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Why Superconducting RF cavities?

o Low power dissipation
e High gradient in CW or
long-pulsed operation
o Less number of cavities
(less beam disruption)
@ Shorter accelerator (cost
saving)
e Cavity design with large beam
tube
o Beam stability
o Higher beam current
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© SRF Fundamentals
@ Superconductivity
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@ Discovered by Kamerlingh
Onnes in 1911
@ Drop to zero in electric
resistance of Hg at 4.2 K
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Complete Diamagnetism

e Magpnetic field expulsion from the material below T. (Meissner state)

A

T>Tc T<Tc

@ For SRF applications operate in the Meissner state
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Magnetic Flux Quantization

@ Quantization of the flux field
@ Type-ll superconductors
o ®g=2.067-10" Wb
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2-fluid model of Superconductivity

@ Current density in the metal has
a normal and superconducting ®
component: Vacuum . Sc
J=Jn+ Jsc o ¢
-®
@ The number of normal electrons ® é
increases with T as: o
HO E
N(e) e A/ksT ° =
o1
@ 2A is the superconducting .
energy gap. ®
G. Ciovatti
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London equations (I)

* Superelectrons accelerate steadily in the
presence of a constant electric field

mﬁzeﬁ |:> d_EznseZE
dt dt m

!

Js = nsev;
A= |— i
LT e London penetration depth
a, = 1 5 E » E=0:J, goes on forever
at  uy; » E is required to maintain an AC current
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London equations (II)

VX]J,= VXE /) VxJ,=— B
* o oA; 1 ° HoAf

VXE=-B

! E > B is the source of J

,uo/l% » Spontaneus flux exclusion

—lld
VX B = ol —> _
B T

[21)
V’B=— A =
2 o

ﬁ“L

S
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Theory of Superconductivity (BCS)

@ Attractive interaction between free electrons, mediated by lattice
phonons.

J. Bardeen, L. Cooper, R. Schrieffer, Phys. Rev. 108, 1175, 1957.
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Cooper pairs

©
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* Positively charged wake due to moving
electron attracting nearby atoms
* This wake can attract another nearby electron

:> a Cooper pair is formed

» Cooper pairs are formed by electrons with
opposite momentum and spin

@ © ©
o bie
o 9l
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(¥ © Q@
¢ © ©
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©
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o o 580 » Cooper pairs belong all to the same quantum state
. and have the same energy
PO 6 8 o »  When carrying a current, each Cooper pair
° g & 9 acquires a momentum which is the same for all
o BB L pairs

» The total momentum of the pair remains constant.
It can be changed only if the pair is broken, but
this requires a minimum energy 2A
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Cooper pairs make super conductors

» @ @ @ @

o o o ¢

At extremely low temperatures, an electron can draw the positive ions in a superconducting
material towards it. This movement of the ions creates a more positive region that attracts
another electron to the area.
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Characteristic Lengths

hliF .
nA(0)"

* Coherence length & = interaction distance between

electrons forming a Cooper pair & =39 nm for Nb

* Penetration depth, A(T): decay length of magnetic field in
the superconductor A(0) =36 nm for Nb

4,(0)

- (%)

A7) =
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Effect of impurities on  and A

* Adding impurities to a superconductor reduces the normal
electrons mean free path, so that the electrodynamic
response changes from “clean” (/ >> £) to the “dirty” limit
(1<<¥).

* Changes in the characteristic lengths of the SC can be
approximated as:

I 1 1

& & !

AQLT) = 2,(T) f1 +i—0
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Thermodynamic Critical Field

Superconducting state lost above a critical value H. of magnetic field

1000 — . . . : . T

H,(T)=H, (o){p(%ﬂ : ]libg

800 b——m__
| —&— S

'\ —<—1In
600 |- —o— Tl 7

g \\ —o—Al
o 400 \ .
\I
. 6 8 10
From BCS theory:
0.472
He(0) = 1T,
Ho
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Critical current

Superconductivity is lost when a current flowing in a SC
increases above a critical value.

' I = 2maH,
o -

~|
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Phase diagram of SC

A Current
Density, J

Critical

Superconducting Surface

Interior Volume f—1"

Magnetic
Field, B

7 ”/ ]

Temperature, T
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D Magnetic field

Type I
Normal
Superconductor
Temperature Tc

Vortex
structure

number of,,

>

superelectrons

.!effegon Lab

Type-I and Type-II SC

o)
Magnetic field &

m

e

Mixture of
normal and

superconducting

Type Il

Normal

Temperature

Thomas Jefferson National Accelerator Facility

Te

Abrikosov found solutions
w(x, y) with periodic zeros =
lattice of vortices with
quantized magnetic flux

B, = h_ 2.07 x 107" Wb
2e
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Flux-line lattice

Triangular flux-line
lattice penetrating the
top surface of a SC
lead-indium sample

The points of exit of the
flux lines are decorated by
small ferromagnetic
particles

Lo o - i £, g

H. Trauble and U. Essmann, J. Appl. Phys. 39, 4052 (1968);
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Critical fields

H. = %o Thermodynamic critical field
2m\20¢
Hyp = VZKH, = -0 U itical field
c2 = K. = W pper critical 11e
Hoy ~ 20 Lower critical field
a® g n(k + a)
1, 1+mm2  (135k=071
R Y _{ 0.5,k > 1

For Nb,  ~ 0.85, B_,(0) ~ 180 mT, B (0)~195 mT, B,(0) ~ 400 mT

0 Facili .
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Surface resistance of superconductor

1
R =" t'o,

* R, o« ®® — use low-frequency cavities to reduce power dissipation

» Temperature dependence:

n,(T)

n.(T)

n(T) o 1-(T/T,)*

0 r 61(T)ocn,(T) e/t
TC

R oc @’ 2 lexp(— A/k,T)

S Thomas Jefferson National Accelerator Facilit
.!effer?on Lab . S

T<TJ/2
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Material purity dependence of R,

» The dependence of the penetration depth on / is approximated as

M) =4 \/Hz

* oyl

|:> ( j |:> R ol if 1>> & (“clean” limit)

R ocI™  if1<<t, (“dirty” limit)

R, has a minimum for / = /2
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BCS surface resistance (2)

* There are numerical codes (Halbritter (1970)) to calculate Ry as
a function of ®, 7" and material parameters (§y, A, T, A, /)

° For example, CheCk http://www.lepp.cornell.edu/~liepe/webpage/researchsrimp.html

* A good approximation of Ryq for 7<T/2 and ® <A/h is:

N0, A | [CukpT A
Roe = g’ N, B2 | oxp | ———— C, =2.246
BCS T ho | V| T RgT ‘

Let's run some numbers: Nb at 2.0 K, 1.5 GHz — i = 36 nm, ,, = 3.3x108 1/Qm,
AlkgT, = 1.85, T, = 9.25 K
Rges =20 nQ X = 0.47 mQ

Nb — R,(2K, 1.5GHz)

=2x10°°
Cu — R(300K,1.5GHz)
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Residual resistance

1000

B.‘ Aune et al., IPhys. Rev.
STAB 3 (2000) 092001
RS = RBCS(O)n T: A7 ch 7\‘L= iO: l) + Rres(?) n‘o\,‘
N\ Ryes
o\ K
oY Nb, 1.3 GHz
100 ¢ \ !
Possible contributions to R : BN
R [nQ]
. S
* Trapped magnetic field \%Q\Q
* Normal conducting precipitates 10g K \"\? 1
* Grain boundaries Q o
R =3n —*—o"g—
* Interface losses \.
* Subgap states b T TS
T/T

For Nb, R . (~1-10 n€2) dominates R, at low frequency (f<~750 MHz)
and low temperature (T < ~2.1 K)
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RF critical field: superheating field

Type—II SC * Penetration and oscillation of vortices
H under the RF field gives rise to strong
dissipation and the surface resistance of

Normal Stat i
ormal tate the order of Ry in the normal state

HCZ(O)

+ the Meissner state can remain metastable
at higher fields, H > H; up to the
superheating field H, at which the Bean-
Livingston surface barrier for penetration

; of vortices disappears and the Meissner
T state becomes unstable

Vortex Lattice

——_~~

H,,(0)
He,(0)

Meissner State

Hg, is the maximum magnetic field at which a type-II superconductor
can remain in a true non-dissipative state not altered by dissipative
motion of vortices.

At H= H the screening surface current reaches the depairing value
Jy = neApg
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Superheating field: experimental results

* Use high-power (~1 MW) and short (~100 ps) RF pulses to achieve
the metastable state before other loss mechanisms kick-in

2500 ———— . :
Highest H,, ever 4/6 ’l/é
measured in CW!!! ~—f Aé 2 u’@o %
2000 i o5
~Q %
81500 Moy~ b \
T v P
1000 e .
%“3‘:-‘:. o
500 SR
_o _Nb Measurement T,
Nbasﬂ Measur At _ Nbs Sn Hc1 = \‘:,7 T. Hays and H. Padamsee, Proc. 1997
e ‘9 B et B SRF Workshop, Abano Terme, Italy, p.
0 . . o — e 789 (1997) .
0 0.2 0.4 0.6 0.8 1
2
(TITe)

* RF magnetic fields higher than H,; have been measured in both Nb and
Nb,Sn cavities. However max Hyp in Nb,Sn is << predicted H,...
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Field dependence of R : Experimental results

T=20K,f=136Hz

& FG, EP + 800C + EP

FG: fine grain Nb

B FG, BCP + 1350C + BCP
LG: large grain Nb

ALG, BCP +800C + BCP + 120C

X LG, BCP + 600C + BCP BCP: buffered
OFG, EP +800C + EP + 120C chemical polishing
EP: electropolishing

800C, 600C, 1350C,
120C: heat treatment
temperatures

B. Aune et al., Phys. Rev. STAB 3
(2000) 092001.

R. Geng, SRF'11,p. 74

G. Ciovati, P. Kneisel and 6. Myneni,
SSTINIO, p. 25.

W. Singer et al., Phys. Rev. ST. Accel.
Beams 16 (2013) 012003
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utline

© SRF Technology
o Cavity Fabrication
o Cavity Testing
@ Loss Mechanisms
@ Cavity Processing
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T-~9.1K
H: ~ 200 mT

Chemically inert

Easy to machine
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Cavity Fabrication

iE
= l
e

Figure: a) Deep drawing and b) single-sheet spinning.

g

|

(b)
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Dice for half cell elliptical cavity deep pressing.







7-cell CEBAF 12 GeV Upgrade Cavity
1.E+11 T T

o m&ﬂ
O 1.E+10

LTI

i 29 watts }/

Q, at 2.07K, 1.497 GHz, fine-grain bulk niobium
Acid etch + 38 pm electropolish + 24 hr 120 C bake

1.E+09
0 10 20 30 40

Accelerating Gradient (MV/m) 3Nov2010
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Low-field Qslope _Q-Slopes

ARs ~ -a/HE medium-field Q-slope
~ +yHZ e
\ AR, ITIH vH High-field Q-slope
1E+11 N ARS ~ exp(BH)
@-ll_-I_- EmEg g
D%b /

Qqc1/Rg 1E+10 g0oO)e $00000000000000 0000 * 000,
o

© %

1E+09 | : ' : : : ;
0 10 20 30 40 50 60 70 80 90 100 110 120

© : BCS theory Bpeak [MT]
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.!effegon Lab

Performance limitations

Ideal
Residual|losses ﬁ
. . d Quench
)
. ® e .
: o)
-
i/
RF Processing *
25 50 MV/m
Accelerating Field , _
G. Ciovatti
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Multipacting and Choice of Geometry

@ Resonant process in which secondary electrons are generated,
absorbing input power and hitting the surface of the cavity.

@ Acts as a potential barrier and is present only at certain frequencies.

1st Order 2nd Order

S
avis
BoAA

VAN
Y

TE

4
(@ (b) (©
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Field Emission

* Characterized by an exponential drop of the Q,

* Associated with production of x-rays and emission of dark current

1.E+11

SNS HTB 54 Radiation at top plate versus Eacc 516108 cg
10000

1000

1.E+10

=)

1.E+09

mRem/hr),

.geffegon Lab

10
E (MV/m)

15

20 0 *s
.
0 ’.
o % g0
2 _Te %
(EEERNE X ¥ 2 P
0
0 5 10 15 20 %
E (MV/m)

Thomas Jefferson National Accelerator Facility
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Field Emitters

Figure: a)SEM micrograph of a particle purposely left in the Nb cavity. b) Same
site shown after applying an RF field of 75 MV/m.
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RF processing

Figure: a)SEM micrograph of a starburst at a processed defect site and b) zoom
into the center region, In was identified at this location.
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. (b)

(a) .
2
1
=
0mK AT 50 mK

Figure: a)Temperature mapping of a 1.5 GHz cavity, a temperature increment is
observed in region 1 due to thermal breakdown. Locations 2,3,4, correspond to
field emission. b) SEM micrograph at site 1 shows a defect: Cu particle partially

melted in Nb.
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Thermal Breakdown

Limits the maximum magpnetic field to be excited in the surface of the
cavity.
@ Originated in surface defects, order size is millimeters.
@ When the local temperature at some defect location exceeds T, of
the superconductor, power losses increase significantly.

@ As more regions lose superconductivity, thermal breakdown increases;
thus decreasing the quality factor of the cavity.
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Symptom of Quench

Y

» Sudden collapse (ms time
scale) of field in SRF cavity

— Field may self recovers
— Or may not

» Detection of temperature rise at
cavity wall near quench source
— Can be as high as a few K

o 1z 3 4 s & 1
TTTTTT

USPAS SRF Course Jan. 2015 75 Jefferson Lab



Physics of Thermal Quench

« Power dissipation in normal dP. nQ, S.C.

conducting defect generates = %R,.|H|2 Rs
heat - mQ, n.c.
» Poor thermal conductivity of
superconducting wall limits
heat conduction @
» This causes temperature Temperature
rise to exceed Tc (9.25 K) in
surrounding
superconducting region
» This causes additional
resistive heating
* The normal conducting
region grows rapidly, leading
to quench

Temperature

Defect Defect

@ (J A R.L Geng USPAS SRF Course Jan. 2015 78 Jefferson Lab



Centrifugal Barrel Polishing

@ Reduction in the needed
quantity of hazardous chemicals

@ Simple technology and
inexpensive

RERIRIAA)
O

Sosa Guitrén (ODU-Jefferson Lab) -2 Guanajuato, México November 14th, 2015 50 / 75



Cavity Processing: High Pressure Rinse

— De-ionized water, 18 MQ-cm resistivity
— 1300 PSI pressure

—— ruven __j
% noramoH
LA

Courtesy P. Kneisel

? (J A R.L. Geng

USPAS SRF Course Jan. 2015 67
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Buffered Chemical Polishing

@ Etches Nb surface, removing
impurities and reducing the risk
of thermal breakdown.

@ HF : HNOg3 : H3PO4 at 1:1:2

@ Control the reaction through the
acid temperature.

@ Removal rate of 1 ym/min
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Electro-Polishing

HF : HySO4 at 1:9 pifusion Layer
Anodization of Nb in HySO4
forces growth of NbyOs

F~ in HF dissolves Nb,Os

Removal rate of 0.4 pxm/min

Bulk Electrolyte

|

Distance

Overall, a most homogeneous
surface

o Compact Salt Film “'\

(~nm) = /_

B
Distance

F

Local temperature, flow and
electrolyte composition affect the
local F-gradient
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EP.

Figure: Micrograph comparison between a Nb surface processed by a) BCP and

b)



Low Temperature Baking

M T=17K
M *0
t‘ *00
T e
1E+10 []
C []
]
o - |
(€] L m
I m pefore bake
I ¢ 120C/9h bake Quench
1 E+09 1 1 1 1 1 1 1 1 1 1 L 1 1 1 L 1

0O 20 40 60 80 100 120 140 160 180
B, (mT)
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Clean Room

@ Laminar flow of air keeps
particles away from SRF
components

@ Strict protocols of operation
inside the Clean Room

@ Users are the most considerable
source of contamination
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Vertical and Horizontal Testing

@ Vertical Testing

o Material
o Fabrication Techniques
o Preparation recipe

@ Horizontal Testing

o Power couplers
e High Order Mode absorbers
e Cryomodule
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Cavity in a Cryogenic Module

@ A cryogenic module is the final container of the cavity, ready for
transportation and installation at an accelerator facility.
@ Dewar, used in Jlab's Vertical Test Area.

Miobium Cavity
RF Antenna \ He Pumping Port

 Electric Fields

Liquid He Bath
T
Beam Path

Aor

He Fill Port

N

N _
Vacuum Insulation
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Outline

@ Recent Breakthroughs
@ Alternatives to Nb
o Multilayers
@ N doping
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Alternate SRF materials to Nb

Tc [K] | Be [mT] | Bea [mT] | A [nm]
Nb 9.2 200 170 40
Nb3Sn 18 540 40 85
NbN 16.2 230 20 200
MgB> 40 320 20-60 140
Bao,6K0_4Fe2A52 38 500 30 200

Table: Superconducting properties of attractive SRF materials.
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Rs comparison of different materiales

As (Ohms)

Temperature (K)

100

Figure: Rs for Nb, Nb3Sn and High T, ceramic.
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Nb3Sn Cavities

A Best Wuppertal Cavity, 2.0 K A A%A
A ; A

Best Wuppertal Cavity, 4.2 K AA
B Cornell ERL1-4, 2.0 K
g || ® Cornell ERL1-4, 4.2 K

0 5 10 15 20
E_ [MV/m]
acc

S. Posen, M. Liepe, Proc. PAC 2013, THOBA2
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Multilayer Structures

@ Field enhancement of Nb by thin films of high T, superconductors

Higher-T _SC:
NbN, Nb,Sn...
A

Insulating
layers

A. Gurevich, Appl. Phys. Lett. , 88, 012511 (2006
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Multilayer Structures |
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Nitrogen Doping

o Cavity baking with N», followed by BCP:

1011 [ T T T T T T T T T T T T T

S
‘ﬁg:’"“"’m.

ﬁll_._-. ‘s

. 1010:_

| ]
B TE1ACCO005 - typical electropolished FG \
@ TE1AES016 - nitrogen treated LG
@® TE1NROOS5 - nitrogen treated FG
TE1AESO003 - nitrogen treated FG
W TE1AESO005 - nitrogen treated FG

é . 1I0 . 1I5 | 2I0 . 2I5 . 3I0
E_ (MV/m)

acc

10°

o

A. Grasselino et. al. , (2013)



Recent breakthroughs...

A LG, BCP +800C + BCP + 120C

# LG, BCP + 1400C with Ti

M FG, EP + 800C with N2 + EP

Decreasing R (H)
up to ~90 mT

P. Dhakal et al., Phys. Rev. ST
Accel. Beams 16 (2013) 042001

A. Grassellino et al., Supercond.
Sci. Tech. 26 (2013) 102001
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Jefferson Lab SRF Institute

Active research in:

o Elliptical cavities for particle acceleration

Low [ and deflecting cavities
LCLS-2 Cryomodules
Superconducting films as alternatives to bulk Nb

High Q performance

Sosa Guitrén (ODU-Jefferson Lab) MEPAS-2 Guanajuato, México November 14th, 2015 71/ 75






Final Comments

@ Steady progress in SRF science and technology over the last few
decades

@ More than proven and reliable technology
@ More efficient than normal conducting for some applications

@ Still many topics to understand and improve current technology
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