#### RF Cavities II

#### Salvador Sosa Güitrón

Old Dominion University

Mexican Particle Accelerator School 2015

Guanajuato, Mexico



#### Outline

- Why Superconducting RF?
- SRF Fundamentals
  - Superconductivity
- SRF Technology
  - Cavity Fabrication
  - Cavity Testing
  - Loss Mechanisms
  - Cavity Processing
- Recent Breakthroughs
  - Alternatives to Nb
  - Multilayers
  - N doping
- 5 Final Comments



### Why Superconducting RF cavities?

#### Low power dissipation

- High gradient in CW or long-pulsed operation
  - Less number of cavities (less beam disruption)
  - Shorter accelerator (cost saving)
- Cavity design with large beam tube
  - Beam stability
  - Higher beam current





## ISAC II





#### Outline

- Why Superconducting RF?
- SRF Fundamentals
  - Superconductivity
- SRF Technology
  - Cavity Fabrication
  - Cavity Testing
  - Loss Mechanisms
  - Cavity Processing
- 4 Recent Breakthroughs
  - Alternatives to Nb
  - Multilayers
  - N doping
- 5 Final Comments



### Superconductivity

- Discovered by Kamerlingh Onnes in 1911
- Drop to zero in electric resistance of Hg at 4.2 K





### Complete Diamagnetism

ullet Magnetic field expulsion from the material below  $T_c$  (Meissner state)





• For SRF applications operate in the Meissner state

### Magnetic Flux Quantization

- Quantization of the flux field
- Type-II superconductors
- $\Phi_0 = 2.067 \cdot 10^{-15} \text{ Wb}$







### 2-fluid model of Superconductivity

 Current density in the metal has a normal and superconducting component:

$$J = J_N + J_{SC}$$

 The number of normal electrons increases with T as:

$$N(e) \propto e^{-\Delta/k_BT}$$

 2Δ is the superconducting energy gap.



# **London equations (I)**





F. and H. London, 1935

Superelectrons accelerate steadily in the presence of a constant electric field

$$m\frac{d\overrightarrow{v_s}}{dt} = e\overrightarrow{E}$$

$$\uparrow$$

$$J_s = n_s e v_s$$

$$\frac{d\overrightarrow{J_s}}{dt} = \frac{n_s e^2}{m} \overrightarrow{E}$$

$$\lambda_L = \sqrt{\frac{m}{\mu_0 n_s e^2}}$$

# $\left| \lambda_L = \sqrt{\frac{m}{\mu_0 n_c e^2}} \right| \quad \textbf{London penetration depth}$

$$\frac{d\vec{J}_s}{dt} = \frac{1}{\mu_0 \lambda_L^2} \vec{E}$$
 > **E**=0: J<sub>s</sub> goes on forever  
> **E** is required to maintain an AC current

# **London equations (II)**

$$\vec{\nabla} \times \vec{J}_{s} = \frac{1}{\mu_{0} \lambda_{L}^{2}} \vec{\nabla} \times \vec{E} \qquad \qquad \vec{\nabla} \times \vec{J}_{s} = -\frac{1}{\mu_{0} \lambda_{L}^{2}} \vec{B}$$

$$\nabla \times \vec{E} = -\dot{B}$$

$$\vec{\nabla} \times \vec{J}_s = -\frac{1}{\mu_0 \lambda_L^2} \vec{B}$$
 > **B** is the source of  $J_s$  > Spontaneous flux exclusion

$$\nabla \times B = \mu_0 J_s \longrightarrow \int$$

$$\nabla^2 B = \frac{B}{\lambda_s^2}$$





## Theory of Superconductivity (BCS)

 Attractive interaction between free electrons, mediated by lattice phonons.



J. Bardeen, L. Cooper, R. Schrieffer, Phys. Rev. 108, 1175, 1957.

# Cooper pairs







a Cooper pair is formed



Cooper pairs are formed by electrons with opposite momentum and spin



- Cooper pairs belong all to the same quantum state and have the same energy
- When carrying a current, each Cooper pair acquires a momentum which is the same for all pairs
- The **total** momentum of the pair remains constant. It can be changed only if the pair is broken, but this requires a minimum energy  $2\Delta$







At extremely low temperatures, an electron can draw the positive ions in a superconducting material towards it. This movement of the ions creates a more positive region that attracts another electron to the area.

# **Characteristic Lengths**

• Coherence length  $\xi_0 \equiv \frac{\hbar v_F}{\pi \Delta(0)}$ : interaction distance between electrons forming a Cooper pair  $\xi_0 = 39$  nm for Nb

• Penetration depth,  $\lambda(T)$ : decay length of magnetic field in the superconductor  $\lambda(0) = 36 \text{ nm for Nb}$ 

$$\lambda(T) = \frac{\lambda_L(0)}{\sqrt{1 - \left(\frac{T}{T_c}\right)^4}}$$

Slide 25 of 62

# Effect of impurities on $\xi$ and $\lambda$

- Adding impurities to a superconductor reduces the normal electrons mean free path, so that the electrodynamic response changes from "clean" ( $l >> \xi$ ) to the "dirty" limit  $(1 << \xi).$
- Changes in the characteristic lengths of the SC can be approximated as:

$$\frac{1}{\xi} = \frac{1}{\xi_0} + \frac{1}{l}$$

$$\lambda(l,T) = \lambda_L(T) \sqrt{1 + \frac{\xi_0}{l}}$$



Slide 26 of 62



#### Thermodynamic Critical Field

Superconducting state lost above a critical value  $H_c$  of magnetic field



From BCS theory:

$$H_c(0) = \sqrt{\frac{0.472\gamma}{\mu_0}} T_c$$

### Critical current

Superconductivity is lost when a current flowing in a SC increases above a critical value.



$$I_c = 2\pi a H_c$$

$$J_c = \frac{H_c}{\lambda}$$

# Phase diagram of SC







# Type-I and Type-II SC





Abrikosov found solutions  $\psi(x, y)$  with periodic zeros = lattice of vortices with **quantized magnetic flux** 

$$\Phi_0 = \frac{h}{2e} = 2.07 \times 10^{-15} \,\text{Wb}$$







#### Flux-line lattice



Triangular flux-line lattice penetrating the top surface of a SC lead-indium sample

The points of exit of the flux lines are decorated by small ferromagnetic particles

H. Träuble and U. Essmann, J. Appl. Phys. **39**, 4052 (1968);





### Critical fields

$$H_c = \frac{\phi_0}{2\pi\sqrt{2}\lambda\xi}$$

Thermodynamic critical field

$$H_{c2} = \sqrt{2}\kappa H_c = \frac{\phi_0}{2\pi\xi^2}$$

Upper critical field

$$H_{c1} \approx \frac{\phi_0}{4\pi\lambda^2} \ln(\kappa + \alpha)$$

Lower critical field

$$\alpha = \frac{1}{2} + \frac{1 + ln2}{2\kappa - \sqrt{2} + 2} = \begin{cases} 1.35, \kappa = 0.71 \\ 0.5, \kappa \gg 1 \end{cases}$$

For Nb,  $\kappa \sim 0.85$ ,  $B_{c1}(0) \sim 180$  mT,  $B_{c}(0) \sim 195$  mT,  $B_{c2}(0) \sim 400$  mT



# Surface resistance of superconductor

$$R_s = \frac{1}{2} \mu_0^2 \omega^2 \sigma_1 \lambda_L^3$$

- $R_s \propto \omega^2 \rightarrow$  use low-frequency cavities to reduce power dissipation
- Temperature dependence:



$$n_s(T) \propto 1 - (T/T_c)^4$$

$$n_s(T) \propto 1 - (T/T_c)^4$$
  
 $\sigma_1(T) \propto n_n(T) \propto e^{-\Delta/k_B T}$ 

$$R_{\rm s} \propto \omega^2 \lambda_I^3 l \exp(-\Delta/k_{\rm B}T)$$

$$T < T_{\rm c}/2$$





# Material purity dependence of R.

The dependence of the penetration depth on l is approximated as

$$\lambda(l) \approx \lambda_L \sqrt{1 + \frac{\xi_0}{l}}$$

•  $\sigma_1 \propto l$ 

$$R_s \propto \left(1 + \frac{\xi_0}{l}\right)^{3/2} l \qquad R_s \propto l \qquad \text{if } l >> \xi_0 \text{ ("clean" limit)}$$

$$R_s \propto l^{-1/2} \qquad \text{if } l << \xi_0 \text{ ("dirty" limit)}$$

R<sub>s</sub> has a minimum for  $l = \xi_0/2$ 



Slide 44 of 62





C. Benvenuti et al., Physica C **316** (1999) 153.

# BCS surface resistance (2)

- There are numerical codes (Halbritter (1970)) to calculate  $R_{BCS}$  as a function of  $\omega$ , T and material parameters  $(\xi_0, \lambda_1, T_c, \Delta, l)$
- For example, check <a href="http://www.lepp.cornell.edu/~liepe/webpage/researchsrimp.html">http://www.lepp.cornell.edu/~liepe/webpage/researchsrimp.html</a>
- A good approximation of  $R_{\rm RCS}$  for  $T < T_c/2$  and  $\omega < \Delta/\hbar$  is:

$$R_{\mathrm{BCS}} \cong \frac{\mu_0^2 \omega^2 \lambda^3 \sigma_n \Delta}{k_B T} \ln \left[ \frac{C_1 k_B T}{\hbar \omega} \right] \exp \left[ -\frac{\Delta}{k_B T} \right]$$

 $C_1 = 2.246$ 

Let's run some numbers: Nb at 2.0 K, 1.5 GHz  $\rightarrow \lambda$  = 36 nm,  $\sigma_n$  = 3.3×10<sup>8</sup> 1/ $\Omega$ m,  $\Delta/k_BT_c = 1.85$ ,  $T_c = 9.25$  K

$$R_{BCS}\cong 20~n\Omega$$

$$X_s \cong 0.47 \text{ m}\Omega$$

Nb → 
$$\frac{R_{BCS}(2 \text{ K}, 1.5 \text{ GHz})}{R_s(300 \text{ K}, 1.5 \text{ GHz})} \approx 2 \times 10^{-6}$$





### Residual resistance

$$R_{s} = R_{BCS}(\omega, T, \Delta, T_{c}, \lambda_{L}, \xi_{0}, l) + R_{res}(?)$$

Possible contributions to R<sub>res</sub>:

- Trapped magnetic field
- Normal conducting precipitates
- Grain boundaries
- Interface losses
- Subgap states



For Nb,  $R_{res}$  (~1-10 n $\Omega$ ) dominates  $R_s$  at low frequency (f<~750 MHz) and low temperature (T <~2.1 K)



### RF critical field: superheating field



- Penetration and oscillation of vortices under the RF field gives rise to strong dissipation and the surface resistance of the order of R<sub>s</sub> in the normal state
- the Meissner state can remain metastable at higher fields,  $H > H_{\rm c1}$  up to the superheating field  $H_{\rm sh}$  at which the Bean-Livingston surface barrier for penetration of vortices disappears and the Meissner state becomes unstable

 $H_{\rm sh}$  is the maximum magnetic field at which a type-II superconductor can remain in a true non-dissipative state not altered by dissipative motion of vortices.

At  $H = H_{\rm sh}$  the screening surface current reaches the depairing value  $J_{\rm d} = n_{\rm s} e \Delta/p_{\rm F}$ 



# Superheating field: experimental results

 Use high-power (~1 MW) and short (~100 μs) RF pulses to achieve the metastable state before other loss mechanisms kick-in



• RF magnetic fields higher than  $H_{c1}$  have been measured in both Nb and Nb<sub>3</sub>Sn cavities. However max  $H_{RF}$  in Nb<sub>3</sub>Sn is << predicted  $H_{sh}$ ...



# Field dependence of R<sub>s</sub>: Experimental results







#### Outline

- Why Superconducting RF?
- SRF Fundamentals
  - Superconductivity
- SRF Technology
  - Cavity Fabrication
  - Cavity Testing
  - Loss Mechanisms
  - Cavity Processing
- 4 Recent Breakthroughs
  - Alternatives to Nb
  - Multilayers
  - N doping
- 5 Final Comments



#### **Niobium**

- $T_c \simeq 9.1 \text{ K}$
- $H_c \simeq 200 \text{ mT}$
- Chemically inert
- Easy to machine







### Cavity Fabrication



Figure: a) Deep drawing and b) single-sheet spinning.



Figure: Dice for half cell elliptical cavity deep pressing.



4□ > 4□ > 4□ > 4□ > 3□ 900

### Cavity Testing







: BCS theory



### **Performance limitations**





### Multipacting and Choice of Geometry

- Resonant process in which secondary electrons are generated, absorbing input power and hitting the surface of the cavity.
- Acts as a potential barrier and is present only at certain frequencies.



#### **Field Emission**

- Characterized by an exponential drop of the Q<sub>0</sub>
- Associated with production of x-rays and emission of dark current







#### Field Emitters



Figure: a)SEM micrograph of a particle purposely left in the Nb cavity. b) Same site shown after applying an RF field of 75 MV/m.

### RF processing



Figure: a)SEM micrograph of a starburst at a processed defect site and b) zoom into the center region, In was identified at this location.



Figure: a)Temperature mapping of a 1.5 GHz cavity, a temperature increment is observed in region 1 due to thermal breakdown. Locations 2,3,4, correspond to field emission. b) SEM micrograph at site 1 shows a defect: Cu particle partially melted in Nb.

#### Thermal Breakdown

Limits the maximum magnetic field to be excited in the surface of the cavity.

- Originated in surface defects, order size is millimeters.
- When the local temperature at some defect location exceeds  $T_c$  of the superconductor, power losses increase significantly.
- As more regions lose superconductivity, thermal breakdown increases; thus decreasing the quality factor of the cavity.

## Symptom of Quench

- Sudden collapse (ms time scale) of field in SRF cavity
  - Field may self recovers
  - Or may not
- Detection of temperature rise at cavity wall near quench source
  - Can be as high as a few K





75





# Physics of Thermal Quench

- Power dissipation in normal conducting defect generates heat
- Poor thermal conductivity of superconducting wall limits heat conduction
- This causes temperature rise to exceed Tc (9.25 K) in surrounding superconducting region
- This causes additional resistive heating
- The normal conducting region grows rapidly, leading to quench







R.L. Geng

USPAS SRF Course Jan. 2015

Jefferson Lab

78

### Centrifugal Barrel Polishing

- Reduction in the needed quantity of hazardous chemicals
- Simple technology and inexpensive





### Cavity Processing: High Pressure Rinse

- 1300 PSI pressure Courtesy P. Kneisel R.L. Geng Jefferson Lab USPAS SRF Course Jan. 2015 67

De-ionized water, 18 MΩ-cm resistivity

### **Buffered Chemical Polishing**

- Etches Nb surface, removing impurities and reducing the risk of thermal breakdown.
- HF: HNO<sub>3</sub>: H<sub>3</sub>PO<sub>4</sub> at 1:1:2
- Control the reaction through the acid temperature.
- $\bullet$  Removal rate of 1  $\mu$ m/min



### Electro-Polishing

- HF : H<sub>2</sub>SO<sub>4</sub> at 1:9
- Anodization of Nb in H<sub>2</sub>SO<sub>4</sub> forces growth of Nb<sub>2</sub>O<sub>5</sub>
- F<sup>-</sup> in HF dissolves Nb<sub>2</sub>O<sub>5</sub>
- Removal rate of 0.4  $\mu$ m/min
- Overall, a most homogeneous surface





Figure: Micrograph comparison between a Nb surface processed by a) BCP and b) EP.

### Low Temperature Baking



#### Clean Room

- Laminar flow of air keeps particles away from SRF components
- Strict protocols of operation inside the Clean Room
- Users are the most considerable source of contamination





### Vertical and Horizontal Testing

- Vertical Testing
  - Material
  - Fabrication Techniques
  - Preparation recipe
- Horizontal Testing
  - Power couplers
  - High Order Mode absorbers
  - Cryomodule



#### Cavity in a Cryogenic Module

- A cryogenic module is the final container of the cavity, ready for transportation and installation at an accelerator facility.
- Dewar, used in Jlab's Vertical Test Area.





#### Outline

- Why Superconducting RF?
- 2 SRF Fundamentals
  - Superconductivity
- SRF Technology
  - Cavity Fabrication
  - Cavity Testing
  - Loss Mechanisms
  - Cavity Processing
- Recent Breakthroughs
  - Alternatives to Nb
  - Multilayers
  - N doping
- Final Comments

Guanajuato, México

#### Alternate SRF materials to Nb

|                               | $T_c$ [K] | $B_c$ [mT] | $B_{c1}$ [mT] | $\lambda$ [nm] |
|-------------------------------|-----------|------------|---------------|----------------|
| Nb                            | 9.2       | 200        | 170           | 40             |
| $Nb_3Sn$                      | 18        | 540        | 40            | 85             |
| NbN                           | 16.2      | 230        | 20            | 200            |
| $MgB_2$                       | 40        | 320        | 20-60         | 140            |
| $Ba_{0.6}K_{0.4}Fe_{2}As_{2}$ | 38        | 500        | 30            | 200            |

Table: Superconducting properties of attractive SRF materials.

### $R_s$ comparison of different materiales



Figure:  $R_s$  for Nb, Nb<sub>3</sub>Sn and High  $T_c$  ceramic.

### Nb<sub>3</sub>Sn Cavities



S. Posen, M. Liepe, *Proc. PAC 2013*, THOBA2

#### Multilayer Structures

ullet Field enhancement of Nb by thin films of high  $T_c$  superconductors



### Multilayer Structures II





### Nitrogen Doping

• Cavity baking with N<sub>2</sub>, followed by BCP:



## Recent breakthroughs...





#### Jefferson Lab SRF Institute

#### Active research in:

- Elliptical cavities for particle acceleration
- Low  $\beta$  and deflecting cavities
- LCLS-2 Cryomodules
- Superconducting films as alternatives to bulk Nb
- High Q performance



#### Final Comments

- Steady progress in SRF science and technology over the last few decades
- More than proven and reliable technology
- More efficient than normal conducting for some applications
- Still many topics to understand and improve current technology

#### Slides credit

- Gigi Ciovatti
- Rongli Geng
- Jean Delayen

#### References

- H. Padamsee, J. Knobloch & T. Hays, *RF Superconductivity for Accelerators*, Wiley Series in Beam Physics and Accelerator Technology, 1988.
- H. Padamsee, SRF Technology, Wiley Series in Beam Physics and Accelerator Technology.
- A. Gurevich, Superconducting Radio-Frequency Fundamentals for Particle Accelerators, Reviews of Accelerator Science and Technology Vol.5, 2012.
- C. Reece, G. Ciovatti, Superconducting Radio-Frequency Technology and Future Accelerator Applications, Reviews of Accelerator Science and Technology Vol.5, 2012.
- M. Kelley *Superconducting RF Cavities*, Reviews of Accelerator Science and Technology Vol.5, 2012.
  - Lectures from USPAS SRF Winter 2015 and Summer 2015.