

MAD-X

Bruce Yee Rendón

byee@post.j-parc.jp
Accelerator Division
Japan Proton Accelerator Research Complex (J-PARC)
High Energy Accelerator Research Organization (KEK)

Luis Eduardo Medina Medrano

Imedinam@cern.ch
Beam Department
European Organization for Nuclear Research (CERN)
Universidad de Guanajuato (UG)
Acknowledgement to Werner Herr, CAS

Some formalities

Course scheme:

1. Lectures (Friday 13 and Saturday 14). Introduction to concepts. Exercises.
2. Work in the Exercise in group (Tuesday 17). Assignation of an exercise to each group. Creation of a presentation with the solution.
3. Presentation in group (Thursday 19). Each group will have 10 minutes to expose and questions.

Instructors:
Bruce Yee Rendon
Luis Eduardo Medina Medrano

Disclaimer

- This course is mostly based on Werner Herr's CAS course.
- In some cases, Herr's slides may be used directly.
- This is an introductory course, thus, if you are interested in more information and details please go to the next link
http://zwe.web.cern.ch/zwe/
and/or contact him at werner.herr@cern.ch

Yesterday's problem

Courtesy of W. Herr. $\theta=\frac{2 \pi}{2 \times 8}=0.3927 \mathrm{rad}$

- This is enough to fully declare the dipoles, since we know their length and bending angle. Remember:

$$
k_{0}=\frac{1}{p / c} B_{y}=\frac{1}{\rho}=\frac{\theta}{l}
$$

FODO cell

- To obtain the properties of the quadrupoles, remember that the phase advance, length and focal length, in a FODO cell are related:

$$
\sin \phi= \pm \frac{L}{4 f}
$$

- Its maximum/minimum betas are given by

$$
\beta^{ \pm}=\frac{L}{\sin \phi}\left(1 \pm \sin \frac{\phi}{2}\right)=\frac{L\left(1 \pm \sin \frac{\phi}{2}\right)}{2 \sin \frac{\phi}{2} \cos \frac{\phi}{2}}
$$

- So, for a maximum beta β^{+}of 300 m , we have that

$$
\frac{\beta^{+}}{L}=\frac{300}{125}=2.4
$$

Maximum beta I

- From the plot, we can choose a phase advance of $\phi \approx 32^{\circ}$ or

$$
\phi \approx 0.56 \mathrm{rad}
$$

- The focal length of the quadrupoles is then

$$
f= \pm \frac{125}{4 \sin (0.56 / 2)}
$$

that is,

$$
f= \pm 113.1 \mathrm{~m}
$$

Maximum beta II

- The \pm comes from the fact that both focusing/defocusing quadrupoles are considered to have the same magnitude, but opposite polarity.
- Then, the quadrupole strengths are

$$
k_{1}=\frac{1}{f L}= \pm 0.002947 \mathrm{~m}^{-2}
$$

- And we can declare the quadrupoles as follows:
qf: multipole, $\mathrm{knl}=\left\{0,0.002947^{*} \mathrm{lq}\right\}$;
qd: multipole, $\mathrm{knl}=\left\{0,-0.002947^{*} \mathrm{lq}\right\} ;$

Exercise II

- Start with the previous exercise and modify in such way that the maximum beta function is 100 m , but without changing the circumference.

V. Advanced commands

- Chromaticity
- Q^{\prime} correction
- Global matching

Chromaticity

- A deviation on momentum changes the tune of the machine:

Particles with...

- higher energy
- the ideal energy
- lower energy
- The chromaticity is given by

$$
\xi_{x, y}=-\frac{1}{4 \pi} \oint k_{x, y}(s) \beta(s) d s
$$

where $k_{x, y}(s)$ describes the quadrupole strengths along the ring.

Chromaticity: FODO

- In a ring made of $n_{\text {cell }}$ identical FODO cells, the tune and chromaticity are given by

$$
Q_{x}=n_{\text {cell }} \phi_{x}
$$

and

$$
Q_{x}^{\prime}=-\frac{1}{\pi} n_{\text {cell }} \tan \frac{\phi_{x}}{2}
$$

- In particular, for Exercise II,

$$
Q_{x}=2.4, \quad Q_{x}^{\prime}=-2.5
$$

Q^{\prime} correction

- The way to correct the chromaticity (i.e, to make it equal to zero) is by introducing elements which depend on the momentum $\delta=\frac{\Delta p}{p}$.
- For sextupole magnets,

Quadrupole-like: $k x$

$$
B_{\text {sext }}=\frac{B^{\prime}}{2} x^{2} \quad \rightarrow \quad B_{\text {sext }}^{\prime}=B^{\prime \prime} x=B^{\prime \prime} D(s) \delta
$$

- Thus, the change in the chromaticity is given by

$$
Q_{x}^{\prime}=\left(Q_{x}^{\prime}\right)_{\text {quad }}+\left(Q_{x}^{\prime}\right)_{\text {sext }}
$$

$\left(Q_{x}^{\prime}\right)_{q u a d}=-\frac{1}{4 \pi} \oint k_{x}(s) \beta_{x}(s) d s$
$\left(Q_{x}^{\prime}\right)_{s e x t} \approx \frac{1}{4 \pi} \sum_{S F} k_{2}^{S F} l_{\text {sext }} D^{S F} \beta_{x}^{S F}-\frac{1}{4 \pi} \sum_{S D} k_{2}^{S D} l_{\text {sext }} D^{S D} \beta_{x}^{S D}$

Q^{\prime} correction: A hint

- To obtain the value $k_{2}^{S F}$ use

$$
Q_{x}^{\prime}=-\frac{1}{4 \pi} n_{\text {cell }}\left(k_{2}^{S F} l_{\text {sext }} D^{S F} \beta_{x}^{S F}-k_{2}^{S D} l_{\text {sext }} D^{S D} \beta_{x}^{S D}\right)
$$

and

$$
Q_{y}^{\prime}=-\frac{1}{4 \pi} n_{\text {cell }}\left(-k_{2}^{S F} l_{\text {sext }} D^{S F} \beta_{y}^{S F}+k_{2}^{S D} l_{\text {sext }} D^{S D} \beta_{y}^{S D}\right)
$$

Global matching

- Some global parameters such as tune and chromaticity can be adjusted by global matching:

```
MATCH, SEQUENCE=CASSPS;
    VARY,NAME=KQF, STEP=0.00001;
    VARY,NAME=KQD, STEP=0.00001;
    GLOBAL,SEQUENCE=CASSPS,Q1=26.58;
    GLOBAL,SEQUENCE=CASSPS,Q2=26.62;
    LMDIF, CALLS=10, TOLER.ANCE=1.0E-21;
ENDMATCH;
MATCH, SEQUENCE=CASSPS;
    VARY,NAME=KSF, STEP=0.00001;
```



``` Parameters to be varied: sextupole strengths
VARY, NAME=KSD, STEP=0.00001;
GLOBAL , SEQUENCE=CASSPS ,DQ1=0.0;
GLOBAL , SEQUENCE=CASSPS , DQ2=0.0;
```



```Desired chromaticities
LMDIF, CALLS=10, TOLERANCE=1.OE-21;
ENDMATCH;
```

Parameters to be varied: quadrupoles strengths

Desired tune values to be obtained

```
Desired chromaticities values to be obtained
```


Exercise III

が-RAFC

- Start with the lattice from Exercise II and modify it to correct the chromaticity in both planes. Try first to calculate approximately the required strengths. Implements your correction scheme in MAD-X, and verify your calculation. Compute the precise strengths required by matching the global parameters Q_{x}^{\prime} and Q_{y}^{\prime} (in MAD-X names, DQ1 and DQ2, respectively). Compare the results with your calculations.

IV. What we don't have time for

Local matching and orbit errors/correction

Low beta insertion

Orbit errors

Orbit correction

Particle tracking

Thick lens tracking with PTC
MAD-X CAS2009 17/06/09 11.26.05

