}\left(\frac{x^{2}-y^{2}}{2}\right) \ldots\right] & =0 \tag{4.1}\\
y^{\prime \prime}+\left[K_{0 y} y-K_{1 y} y-K_{2 y} x y \ldots\right] & =0 \tag{4.2}
\end{align*}
$$

where

$$
\begin{align*}
K_{0 x} & =\frac{1}{\rho^{2}}, \quad K_{1 x}=\frac{1}{\left(B_{0} \rho\right)} \frac{\partial B_{y}}{\partial x}, \ldots \\
K_{0 y} & =0, \quad K_{1 y}=\frac{1}{\left(B_{0} \rho\right)} \frac{\partial B_{y}}{\partial x}, \ldots \tag{4.3}
\end{align*}
$$

Like previously pointed out, K_{0} corresponds to dipoles, K_{1} to
 quadrupoles, K_{2} to sextupoles, etc.

- The effect of dipoles is the deflection of the beam in the horizontal plane, while in the vertical plane they have no effect at all.
- The notation of this functions with the letter K is motivated by the definition of strength in quadrupoles.

If $K_{x, y}$ are periodic functions in s with periodicity $K_{x, y}(s+C)=K_{x, y}(s)$, the equations in (3.25) are known as

Hill's equations

$$
\begin{equation*}
x^{\prime \prime}+K_{x}(s) x=0, \quad y^{\prime \prime}-K_{y}(s) y=0 \tag{4.5}
\end{equation*}
$$

Such periodicity of $K_{x, y}$ can be one revolution around the accelerator, or one repeated cell of the layout.

Let us focus on the horizontal plane, and make $K_{x}=K$. In order to solve (4.5), consider the following ansatz:

$$
\begin{equation*}
x(s)=A w(s) \cos \left[\phi(s)+\phi_{0}\right] \tag{4.6}
\end{equation*}
$$

that is, a quasi-periodic harmonic oscillator, where the amplitude $w(s)$ is periodic in C but the phase $\phi(s)$ is not.

Consider the horizontal plane. The first derivative of x gives

$$
\begin{equation*}
x^{\prime}=A w^{\prime} \cos \left[\phi+\phi_{0}\right]-A w \phi^{\prime} \sin \left[\phi+\phi_{0}\right] \tag{4.7}
\end{equation*}
$$

and the second derivative

$$
\begin{equation*}
x^{\prime \prime}=A\left(w^{\prime \prime}-w \phi^{\prime 2}\right) \cos \left[\phi+\phi_{0}\right]-A\left(2 w^{\prime} \phi^{\prime}+w \phi^{\prime \prime}\right) \sin \left[\phi+\phi_{0}\right] \tag{4.8}
\end{equation*}
$$

Substituting into the Hill's equation $x^{\prime \prime}+K(s) x=0$, we obtain

$$
\begin{equation*}
-A\left(2 w^{\prime} \phi^{\prime}+w \phi^{\prime \prime}\right) \sin \left[\phi+\phi_{0}\right]+A\left(w^{\prime \prime}-w \phi^{\prime 2}+K w\right) \cos \left[\phi+\phi_{0}\right]=0 \tag{4.9}
\end{equation*}
$$

For $w(s)$ and $\phi(s)$ to be independent of ϕ_{0}, coefficients of sine and cosine terms must vanish identically. For the first one,

$$
\begin{equation*}
2 w w^{\prime} \phi^{\prime}+w^{2} \phi^{\prime \prime}=\left(w^{2} \phi^{\prime}\right)^{\prime}=0, \quad \text { then } \quad \phi^{\prime}=\frac{\kappa}{w^{2}(s)} \tag{4.10}
\end{equation*}
$$

where κ is a constant. From the cosine term,

$$
\begin{equation*}
w^{\prime \prime}-\frac{\kappa^{2}}{w^{3}}+K w=0, \quad \text { then } \quad w^{3}\left(2 w^{\prime \prime}+K w\right)=\kappa^{2} \tag{4.11}
\end{equation*}
$$

We introduce a new set of functions, the so-called

Courant-Snyder parameters (or Twiss functions)

$$
\begin{equation*}
\beta(s) \equiv \frac{w^{2}(s)}{\kappa}, \quad \alpha(s) \equiv-\frac{1}{2} \beta^{\prime}(s), \quad \gamma(s) \equiv \frac{1+\alpha^{2}(s)}{\beta(s)} \tag{4.12}
\end{equation*}
$$

Note that wherever β reaches a maximum/minimum, $\alpha=0$ (and $x^{\prime}=0$).

Using the β function, we can write

$$
\begin{equation*}
\phi^{\prime}=\frac{1}{\beta(s)} \tag{4.13}
\end{equation*}
$$

and easily solve for the

Phase advance

$$
\begin{equation*}
\phi(s)=\int_{s} \frac{d \tau}{\beta(\tau)} \tag{4.14}
\end{equation*}
$$

With the aid of the Twiss functions we can also rewrite (4.11) as

$$
\begin{equation*}
K \beta=\gamma+\alpha^{\prime} \tag{4.15}
\end{equation*}
$$

The Twiss functions $\alpha(s), \beta(s)$, and $\gamma(s)$, are periodic in C, but the phase advance $\phi(s)$ is not.

We can now write the solution (4.6) as

$$
\begin{equation*}
x(s)=A \sqrt{\beta(s)} \cos \phi(s)+B \sqrt{\beta(s)} \sin \phi(s) \tag{4.16}
\end{equation*}
$$

Note that $\pm \sqrt{\beta(s)}$ provides an envelope for particle oscillations. If we derive this equation,

$$
\begin{align*}
x^{\prime}(s)= & \frac{1}{\sqrt{\beta(s)}}\{[B-\alpha(s) A] \cos \phi(s) \\
& -[A+\alpha(s) B] \sin \phi(s)\} \tag{4.17}
\end{align*}
$$

we can get the constants A and B in terms of the initial conditions (x_{0}, x_{0}^{\prime}),

$$
\begin{align*}
A & =\frac{x_{0}}{\sqrt{\beta(s)}} \\
B & =\frac{1}{\sqrt{\beta(s)}}\left[\beta(s) x_{0}^{\prime}+\alpha(s) x_{0}\right] \tag{4.18}
\end{align*}
$$

In matrix form, as usual, we get the transport matrix of a

Periodic system

$$
\binom{x}{x^{\prime}}_{s_{0}+C}=\left(\begin{array}{cc}
\cos \phi_{C}+\alpha \sin \phi_{C} & \beta \sin \phi_{C} \tag{4.19}\\
-\gamma \sin \phi_{C} & \cos \phi_{C}-\alpha \sin \phi_{C}
\end{array}\right)\binom{x}{x^{\prime}}_{s_{0}}
$$

where the (betatron) phase advance

$$
\begin{equation*}
\phi_{C}=\phi(C)=\int_{s_{0}}^{s_{0}+C} \frac{d s}{\beta(s)} \tag{4.20}
\end{equation*}
$$

is independent of s.
Note that the transport matrix of the periodic system is unimodular, that is,

$$
\begin{equation*}
\operatorname{det} M=1 \tag{4.21}
\end{equation*}
$$

In fact, it can be written as

$$
\begin{equation*}
M=I \cos \phi_{C}+J \sin \phi_{C} \tag{4.22}
\end{equation*}
$$

where

$$
\begin{align*}
I & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \tag{4.23}\\
J & =\left(\begin{array}{cc}
\alpha(s) & \beta(s) \\
-\gamma(s) & -\alpha(s)
\end{array}\right) \tag{4.24}
\end{align*}
$$

Since $J^{2}=-l$, the matrix can also be expressed as

$$
\begin{equation*}
M=e^{J(s) \phi_{C}} \tag{4.25}
\end{equation*}
$$

Stability condition I

The coordinates of a particle can be transformed after \boldsymbol{n} turns in a periodic system by applying \boldsymbol{n} times the corresponding transport matrix,

$$
\begin{equation*}
\binom{x}{x^{\prime}}=M^{n}\binom{x_{0}}{x_{0}^{\prime}} \tag{4.26}
\end{equation*}
$$

We are interested in this system to be stable as $n \rightarrow \infty$.

Let V_{1} and V_{2} the eigenvectors of the 2×2 matrix M, with corresponding eigenvalues λ_{1}, λ_{2}. Then,

$$
\begin{equation*}
M^{n}\binom{x_{0}}{x_{0}^{\prime}}=A \lambda_{1}^{n} V_{1}+B \lambda_{2}^{n} V_{2} \tag{4.27}
\end{equation*}
$$

Since M is unimodular,

$$
\begin{equation*}
\lambda_{1,2}=e^{ \pm i \phi} \tag{4.28}
\end{equation*}
$$

where ϕ is, in general, a complex number. Nevertheless, in order $\lambda_{1,2}^{n}$ to remain bounded, ϕ must be real.

Then, it is possible to transform M into diagonal form with the eigenvalues on the diagonal. This does not change the trace of the matrix,

$$
\begin{equation*}
\operatorname{tr} M=e^{i \phi}+e^{-i \phi}=2 \cos \phi \tag{4.29}
\end{equation*}
$$

Since $|\cos \phi| \leq 1$ for all real ϕ, we end up with the

Stability condition

$$
\phi \in \Re \quad \Rightarrow \quad-1 \leq \frac{1}{2} \operatorname{tr} M \leq 1
$$

One of the most used cells in accelerator lattices is the FODO cell.

It is composed of a doublet of opposite-strength quadrupoles (hence the F and D in the name), separated by drifts (represented by the Os) where dipoles can be placed.

The transport matrix of the FODO cell is then

$$
\begin{equation*}
M=M_{D} M_{Q D} M_{D} M_{Q F} \tag{4.31}
\end{equation*}
$$

Since this cell repeats, it can also be studied as

$$
\begin{equation*}
M=M_{Q F / 2} M_{D} M_{Q D} M_{D} M_{Q F / 2} \tag{4.32}
\end{equation*}
$$

or any other permutation.
We already know the matrices for the elements involved. In the case of the quadrupole split in half,

$$
\begin{equation*}
f \rightarrow 2 f \tag{4.33}
\end{equation*}
$$

Then, we perform the multiplication:

$$
M=\left(\begin{array}{cc}
1 & 0 \tag{4.34}\\
-\frac{1}{2 f} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & \frac{L}{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{f} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & \frac{L}{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{2 f} & 1
\end{array}\right)=\left(\begin{array}{cc}
1-\frac{L^{2}}{8 f^{2}} & \frac{L^{2}}{4 f}+L \\
\frac{L^{2}}{16 f^{3}}-\frac{L}{4 f^{2}} & 1-\frac{L^{2}}{8 f^{2}}
\end{array}\right)
$$

where we used the thin lens approximation for the quadrupoles.

The trace of M is

$$
\begin{equation*}
\operatorname{tr} M=2-\frac{L^{2}}{4 f^{2}}=2 \cos \phi_{C} \tag{4.35}
\end{equation*}
$$

where the term in the right comes from (4.29). Remember that ϕ_{C} is the phase advance at the exit of the periodic system, in this case, the FODO cell.

Then,

$$
\begin{equation*}
1-\frac{L^{2}}{8 f^{2}}=\cos \phi_{C} \tag{4.36}
\end{equation*}
$$

$$
\begin{equation*}
\sin \frac{u}{2}=\sqrt{\frac{1+\cos u}{2}} \tag{4.37}
\end{equation*}
$$

we get

$$
\begin{equation*}
1-\frac{L^{2}}{8 f^{2}}=1-2 \sin ^{2} \frac{\phi_{C}}{2} \tag{4.38}
\end{equation*}
$$

or, solving for the trigonometric function, we get the
Phase advance in a FODO cell

$$
\begin{equation*}
\sin \frac{\phi_{C}}{2}= \pm \frac{L}{4 f} \tag{4.39}
\end{equation*}
$$

Since

Note that in order ϕ_{C} to be real,

$$
\begin{equation*}
f>\frac{L}{4} \tag{4.40}
\end{equation*}
$$

The maximum value of the beta function in a FODO cell occurs in the center of the focusing quadrupole (that's why we chose them at the entrance/exit).

Comparing the m_{12} term of the transport matrix, with the corresponding term in (4.19), we get

$$
\begin{equation*}
m_{12}=\beta^{+} \sin \phi_{C}=L\left(\frac{L}{4 f}+1\right) \tag{4.41}
\end{equation*}
$$

where β^{+}denotes the maximum value of β for this system. When we substitute (4.39) and solve for β^{+}, we obtain the

Max/min beta in a FODO cell

$$
\begin{equation*}
\beta^{ \pm}=\frac{L}{\sin \phi_{C}}\left(1 \pm \sin \frac{\phi_{C}}{2}\right) \tag{4.42}
\end{equation*}
$$

To get the minimum beta β^{-}, follow the same procedure applied to a "DOFO" cell.

In general, for two given locations s_{0} and s in a machine, we have the matrix for a

General non-periodic system

$$
M=\left(\begin{array}{cc}
\sqrt{\frac{\beta(s)}{\beta\left(s_{0}\right)}}\left[\cos \Delta \phi+\alpha\left(s_{0}\right) \sin \Delta \phi\right] & \sqrt{\beta\left(s_{0}\right) \beta(s)} \sin \Delta \phi \tag{4.43}\\
-\frac{\left[\alpha(s)-\alpha\left(s_{0}\right)\right] \cos \Delta \phi+\left[1+\alpha\left(s_{0}\right) \alpha(s)\right] \sin \Delta \phi}{\sqrt{\beta\left(s_{0}\right) \beta(s)}} & \sqrt{\frac{\beta\left(s_{0}\right)}{\beta(s)}}[\cos \Delta \phi-\alpha(s) \sin \Delta \phi]
\end{array}\right)
$$

Note that $\operatorname{det} \boldsymbol{M}=\mathbf{1}$.
It is worthy to note that after one turn, (4.43) reduces to the periodic matrix,

$$
M\left(s_{0}, s_{0}+C\right)=\left(\begin{array}{cc}
\cos \mu+\alpha_{0} \sin \mu & \beta_{0} \sin \mu \tag{4.44}\\
-\gamma_{0} \sin \mu & \cos \mu-\alpha_{0} \sin \mu
\end{array}\right)=I \cos \mu+J \sin \mu
$$

where μ is the phase advance after one turn.
To derive the general matrix, we start with the solution to the equation of motion

$$
\begin{equation*}
x(s)=A w(s) \cos \phi(s)+B w(s) \sin \phi(s) \tag{4.45}
\end{equation*}
$$

and its derivative

$$
\begin{equation*}
x^{\prime}(s)=A\left[w^{\prime}(s) \cos \phi(s)-\frac{\sin \phi(s)}{w(s)}\right]+B\left[w^{\prime}(s) \sin \phi(s)+\frac{\cos \phi(s)}{w(s)}\right] \tag{4.46}
\end{equation*}
$$

We solve then for the constants A and B in terms of the initial conditions at $s=s_{0}$, that is $\left(x_{0}, x_{0}^{\prime}\right)$ and $\left(w_{0}, \phi_{0}\right)$. We obtain

$$
\begin{align*}
A & =\left(w_{0}^{\prime} \sin \phi_{0}+\frac{\cos \phi_{0}}{w_{0}}\right) x_{0}-\left(w_{0} \sin \phi_{0}\right) x_{0}^{\prime} \\
B & =-\left(w_{0}^{\prime} \cos \phi_{0}-\frac{\sin \phi_{0}}{w_{0}}\right) x_{0}+\left(w_{0} \cos \phi_{0}\right) x_{0}^{\prime} \tag{4.47}
\end{align*}
$$

When we substitute A and B in x and x^{\prime}, and using the trigonometric formulas

$$
\begin{align*}
\sin (u \pm v) & =\sin u \cos v \pm \cos u \sin v \\
\cos (u \pm v) & =\cos u \cos v \mp \sin u \sin v \tag{4.48}
\end{align*}
$$

we can proceed to write the result in matrix form as follows

$$
\binom{x(s)}{x^{\prime}(s)}=\left(\begin{array}{ll}
m_{11} & m_{12} \tag{4.49}\\
m_{21} & m_{22}
\end{array}\right)\binom{x_{0}}{x_{0}^{\prime}}
$$

where $\Delta \phi \equiv \phi(s)-\phi_{0}$, and

$$
\begin{align*}
& m_{11}(s)=\frac{w(s)}{w_{0}} \cos \Delta \phi-w(s) w_{0}^{\prime} \sin \Delta \phi \tag{4.50}\\
& m_{12}(s)=w(s) w_{0} \sin \Delta \phi \tag{4.51}\\
& m_{21}(s)=\frac{1+w(s) w_{0} w^{\prime}(s) w_{0}^{\prime}}{w(s) w_{0}} \sin \Delta \phi-\left[\frac{w_{0}^{\prime}}{w(s)}-\frac{w^{\prime}(s)}{w_{0}}\right] \cos \Delta \phi \\
& m_{22}(s)=\frac{w_{0}}{w(s)} \cos \Delta \phi+w_{0} w^{\prime}(s) \sin \Delta \phi \tag{4.53}
\end{align*}
$$

To get the final result, use the Courant-Synder parameter $\alpha(s)$ when appropriate, and remember that $w(s)=\sqrt{\beta(s)}$.

Even though M looks complicated, note that it can be expressed as

$$
M=\left(\begin{array}{cc}
C & S \tag{4.54}\\
C^{\prime} & S^{\prime}
\end{array}\right)
$$

where C and S are cosine- and sine-like terms, and the second row is the derivative of the first one.

Propagation of the Courant-Snyder parameters I

If we know the Twiss parameters at s_{0}, and we have the transport matrix $M\left(s_{0}, s\right)$, we can compute ${ }^{3}$ at the given s the

Propagation of Courant-Snyder parameters (Twiss functions)

$$
\left(\begin{array}{c}
\beta(s) \tag{4.55}\\
\alpha(s) \\
\gamma(s)
\end{array}\right)=\left(\begin{array}{ccc}
m_{11}^{2} & -2 m_{11} m_{12} & m_{12}^{2} \\
-m_{11} m_{21} & m_{11} m_{22}+m_{12} m_{21} & -m_{12} m_{22} \\
m_{21}^{2} & -2 m_{21} m_{22} & m_{22}^{2}
\end{array}\right)\left(\begin{array}{l}
\beta\left(s_{0}\right) \\
\alpha\left(s_{0}\right) \\
\gamma\left(s_{0}\right)
\end{array}\right)
$$

where $m_{i j}$ are the elements of the matrix M.

[^2]We now study the horizontal Hill's equation taking into account dispersion,

$$
\begin{equation*}
x^{\prime \prime}+K(s) x=\frac{\delta}{\rho(s)} \tag{5.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta=\frac{\Delta p}{p_{0}} \tag{5.2}
\end{equation*}
$$

is constant, and

$$
\begin{equation*}
K(s)=\frac{1}{\rho^{2}}+\frac{q}{p_{0}} \frac{\partial B_{y}}{\partial x} \tag{5.3}
\end{equation*}
$$

We know that the generalized solution of the homogeneous equation ($\delta=0$) is, in the horizontal plane, given by

$$
\begin{equation*}
\vec{X}(s)=M(s) \vec{X}_{0} \tag{5.4}
\end{equation*}
$$

with

$$
M=\left(\begin{array}{cc}
C & S \tag{5.5}\\
C^{\prime} & S^{\prime}
\end{array}\right), \quad \vec{X}=\binom{x}{x^{\prime}}
$$

or

$$
\begin{equation*}
x(s)=C(s) x_{0}+S(s) x_{0}^{\prime} \tag{5.6}
\end{equation*}
$$

Then, the generalized solution of the inhomogeneous equation $(\delta \neq 0)$ can be written as

$$
\begin{equation*}
x(s)=C(s) x_{0}+S(s) x_{0}^{\prime}+D(s) \delta_{0} \tag{5.7}
\end{equation*}
$$

where

$$
\begin{align*}
D(s)= & S(s) \int_{0}^{s} \frac{C(\tau)}{\rho(\tau)} d \tau \\
& -C(s) \int_{0}^{s} \frac{S(\tau)}{\rho(\tau)} d \tau \tag{5.8}
\end{align*}
$$

(This comes from the theory of differential equations! See for example H. Wiedemann, "Particle Accelerator Physics", 4th edition, pages 120-122.)

As always, we can express the solution in matrix form in terms of the initial conditions $\left(x_{0}, x_{0}^{\prime}\right)$ at $s=0$.

$$
\begin{align*}
& \text { To do so, we need the slope, } \\
& x^{\prime}(s)=C^{\prime}(s) x_{0}+S^{\prime}(s) x_{0}^{\prime}+D^{\prime}(s) \delta_{0} \tag{5.9}
\end{align*}
$$

Comparing term by term in the I.h.s. and r.h.s. of the each of the following
equations,

$$
\begin{align*}
& x_{0}=C(0) x_{0}+S(0) x_{0}^{\prime}+D(0) \delta_{0} \\
& x_{0}^{\prime}=C^{\prime}(0) x_{0}+S^{\prime}(0) x_{0}^{\prime}+D^{\prime}(0) \delta_{0} \tag{5.10}
\end{align*}
$$

we see that

$$
\begin{aligned}
& C(0)=S^{\prime}(0)=1 \\
& C^{\prime}(0)=S(0)=0 \\
& D(0)=D^{\prime}(0)=0
\end{aligned}
$$

Since the energy spread is assumed to be constant, the trajectory equations can be put in matrix form for $\delta \neq 0$,

$$
\left(\begin{array}{c}
x \\
x^{\prime} \\
\delta
\end{array}\right)=\left(\begin{array}{ccc}
C(s) & S(s) & D(s) \\
C^{\prime}(s) & S^{\prime}(s) & D^{\prime}(s) \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x_{0} \\
x_{0}^{\prime} \\
\delta_{0}
\end{array}\right)
$$

Note that one of the eigenvectors of this matrix is $\lambda_{3}=+1$. The other two are determined only by the 2×2 sub-matrix in the top-left corner.

The eigenvector corresponding to the $\lambda_{3}=+1$ can be written as

$$
\left(\begin{array}{c}
\eta(s) \delta \tag{5.13}\\
\eta^{\prime}(s) \delta \\
\delta
\end{array}\right)=\left(\begin{array}{c}
\eta(s) \\
\eta^{\prime}(s) \\
1
\end{array}\right) \delta
$$

where $\eta(s)$ is called the dispersion function.

The matrix equation for this eigenvector is

$$
\left(\begin{array}{c}
\eta \tag{5.14}\\
\eta^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
C & S & D \\
C^{\prime} & S^{\prime} & D^{\prime} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\eta_{0} \\
\eta_{0}^{\prime} \\
1
\end{array}\right)
$$

We can solve this for η and η^{\prime} by writting

$$
\begin{align*}
\binom{\eta}{\eta^{\prime}} & =\left(\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)\binom{\eta}{\eta^{\prime}}+\binom{D}{D^{\prime}} \\
& =M\binom{\eta}{\eta^{\prime}}+\binom{D}{D^{\prime}} \tag{5.15}
\end{align*}
$$

where M is the 2×2 matrix with the $C(s)$ and $S(s)$ elements (and their derivatives). Then

$$
\begin{equation*}
(I-M)\binom{\eta}{\eta^{\prime}}=\binom{D}{D^{\prime}} \tag{5.16}
\end{equation*}
$$

or

$$
\begin{equation*}
\binom{\eta}{\eta^{\prime}}=(I-M)^{-1}\binom{D}{D^{\prime}} \tag{5.17}
\end{equation*}
$$

After computing the inverse of the matrix $(I-M)$, we can finally get

$$
\begin{align*}
\eta(s) & =\frac{\left(1-S^{\prime}\right) D+S D^{\prime}}{2(1-\cos \mu)} \tag{5.18}\\
\eta^{\prime}(s) & =\frac{(1-C) D^{\prime}+C^{\prime} D}{2(1-\cos \mu)} \tag{5.19}
\end{align*}
$$

where we have used the fact that

$$
\begin{equation*}
\operatorname{tr} M=C+S^{\prime}=2 \cos \mu \tag{5.20}
\end{equation*}
$$

To sum up, the solution of Hill's equation with dispersion can be written as

$$
\begin{equation*}
x(s)=x_{\beta}(s)+x_{p}(s) \tag{5.21}
\end{equation*}
$$

That is, it can be written as the sum of the betatron oscillation $x_{\beta}(s)$, and

$$
\begin{equation*}
x_{p}(s)=\eta(s) \delta \tag{5.22}
\end{equation*}
$$

which is due to dispersion.
It is important to note that

$$
\begin{equation*}
\eta(s)=\frac{d x}{d \delta} \tag{5.23}
\end{equation*}
$$

is different from the matrix element

$$
\begin{equation*}
D(x)=\frac{\partial x}{\partial \delta} \tag{5.24}
\end{equation*}
$$

Also, the dispersion function is periodic with period C (for example the circumference of the machine):

$$
\begin{equation*}
\eta\left(s_{0}\right) \delta_{0}=\eta\left(s_{0}+C\right) \delta=\eta \delta \tag{5.25}
\end{equation*}
$$

We can extend the 2×2 transport matrices in order to take into account dispersion.

To do so, we make use of

$$
\begin{equation*}
D(s)=S(s) \int_{0}^{s} \frac{C}{\rho} d \tau-C(s) \int_{0}^{s} \frac{S}{\rho} d \tau \quad C(s)=\cos \theta=\cos \frac{s}{\rho} \tag{5.28}
\end{equation*}
$$

The case of drifts and quadrupoles is easy since $\rho \rightarrow \infty$:

Drift (with dispersion)

$$
M_{D}=\left(\begin{array}{lll}
1 & L & 0 \tag{5.26}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Thin quad. (with dispersion)

$$
M_{Q D}^{Q F}=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{5.27}\\
\mp \frac{1}{f} & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

For dipoles,

$$
\begin{equation*}
S(s)=\rho \sin \theta=\rho \sin \frac{s}{\rho} \tag{5.29}
\end{equation*}
$$

Then, performing the integral,

$$
\begin{equation*}
D(s)=\rho\left(1-\cos \frac{s}{\rho}\right) \tag{5.30}
\end{equation*}
$$

and $D^{\prime}(s)$ is simply its derivative,

$$
\begin{equation*}
D^{\prime}(s)=\sin \frac{s}{\rho} \tag{5.31}
\end{equation*}
$$

If we put this in matrix form, we get the result in (3.51) previously obtained:

Dipole (with dispersion)
Equation (3.51)

We now come back to the FODO cell. Replacing the drifts with two equal dipoles of length $\rho \theta_{C} / 2$, we get a total cell length of $L=\rho \theta_{C}$ if we use the thin lens approximation.

Starting the FODO at the middle of the focusing quadrupole,

$$
\begin{equation*}
M=M_{Q F / 2} M_{D} M_{Q D} M_{D} M_{Q F / 2} \tag{5.32}
\end{equation*}
$$

where

$$
\begin{align*}
M_{Q F / 2} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{1}{2 f} & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \tag{5.33}\\
M_{Q D} & =\left(\begin{array}{lll}
1 & 0 & 0 \\
\frac{1}{f} & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \tag{5.34}\\
M_{B} & =\left(\begin{array}{lll}
1 & \frac{L}{2} & \frac{L \theta_{C}}{8} \\
0 & 1 & \frac{\theta_{C}}{2} \\
0 & 0 & 1
\end{array}\right) . \tag{5.35}
\end{align*}
$$

The result is

$$
M=\left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \tag{5.36}\\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right)
$$

where

$$
\begin{aligned}
& m_{11}=1-\frac{L^{2}}{8 f^{2}}=m_{22} \\
& m_{12}=L\left(1+\frac{L}{4 f}\right) \\
& m_{13}=\frac{L}{2}\left(1+\frac{L}{8 f}\right) \theta_{C} \\
& m_{21}=-\frac{L}{4 f^{2}}\left(1-\frac{L}{4 f}\right) \\
& m_{23}=\left(1-\frac{L}{8 f}-\frac{L^{2}}{32 f^{2}}\right) \theta_{C} \\
& m_{31}=0=m_{32} \\
& m_{33}=1
\end{aligned}
$$

Dispersion in a FODO cell II

An accelerator is usually made of a series of repeating cells, giving the machine a regular (periodic) optics.

However, sometimes it is needed a sections in the lattice with a particular optics for a specific purpose: they are called insertions.

A dispersion suppressor

 takes the value of the dispersion function to zero.

This insertion consists of two FODO cells, fulfilling the following conditions:

$$
\begin{equation*}
\theta_{1}=\left(1-\frac{1}{4 \sin ^{2} \frac{\mu}{2}}\right) \theta, \quad \theta_{2}=\left(\frac{1}{4 \sin ^{2} \frac{\mu}{2}}\right) \theta, \quad \theta=\theta_{1}+\theta_{2} \tag{5.39}
\end{equation*}
$$

where μ is the phase advance per cell. In particular, for $\mu=\pi / 3=60^{\circ}$, we see that $4 \sin ^{2} \frac{\mu}{2}=1$, and

$$
\begin{equation*}
\theta_{1}=0, \quad \theta_{2}=\theta \tag{5.40}
\end{equation*}
$$

This is called a missing magnet dispersion suppressor.

Another type of insertion is the low-beta insertion; it reduces the beta functions in the middle of the insertion in order to make the beam as narrow as possible.

It is useful, for example, in colliders, where a smaller beam size translates into higher luminosity.
In a low-beta insertion, the beta function can be written as

$$
\begin{equation*}
\beta(s)=\beta^{*}+\frac{s^{2}}{\beta^{*}} \tag{5.41}
\end{equation*}
$$

where β^{*} is the beta function evaluated at the interaction point, located in the middle of the insertion $(s=0)$.

Courant-Snyder invariant I

In the equation of motion,

$$
\begin{equation*}
x(s)=A \sqrt{\beta(s)} \cos \left[\phi(s)+\phi_{0}\right] \tag{5.42}
\end{equation*}
$$

we assumed that A was a constant. Note that it can be express in terms of the initial coordinates as

$$
\begin{equation*}
\mathcal{W} \equiv A^{2}=\gamma_{0} x_{0}^{2}+2 \alpha_{0} x_{0} x_{0}^{\prime}+\beta_{0} x_{0}^{\prime 2} \tag{5.43}
\end{equation*}
$$

In fact, this is an invariant of motion, known as the

Courant-Snyder invariant

$$
\begin{equation*}
\mathcal{W}=\gamma x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2} \tag{5.44}
\end{equation*}
$$

where $x, x^{\prime}, \alpha, \beta$, and γ are functions of s. Being an invariant means that \mathcal{W} has the same value for any s.

In the phase space $\left(x, x^{\prime}\right), \mathcal{W}$ looks like an elliptical area and the transport matrices look like scaled rotations of it.

Some important points on the ellipse:

$$
\begin{align*}
x_{1} & =\sqrt{\mathcal{W} / \gamma(s)} \tag{5.45}\\
x_{\max } & =\sqrt{\mathcal{W} \beta(s)} \tag{5.46}\\
x_{1}^{\prime} & =\sqrt{\mathcal{W} / \beta(s)} \tag{5.47}\\
x_{\max }^{\prime} & =\sqrt{\mathcal{W} \gamma(s)} \tag{5.48}
\end{align*}
$$

(Geometric) Emittance

is the (constant) area of the ellipse inscribed by any given particle in phase space, as it travels along the accelerator.

$$
\begin{equation*}
\sigma_{x, y}^{r m s}=\sqrt{\epsilon_{x, y} \beta_{x, y}(s)} \tag{5.51}
\end{equation*}
$$

This emittance contains then 39% of the beam particles.

We define the

Beam size

$$
\begin{equation*}
\sigma_{x, y}=\sqrt{\epsilon_{X, y} \beta_{x, y}(s)} \tag{5.50}
\end{equation*}
$$

and, as we can see, depends on s.
The beam size is often taken to correspond to the rms sigma of a 2-dimensional Gaussian distribution of particles,

During acceleration, however, the emittance is not an invariant: even though x doesn't change as we accelerate, x^{\prime} does since

$$
\begin{equation*}
x^{\prime} \equiv \frac{d x}{d s}=\frac{p_{x}}{p_{0}} \tag{5.52}
\end{equation*}
$$

and p_{0} is changing. Since p_{0} scales with the relativistic β_{r} and γ_{r}, the invariant in this case is the

Normalized emittance

$$
\begin{equation*}
\epsilon_{x, y}^{N}=\beta_{r} \gamma_{r} \epsilon_{x, y} \tag{5.53}
\end{equation*}
$$

Vertical phase space
$\left(y, y^{\prime}\right)$

Evolution of horizontal and vertical beta functions, $\beta_{x}(s), \beta_{y}(s)$, and phase space ellipses along a lattice made of 4 FODO cells.

Remember the definition of the

Tunes

$$
\begin{equation*}
Q_{x, y}=\frac{\Delta \phi_{x, y}}{\Delta \theta}=\frac{1}{2 \pi} \oint \frac{d s}{\beta_{x, y}(s)} \tag{5.54}
\end{equation*}
$$

They represents the number of oscillations in one revolution around the ring (in a given plane).

The tunes are a direct indication of the amount of focusing in the accelerator, and they are a critical parameter of its performance.

Resonances can occur when

$$
\begin{equation*}
n Q_{x}+m Q_{y}=k \tag{5.55}
\end{equation*}
$$

with n, m, k integers, causing

Tune plot

an unstable motion. The order of a resonance is given by $|n|+|m|$.

The pair (Q_{x}, Q_{y}) is known as the working point of the accelerator, and has to be chosen away from resonance lines.

Just like the amount of bending depends on momentum, causing dispersion, the amount of focusing (and thus the tunes) depends on momentum too.

The variation of the tunes with δ is characterized by the chromaticity. There are two common definitions:

Chromaticity I

$$
\begin{equation*}
\Delta Q_{x, y} \equiv \xi_{x, y} \frac{\Delta p}{p} \tag{5.56}
\end{equation*}
$$

Chromaticity II

$$
\begin{equation*}
\frac{\Delta Q_{x, y}}{Q_{x, y}} \equiv \xi_{x, y} \frac{\Delta p}{p} \tag{5.57}
\end{equation*}
$$

Ideal energy
Higher energy Lower energy

Consider (in the horizontal plane) the following: a perturbation on momentum is equivalent to the addition of a small extra focusing to the one-turn matrix, that depends on the unperturbed focusing K,

$$
M(\delta)=\left(\begin{array}{cc}
1 & 0 \tag{5.58}\\
K \delta d s & 1
\end{array}\right)\left(\begin{array}{cc}
\cos \left(2 \pi Q_{0}\right)+\alpha \sin \left(2 \pi Q_{0}\right) & \beta \sin \left(2 \pi Q_{0}\right) \\
-\gamma \sin \left(2 \pi Q_{0}\right) & \cos \left(2 \pi Q_{0}\right)-\alpha \sin \left(2 \pi Q_{0}\right)
\end{array}\right)
$$

After performing the multiplication, the components of the resulting matrix are

$$
\begin{align*}
& m_{11}=\cos \left(2 \pi Q_{0}\right)+\alpha \sin \left(2 \pi Q_{0}\right) \tag{5.59}\\
& m_{12}=\beta \sin \left(2 \pi Q_{0}\right) \tag{5.60}\\
& m_{21}=-\gamma \sin \left(2 \pi Q_{0}\right)+K \delta\left[\cos \left(2 \pi Q_{0}\right)+\alpha \sin \left(2 \pi Q_{0}\right)\right] \tag{5.61}\\
& m_{22}=\cos \left(2 \pi Q_{0}\right)-\alpha \sin \left(2 \pi Q_{0}\right)+\beta K \delta \sin \left(2 \pi Q_{0}\right) d s \tag{5.62}
\end{align*}
$$

Now, we know that the trace is related to the new tune,

$$
\begin{equation*}
\cos (2 \pi Q)=\frac{1}{2} \operatorname{tr} M=\frac{1}{2}\left[2 \cos \left(2 \pi Q_{0}\right)+\beta k_{0} \delta \sin \left(2 \pi Q_{0}\right) d s\right] \tag{5.63}
\end{equation*}
$$

IN the other hand, if we suppose that the change in the tune, $d Q=Q-Q_{0}$ is small,

$$
\begin{align*}
\cos (2 \pi Q) & =\cos \left[2 \pi\left(Q_{0}+d Q\right)\right] \\
& =\cos \left(2 \pi Q_{0}\right) \cos (2 \pi d Q)-\sin \left(2 \pi Q_{0}\right) \sin (2 \pi d Q) \\
& \approx \cos \left(2 \pi Q_{0}\right)-2 \pi \sin \left(2 \pi Q_{0}\right) d Q \tag{5.64}
\end{align*}
$$

Chromaticity III

Equating the last two equations, we can solve for $d Q$

$$
\begin{equation*}
d Q=-\frac{K(s) \delta}{4 \pi} \beta(s) d s \tag{5.65}
\end{equation*}
$$

and thus integrate around the ring to get the total tune shift,

$$
\begin{equation*}
\Delta Q=-\frac{\delta}{4 \pi} \oint K(s) \beta(s) d s \tag{5.66}
\end{equation*}
$$

Finally, using the first definition of chromaticity (the most common), we get, in general for x and y, the

Natural chromaticity

$$
\begin{equation*}
\xi_{x, y}^{N}=-\frac{1}{4 \pi} \oint K_{x, y}(s) \beta_{x, y}(s) d s \tag{5.67}
\end{equation*}
$$

The term natural refers to the fact that it arises from the quadrupoles, which are linear elements. Higher order multipoles such as sextupoles also contribute to the total chromaticity.

Of course, if we would've used the second definition,

$$
\begin{equation*}
\xi_{x, y}^{N}=-\frac{1}{4 \pi Q_{x, y}} \oint K_{x, y} \beta_{x, y} d s \tag{5.68}
\end{equation*}
$$

and they are normalized to the tunes.
From the field expansion, we can see write for a sextupole in the horizontal plane:

$$
\begin{equation*}
B_{y}=b_{2} x^{2} \tag{5.69}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{2}=\frac{1}{(B \rho)} \frac{\partial^{2} B_{y}}{\partial x^{2}} \tag{5.70}
\end{equation*}
$$

Substituting the orbit given by
$x(s)=x_{\beta}(s)+\eta_{x}(s) \delta$,

$$
\begin{equation*}
B_{y} \approx b_{2} x_{\beta}^{2}+2 b_{2} x_{\beta} \eta_{x} \delta \tag{5.71}
\end{equation*}
$$

having neglected the term in δ^{2}.
Note that the first term is nonlinear, while the second is linear (quadrupole-like).

Then, sextupoles also contribute to chromaticity (in a similar way to quadrupoles), and we have a

Total chromaticity

$$
\begin{equation*}
\xi_{x, y}=-\frac{1}{4 \pi} \oint\left(K_{x, y}(s) \mp 2 b_{2}(s) \eta_{x}(s)\right) \beta_{x, y}(s) d s \tag{5.72}
\end{equation*}
$$

By an appropriate choice of b_{2} (the sextupole stength) it is possible, in principle, to correct the chromaticity: if we make the integrand to vanish, ξ is zero.

For a machine composed of $n_{\text {cell }}$ identical FODO, it follows that

Tune of ring made of FODOs

$$
\begin{equation*}
Q_{x, y}=n_{c e l l} \frac{\mu_{x, y}}{2 \pi} \tag{5.73}
\end{equation*}
$$

where $\mu_{x, y}$ is the phase advance of each cell.

It can also be shown that

Chromaticity of a FODO cell

$$
\begin{equation*}
\xi_{x, y}^{N}=-\frac{1}{\pi} \tan \frac{\mu_{x, y}}{2} \tag{5.74}
\end{equation*}
$$

and therefore,

Chromaticity of ring of FODOs

$$
\begin{equation*}
\xi_{x, y}^{N}=-\frac{1}{\pi} n_{c e / l} \tan \frac{\mu_{x, y}}{2} \tag{5.75}
\end{equation*}
$$

There exist insertions (arcs) that do not introduce dispersion.

The simplest of this structures is called double bend achromat (DBA), and it is particularly useful in light sources.

In principle, dispersion can be suppressed by one focusing quadrupole and one bending magnet, and then matching the dispersion to zero outside the insertion with quadrupoles. This way dispersion is concentrated in the middle.
Mathematically:

$$
\begin{equation*}
M_{D B A}=\left(M_{B} M_{D} M_{Q F / 2}\right)\left(M_{Q F / 2} M_{D} M_{B}\right)=M_{-D B A / 2} M_{D B A / 2} \tag{5.76}
\end{equation*}
$$

Achromatic insertions: DBA II

Then, we impose

$$
\left(\begin{array}{c}
\eta_{c} \tag{5.77}\\
0 \\
1
\end{array}\right)=M_{D B A / 2}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

where f is the focal length of the focusing quadrupole, θ and L are the bend angle and length of the dipole, and L_{1} is the distance between the dipole and center of the quad.

Triple-, quadruple- and multiple- (or n -) bend achromats (TBA, QDA, MBA or nBA, respectively), are improvements to the DBA since their natural emittances are lower and lower...

Such bending achromats are widely used in synchrotron light sources (like the one under design in Mexico!)
and the resulting dispersion is:

$$
\begin{equation*}
\eta_{c}=\left(L_{1}+\frac{L}{2}\right) \theta \tag{5.79}
\end{equation*}
$$

Each type of cell give rise an specific natural emittance.
Solving we get the following condition:

$$
\begin{equation*}
f=\frac{1}{2}\left(L_{1}+\frac{L}{2}\right) \tag{5.78}
\end{equation*}
$$

http://www.xkcd.org/964/

Lorentz factors:

$$
\beta_{r} \equiv \frac{v}{c}, \quad \gamma_{r} \equiv \frac{1}{\sqrt{1-\beta_{r}^{2}}}
$$

Rest energy:

$$
E_{0}=m c^{2}
$$

Total energy:

$$
E=\gamma_{r} m c^{2}
$$

Kinetic energy:

$$
E_{K}=T=E-E_{0}=\left(\gamma_{r}-1\right) m c^{2}
$$

Momentum:

$$
p=\gamma_{r} m\left(\beta_{r} c\right)=\beta_{r} \frac{E}{c}
$$

Electron-volt (eV):

$$
1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}
$$

Rigidity (in Tm):

$$
(B \rho)=p / q
$$

Rigidity (in practical units, valid only for a particle with $q=e$):

$$
p[\mathrm{GeV} / \mathrm{c}] \approx 0.3 B[\mathrm{~T}] \rho[\mathrm{m}]
$$

Cyclotron (angular) frequency:

$$
\omega=\frac{q B}{\gamma_{r} m}, \quad f=\frac{\omega}{2 \pi}
$$

Betatron tunes:

$$
Q_{x, y}=\frac{\phi_{x, y}(2 \pi)}{2 \pi}
$$

Integrated dipole field over a circumference:

$$
N B L_{B}=2 \pi \frac{p}{q}
$$

Remember that $T=\frac{V_{s}}{m^{2}}$.

Dipole (no focusing):

$$
M_{B}=\left(\begin{array}{cccc}
\cos \theta & \rho \sin \theta & 0 & 0 \\
-\frac{1}{\rho} \sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & \rho \theta \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Drift:

$$
M_{D}=\left(\begin{array}{llll}
1 & s & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & s \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Quadrupole gradient:

$$
G=\frac{B_{\text {pole }}}{a}=\frac{2 \mu_{0} N I}{a^{2}} \approx \frac{\partial B_{y}}{\partial x}
$$

Quadrupole strength:

$$
K \equiv \frac{1}{\left(B_{0} \rho\right)}\left(\frac{\partial B_{y}}{\partial x}\right)=\frac{G}{\left(B_{0} \rho\right)} \equiv k^{2}
$$

Focusing quadrupole:

$$
M_{Q F}=\left(\begin{array}{cc}
\cos (k s) & \frac{1}{k} \sin (k s) \\
-k \sin (k s) & \cos (k s)
\end{array}\right)
$$

Defocusing quadrupole:

$$
M_{Q D}=\left(\begin{array}{cc}
\cosh (k s) & \frac{1}{k} \sinh (k s) \\
k \sinh (k s) & \cosh (k s)
\end{array}\right)
$$

Thin focusing quadrupole:

$$
M_{Q F}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right)
$$

Thin defocusing quadrupole:

$$
M_{Q D}=\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{f} & 1
\end{array}\right)
$$

Quadrupole focal length:

$$
f=\frac{1}{K L}=\frac{1}{k^{2} L}
$$

Thin lens approximation:

$$
|f| \gg L
$$

Hill's equation:

$$
x^{\prime \prime}+K(s) x=0
$$

K is periodic:

$$
K(s+C)=K(s)
$$

Courant-Snyder parameters (or Twiss functions):

$$
\begin{gathered}
\beta(s) \equiv w^{2}(s) \\
\alpha(s) \equiv-\frac{1}{2} \beta^{\prime}(s) \\
\gamma(s) \equiv \frac{1+\alpha^{2}(s)}{\beta(s)}
\end{gathered}
$$

Phase advance:

$$
\phi(s)=\int_{s} \frac{d \tau}{\beta(\tau)}
$$

Solution to Hill's equation:

$$
x(s)=A \sqrt{\beta(s)} \cos \left[\phi(s)-\phi_{0}\right]
$$

Periodic system (from $s_{0} \rightarrow s_{0}+C$):

$$
M=\left(\begin{array}{cc}
\cos \phi_{C}+\alpha \sin \phi_{C} & \beta \sin \phi_{C} \\
-\gamma \sin \phi_{C} & \cos \phi_{C}-\alpha \sin \phi_{C}
\end{array}\right)
$$

where

$$
\phi_{C}=\int_{s_{0}}^{s_{0}+C} \frac{d s}{\beta(s)}, \quad \text { and } \quad \operatorname{det} M=1
$$

Stability condition:
$\operatorname{tr} M=\cos \phi \quad \Rightarrow \quad-1 \leq \frac{1}{2} \operatorname{tr} M \leq 1 \quad$ for $\phi \in \Re$

Phase advance in a FODO cell:

$$
\begin{equation*}
\sin \frac{\phi_{C}}{2}= \pm \frac{L}{4 f} \tag{5.80}
\end{equation*}
$$

Max./min. beta in a FODO cell:

$$
\beta^{ \pm}=\frac{L}{\sin \phi_{C}}\left(1 \pm \sin \frac{\phi_{C}}{2}\right)
$$

General non-periodic system:

$$
M=\left(\begin{array}{cc}
\sqrt{\frac{\beta(s)}{\beta\left(s_{0}\right)}}\left[\cos \Delta \phi+\alpha\left(s_{0}\right) \sin \Delta \phi\right] & \sqrt{\beta\left(s_{0}\right) \beta(s)} \sin \Delta \phi \\
-\frac{\left[\alpha(s)-\alpha\left(s_{0}\right)\right] \cos \Delta \phi+\left[1+\alpha\left(s_{0}\right) \alpha(s)\right] \sin \Delta \phi}{\sqrt{\beta\left(s_{0}\right) \beta(s)}} & \sqrt{\frac{\beta\left(s_{0}\right)}{\beta(s)}}[\cos \Delta \phi-\alpha(s) \sin \Delta \phi]
\end{array}\right)
$$

Propagation of Courant-Snyder parameters (Twiss functions):

$$
\left(\begin{array}{c}
\beta(s) \\
\alpha(s) \\
\gamma(s)
\end{array}\right)=\left(\begin{array}{ccc}
m_{11}^{2} & -2 m_{11} m_{12} & m_{12}^{2} \\
-m_{11} m_{21} & m_{11} m_{22}+m_{12} m_{21} & -m_{12} m_{22} \\
m_{21}^{2} & -2 m_{21} m_{22} & m_{22}^{2}
\end{array}\right)\left(\begin{array}{c}
\beta\left(s_{0}\right) \\
\alpha\left(s_{0}\right) \\
\gamma\left(s_{0}\right)
\end{array}\right)
$$

Hill's equation with dispersion:

$$
\begin{equation*}
x^{\prime \prime}+K(s) x=\frac{\delta}{\rho(s)}, \quad \text { with } \quad K(s)=\frac{1}{\rho^{2}}+\frac{q}{p_{0}} \frac{\partial B_{y}}{\partial x} \tag{5.81}
\end{equation*}
$$

Momentum deviation:

$$
\delta=\frac{\Delta p}{p_{0}} \ll 1
$$

$$
D(s)=S(s) \int_{0}^{s} \frac{C(\tau)}{\rho(\tau)} d \tau
$$

Solution to Hill's equation with dispersion:

$$
x(s)=x_{\beta}(s)+x_{p}(s)
$$

where $x_{\beta}(s)$ is the solution to the homogeneous equation, and

$$
x_{p}(s)=\eta(s) \delta
$$

Extension of transport matrices to include dispersion:

$$
\left(\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
C & S & D \\
C^{\prime} & S^{\prime} & D^{\prime} \\
0 & 0 & 1
\end{array}\right)
$$

where

$$
M_{D}=\left(\begin{array}{lll}
1 & L & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Thin quad. (with dispersion):

$$
M_{Q F}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\mp \frac{1}{f} & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Dipole (no focusing, with dispersion):
$M_{B}=\left(\begin{array}{ccc}\cos \theta & \rho \sin \theta & \rho(1-\cos \theta) \\ -\frac{1}{\rho} \sin \theta & \cos \theta & \sin \theta \\ 0 & 0 & 1\end{array}\right)$
Max./min. dispersion in a FODO cell:

$$
\eta_{x}^{ \pm}=\frac{L \theta_{C}}{4}\left(\frac{1 \pm \frac{1}{2} \sin \frac{\Delta \phi}{2}}{\sin ^{2} \frac{\Delta \phi}{2}}\right)
$$

Courant-Snyder invariant:

$$
\mathcal{W}=\gamma x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2}
$$

(Geometric) Emittance:

$$
\epsilon_{X, y}=\pi \mathcal{W}_{x, y}
$$

Beam size:

$$
\sigma_{X, y}=\sqrt{\epsilon_{X, y} \beta_{x, y}(s)}
$$

Normalized emittance:

$$
\epsilon_{x, y}^{N}=\beta_{r} \gamma_{r} \epsilon_{x, y}
$$

Tunes:

$$
Q_{x, y}=\frac{\Delta \phi_{x, y}}{\Delta \theta}=\frac{1}{2 \pi} \oint \frac{d s}{\beta_{x, y}(s)}
$$

Chromaticity:

$$
\Delta Q_{x, y} \equiv \xi_{x, y} \frac{\Delta p}{p}
$$

Natural chromaticity:

$$
\xi_{x, y}^{N}=-\frac{1}{4 \pi} \oint K_{x, y}(s) \beta_{x, y}(s) d s
$$

Total chromaticity:

$$
\xi_{x, y}=-\frac{1}{4 \pi} \oint\left[K_{x, y} \mp 2 b_{2} \eta_{x}\right] \beta_{x, y} d s
$$

Tune of ring made of $n_{\text {cell }}$ FODOs:

$$
Q_{x, y}=n_{\text {cell }} \frac{\mu_{x, y}}{2 \pi}
$$

Chromaticity of a FODO cell:

$$
\xi_{x, y}^{N}=-\frac{1}{\pi} \tan \frac{\mu_{x, y}}{2}
$$

Chromaticity of ring of FODOs:

$$
\xi_{x, y}^{N}=-\frac{1}{\pi} n_{c e l l} \tan \frac{\mu_{x, y}}{2}
$$

Transition energy I

Recall the revolution frequency, inverse to the revolution period,

$$
\begin{equation*}
f=\frac{1}{\tau}=\frac{\beta_{r} c}{C}, \quad \omega=2 \pi f \tag{6.1}
\end{equation*}
$$

where C is the circumference, given by $C=2 \pi R$, with R the average radius of the synchrotron (different from ρ).

Deriving the following differential,

$$
\begin{equation*}
\frac{d \omega}{\omega}=\frac{d \beta_{r}}{\beta_{r}}-\frac{d C}{C} \tag{6.2}
\end{equation*}
$$

In order to rewrite the previous equation, remember that

$$
\begin{gather*}
p_{0}=\gamma_{r} m\left(\beta_{r} c\right)=\frac{m c \beta_{r}}{\sqrt{1-\beta_{r}^{2}}} \tag{6.3}\\
\Rightarrow \frac{d p}{p_{0}}=\gamma_{r}^{2} \frac{d \beta}{\beta} \tag{6.4}
\end{gather*}
$$

In the other hand, we define the

Momentum compaction factor

$$
\begin{equation*}
\alpha_{p} \equiv \frac{d C / C}{d p / p_{0}} \tag{6.5}
\end{equation*}
$$

which measures the dependence in an accelerator of the length of the ideal orbit with momentum.

Transition energy II

Example: Velocity spread

A typical value of δ is 10^{-3}. For a particle traveling near the speed of light, and with an energy corresponding to $\gamma_{r}=10^{4}$, its momentum deviation corresponds to a velocity spread of

$$
d \beta=\frac{\beta}{\gamma_{r}^{2}} \delta=\frac{c}{\left(10^{4}\right)^{2}} \cdot 10^{-3} \approx 3 \mathrm{~mm} / \mathrm{s}
$$

Then, we can rewrite,

$$
\begin{equation*}
\frac{d \omega}{\omega}=\left(\frac{1}{\gamma_{r}^{2}}-\alpha_{p}\right) \frac{d p}{p_{0}} \tag{6.6}
\end{equation*}
$$

The quantity in parenthesis defines the

Phase slip factor

$$
\begin{equation*}
\eta=\frac{1}{\gamma_{r}^{2}}-\alpha_{p} \tag{6.7}
\end{equation*}
$$

Note that something special occurs when the phase slip factor (or simply slip factor) is zero. In this case we have the

Transition energy

$$
\begin{equation*}
\eta=0 \quad \Rightarrow \quad \gamma_{t r} \equiv \frac{1}{\sqrt{\alpha_{p}}} \tag{6.8}
\end{equation*}
$$

So, we can rewrite the phase slip factor as

$$
\begin{equation*}
\eta=\frac{1}{\gamma_{r}^{2}}-\frac{1}{\gamma_{t r}^{2}} \tag{6.9}
\end{equation*}
$$

To summarize, when a particle in an accelerator has the transition energy, that is $U_{t r}=\gamma_{t r} m c^{2}$ (specific for that machine), then the phase slip factor is null, and the particle revolution frequency does not depend on its momentum, according to (6.6).

For a ring made of FODOs, the momentum compaction factor is

$$
\begin{equation*}
\alpha_{p} \approx 1 / Q_{x}^{2} \tag{6.10}
\end{equation*}
$$

Thus, the transition energy of the same ring is given by

$$
\begin{equation*}
\gamma_{t r} \approx Q_{X} \tag{6.11}
\end{equation*}
$$

Two regimes exist then:

Below transition $\left(\gamma_{r}<\gamma_{t r}\right)$

- In this case, $\eta>0$.
- Higher momentum (energy) results in higher revolution frequency.
- This is the case of strong focusing machines with low energy (for example at injection) and linear accelerators (since $\alpha_{p}=0^{*}$).
* The average radius is infinite.

Above transition $\left(\gamma_{r}>\gamma_{t r}\right)$

- In this case, $\eta<0$.
- Higher momentum (energy) results in lower revolution frequency: this is called the negative mass effect.
- This is the case of strong focusing machines with high energy, and, in general, for electron machines (and thus, for synchrotron light sources), since typically $\gamma_{r} \gg \gamma_{t r}$.

Remember the Lorentz force,

$$
\begin{equation*}
\vec{F}=q \vec{E}+q \vec{v} \times \vec{B} \tag{6.12}
\end{equation*}
$$

So far, we have used the magnetic field to deflect the particles, and keep the bunches focused. This correspond to the transverse dynamics.

We are now interested in the electric field that, as we can see, acts along the direction of motion.

In the longitudinal plane, we have two effects:

- When particles are bend, they lose energy to synchrotron radiation.
- Particle bunches spread in the longitudinal plane (just as in the transverse plane, which is corrected by means of the strong focusing).

Note: From now on we will use U to denote energy instead of E to avoid confusion with the electric field.

For particles in machine with equal dipoles,

Energy loss per turn

$$
\begin{equation*}
U_{\gamma}=C_{\gamma} \frac{U^{4}}{\rho} \tag{6.13}
\end{equation*}
$$

where

$$
\begin{align*}
C_{\gamma} & \equiv \frac{4 \pi}{3} \frac{r_{e, p}}{\left(m_{e, p} c^{2}\right)^{3}} \\
& =\left\{\begin{array}{l}
8.85 \times 10^{-5} \\
7.79 \times 10^{-18}
\end{array}\right. \tag{6.15}
\end{align*}
$$

in units of $\mathrm{m} /(\mathrm{GeV})^{3}$, and $r_{e, p}$ is the classical electron/proton radius,

Energy loss and RF acceleration II

$$
\begin{align*}
r_{e, p} & =\frac{q^{2}}{4 \pi \epsilon_{0} m_{e, p} c^{2}} \tag{6.16}\\
& =\left\{\begin{array}{l}
2.82 \times 10^{-15} \mathrm{~m} \\
1.53 \times 10^{-18} \mathrm{~m}
\end{array}\right. \tag{6.17}
\end{align*}
$$

Example: Energy loss comparison

For the LHC (proton machine) and a generic light source (electron machine), their beam energies and bending radius are 7 TeV with $\rho=2.8 \mathrm{~km}$, and 2.5 GeV with $\rho=6.9 \mathrm{~m}$, respectively.

Using (88) for each machine, the ratio of energy losses per turn is then

$$
\begin{equation*}
\frac{\left(U_{\gamma}\right)_{l . s .}}{\left(U_{\gamma}\right)_{L H C}} \approx \frac{0.5 \mathrm{MeV}}{6.7 \mathrm{keV}}=75 \tag{6.18}
\end{equation*}
$$

To overcome the two problems above, we use RF fields. With them,

- When can restore the lost energy to keep the beam at p_{0} constant. Moreover, we can accelerate it as a whole.
- Keep the bunches focused (phase stability).

Such fields are provided by RF cavities. The potential difference between their two electrodes is used to accelerate particles. They run at a frequency $\omega_{r f}$ proportional to the revolution frequency of particles ω.

The proportionality is given by the

Harmonic number

$$
\begin{equation*}
\omega_{r f}=h \omega \tag{6.19}
\end{equation*}
$$

The electric field in a short cavity is

$$
\begin{aligned}
\vec{E}(s, t) & =E(s, t) \hat{s} \\
& =\hat{s} V_{0} \sin \left(\omega_{r f} t+\phi_{s}\right)(6.20)
\end{aligned}
$$

where V_{0} is the voltage amplitude and ϕ_{s} is the synchronous phase of the synchronous particle (the one that sees always the same phase (at each turn) in the RF cavity.

Careful! For linear accelerators, the convention is to use cosine instead of sine!

Gain in energy due to RF cavity

$$
\begin{equation*}
\Delta U=q V_{0} \sin \left(\omega_{r f} \Delta t+\phi_{s}\right) \tag{6.21}
\end{equation*}
$$

where Δt is the time difference w.r.t. the synchronous particle. Of course, for the synchronous particle,

$$
\begin{equation*}
\Delta U=q V_{0} \sin \phi_{s} \tag{6.22}
\end{equation*}
$$

Change in magnetic field

As the energy of the synchronous particle increases each turn, the magnetic field must increase in order to keep the particles in a closed orbit according to

Magnetic field increase

$$
\begin{equation*}
\dot{B}=\frac{\Delta U}{2 \pi \rho R q}=\frac{V_{0} \sin \phi_{s}}{2 \pi \rho R} \tag{6.23}
\end{equation*}
$$

Example: Energy gain in the PS

The ring of the Proton Synchrotron (PS), has $R=100 \mathrm{~m}$, and $\dot{B}=2.4 \mathrm{~T} / \mathrm{s}$, and it is composed of 100 dipoles of 4.398 m . The harmonic number is 20 .

We can compute the bending radius as follows: 100 dipoles of 4.398 m make a total length of 439.8 m . This length corresponds to circumference equal to $2 \pi \rho$, thus $\rho=70 \mathrm{~m}$.

The energy gain per turn is

$$
\Delta U=2 \pi \rho R q \dot{B}=2 \pi(70 \mathrm{~m})(100 \mathrm{~m}) e(2.4 \mathrm{~T} / \mathrm{s})=106 \mathrm{keV}
$$

since $\mathrm{T}=\mathrm{Vs} / \mathrm{m}^{2}$.
The minimum rf voltage required is obtained when $\sin \phi_{s}$ is maximum, that is, equal to 1 . In that case,

$$
V_{0}=\frac{\Delta U}{q \sin \phi_{s}}=\frac{106 \mathrm{keV}}{e \cdot 1}=106 \mathrm{kV}
$$

Suppose that we do not want to accelerate the beam as a whole (for example, if the particles do not lose energy to radiation), and that we are below transition. Then,

- The magnetic field in the dipoles remains constant.
- For the synchronous particle, $\phi_{s}=0$, and therefore $E=0$.

A particle at ϕ_{1} :

- Arrives after the synchronous particle.
- Sees a positive voltage and is accelerated.
- Next turn it will be closer to the synchronous particle.
A particle at ϕ_{2} :
- Arrives before the synchronous particle.
- Sees a negative voltage and is decelerated.
- Next turn it will be closer to the synchronous particle.

In the longitudinal phase space (bottom), we can see such oscillations.

By design, particles at then synchronous phase ϕ_{s} gain just enough energy to balance radiation losses.

Below transition: linacs

- P_{1} are the design particles: they ride the wave exactly in phase.
- Increased energy means increased frequency:
- M_{1} and N_{1} move towards $P_{1} \rightarrow$ Local stability (Phase stability).

By design, particles at then synchronous phase ϕ_{s} gain just enough energy to balance radiation losses.

Above transition: electron machine

- P_{2} are the design particles: they ride the wave exactly in phase.
- Increased energy means decreased frequency:
- M_{2} and N_{2} move towards $P_{2} \rightarrow$ Local stability (Phase stability).

We define the deviation from the synchrotron phase as

$$
\begin{equation*}
\varphi \equiv \phi-\phi_{s} \tag{6.24}
\end{equation*}
$$

Since the electric force is sinusoidal, we expect the motion to be something like a pendulum.

Indeed, the equation of motion describing the synchrotron oscillations is

$$
\begin{equation*}
\ddot{\varphi}+\frac{h \omega_{s}^{2} \eta q V_{0}}{2 \pi \beta_{r}^{2} U_{s}}\left[\sin \left(\phi_{s}+\varphi\right)-\sin \phi_{s}\right]=0 \tag{6.25}
\end{equation*}
$$

If this phase oscillations are small, the equation is linearized using

$$
\sin \left(\phi_{s}+\varphi\right) \approx \varphi \cos \phi_{s}+\sin \phi_{s}(6.26)
$$

So we end up with a simple harmonic oscillator,

Small synchrotron oscillations

$$
\begin{equation*}
\ddot{\varphi}+\Omega_{s}^{2} \varphi=0 \tag{6.27}
\end{equation*}
$$

where we define the

Synchrotron frequency

$$
\begin{equation*}
\Omega_{s} \equiv \omega_{s} \sqrt{\frac{h \eta \cos \phi_{s}}{2 \pi \beta_{r}^{2} \gamma_{r}} \frac{q V_{0}}{m c^{2}}} \tag{6.28}
\end{equation*}
$$

and the

Synchrotron tune

$$
\begin{equation*}
Q_{s} \equiv \frac{\Omega_{s}}{\omega_{s}}=\sqrt{\frac{h \eta \cos \phi_{s}}{2 \pi \beta_{r}^{2} \gamma_{r}} \frac{q V_{0}}{m c^{2}}} \tag{6.29}
\end{equation*}
$$

We will not discuss large oscillations...
Phase stability is obtained when the angular frequency of the oscillator, Ω_{s}^{2} is real positive. This implies that

Phase stability

$$
\begin{equation*}
\eta \cos \phi_{s}>0 \tag{6.30}
\end{equation*}
$$

Longitudinal dynamics: final remarks

For acceleration:

- Below transition:

$$
\begin{gathered}
0<\phi_{s}<\frac{\pi}{2} \\
\phi_{s}<\phi<\pi-\phi_{s}
\end{gathered}
$$

- At transition:

$$
\phi_{s} \rightarrow \phi_{s}=\pi-\phi_{s}
$$

- Above transition:

$$
\begin{gathered}
\frac{\pi}{2}<\phi_{s}<\pi \\
\pi-\phi_{s}<\phi<\phi_{s}
\end{gathered}
$$

Longitudinal phase space: ϕ, s, or t, vs. ϕ^{\prime}, δ, or $\Delta E \ldots$

Bucket and separatrix.
Longitudinal emittance, usually in [eV s].

RF bucket

$$
\phi_{s}=30^{\circ}
$$

Longitudinal dynamics: final remarks

A. Castilla L. Medina

Prerequisites

I. Weak

 Focusing II. Optical ElementsIII. Strong Focusing
IV. Strong Focusing II

Dynamics

Below trans.

After trans.

$\phi_{s}=0^{\circ}$
RF bucket

RF bucket

Momentum compaction factor:

$$
\alpha_{p} \equiv \frac{d C / C}{d p / p_{0}}
$$

Phase slip factor:

$$
\eta=\frac{1}{\gamma_{r}^{2}}-\alpha_{p}
$$

Transition energy:

$$
\eta=0 \quad \Rightarrow \quad \gamma_{t r} \equiv \frac{1}{\sqrt{\alpha_{p}}}
$$

Momentum compaction factor and transition energy of a ring made of FODOs:

$$
\alpha_{p} \approx \frac{1}{Q_{X}^{2}}, \quad \gamma_{t r} \approx Q_{x}
$$

Below transition: Above transition:

$$
\begin{array}{cc}
\gamma_{r}<\gamma_{t r} & \gamma_{r}>\gamma_{t r} \\
\eta>0 & \eta<0 \\
0<\phi_{s}<\frac{\pi}{2} & \frac{\pi}{2}<\phi_{s}<\pi \\
\phi_{s}<\phi<\pi-\phi_{s} & \pi-\phi_{s}<\phi<\phi_{s}
\end{array}
$$

At transition:

$$
\phi_{s} \rightarrow \phi_{s}=\pi-\phi_{s}
$$

Energy loss per turn:

$$
U_{\gamma}=C_{\gamma} \frac{U^{4}}{\rho}
$$

where
$C_{\gamma}= \begin{cases}8.85 \times 10^{-5} & \text { for electrons } \\ 7.79 \times 10^{-18} & \text { for protons }\end{cases}$
in units of $\mathrm{m} /(\mathrm{GeV})^{3}$.

Harmonic number:

$$
\omega_{r f}=h \omega
$$

Gain in energy due to RF cavity:

$$
\Delta U=q V_{0} \sin \left(\omega_{r f} \Delta t+\phi_{s}\right)
$$

Magnetic field increase:

$$
\dot{B}=\frac{\Delta U}{2 \pi \rho R q}=\frac{V_{0} \sin \phi_{s}}{2 \pi \rho R}
$$

Small synchrotron oscillations:

$$
\begin{equation*}
\ddot{\varphi}+\Omega_{s}^{2} \varphi=0 \tag{6.31}
\end{equation*}
$$

Synchrotron frequency:

$$
\begin{equation*}
\Omega_{s} \equiv \omega_{s} \sqrt{\frac{h \eta \cos \phi_{s}}{2 \pi \beta_{r}^{2} \gamma_{r}} \frac{q V_{0}}{m c^{2}}} \tag{6.32}
\end{equation*}
$$

Synchrotron tune:

$$
\begin{equation*}
Q_{s} \equiv \frac{\Omega_{s}}{\omega_{s}}=\sqrt{\frac{h \eta \cos \phi_{s}}{2 \pi \beta_{r}^{2} \gamma_{r}} \frac{q V_{0}}{m c^{2}}} \tag{6.33}
\end{equation*}
$$

Phase stability:

$$
\eta \cos \phi_{s}>0
$$

- Linear imperfections and non-linear dynamics.
- Particle tracking and dynamic aperture.
- Measurement methods.
- Instabilities: space charge, beam-beam.
- Colliders and luminosity.
- Bunch manipulations.
- Polarization and spin dynamics.
- Synchrotron radiation.
- Light sources and FELs.
\vdots

[^0]: ${ }^{1}$ Please send an email to graeme.burt@cockroft.ac.uk and tell Graeme you are using them (this is only for internal statistics).

[^1]: ${ }^{2}$ Two remarks: 1) Careful with K vs. $k!$ 2) Some authors define K with a negative sign!

[^2]: ${ }^{3}$ This result comes from Liouville's theorem, which can be stated as the preservation of the phase space area, Q

