

MAD-X

Bruce Yee Rendón

byee@post.j-parc.jp

Accelerator Division Japan Proton Accelerator Research Complex (J-PARC) High Energy Accelerator Research Organization (KEK)

Luis Eduardo Medina Medrano

Imedinam@cern.ch

Beam Department European Organization for Nuclear Research (CERN) Universidad de Guanajuato (UG)

Acknowledgement to Werner Herr, CAS

Some formalities

Course scheme:

- 1. Lectures (Friday 13 and Saturday 14). Introduction to concepts. Exercises.
- 2. Work in the Exercise in group (Tuesday 17). Assignation of an exercise to each group. Creation of a presentation with the solution.
- 3. Presentation in group (Thursday 19). Each group will have 10 minutes to expose and questions.

Instructors:

Bruce Yee Rendon Luis Eduardo Medina Medrano

Disclaimer

- This course is mostly based on Werner Herr's CAS course.
- In some cases, Herr's slides may be used directly.
- This is an **introductory** course, thus, if you are interested in more information and details please go to the next link

http://zwe.web.cern.ch/zwe/

and/or contact him at werner.herr@cern.ch

Contents

- **I.** Introduction. *Description of basic concepts and jargon.*
- II. MAD-X language. Syntaxis, variables.
- **III.** Machine description. *Magnets and sequences.*
- **IV.** MAD-X commands. *Beam, twiss functions, geometry, plots.*
- V. Advanced commands. *Global matching.*
- VI. What we don't have time for: realistic accelerators. Local matching, orbit errors and corrections, particle tracking.

I. Introduction

- Purpose of an accelerator lattice software
- What is MAD-X?
- Why using MAD-X?
- Three basic components

- Definition of **circular** or **linear** accelerators: machine definition.
- Calculation of its **optic parameters**.
- **Simulation** and **correction** of the accelerator imperfections.
- **Definition** and **matching** of desired properties.
- Beam dynamics simulations.
- Etc.

What is MAD-X?

- **MAD-X**: *Methodical Accelerator Design.*
- Latest version after a long development (MAD8, MAD9, MAD-X).
- Allows the design of accelerator lattices in order to simulate, calculate and improve its optic parameters.
- It has been used for more than 20 years in machine desing (PS, SPS, LEP, LHC) and in futures proyects (CLIC, FCC, etc.).
- Official website: madx.web.cern.ch

Why using MAD-X?

• Multipurpouse.

- Run in the different platforms (Windows and Linux).
- Free software.
- **Easy** to understand.
- The program is clear and **intuitive**.

When using MAD-X to design a lattice, you have three basic elements in the study:

- A **lattice design**: definition of the accelerator elements, their physical attributes and locations in the machine (sequences). *What is the machine in question?*
- A **beam** description: type of particle, energy, etc. *What will be running in that machine?*
- A series of **tasks** to be performed on that given machine, with that given particle beam. What do you want to study about that machine?

II. MAD-X language

- Language features
- Input sentences
- Conventions and Optic variables
- How to run MAD-X?

Language features I

- MAD-X is an **interpreter**:
 - It accepts and executes **statements**.
 - Statements can be commands, actions, declarations, etc.
 - It can be used in an **interactive** way or in **batch**.
- It makes use of many of the functions of a standard programming languange (loops, if, macros, subroutines, ...).
- Strong use of **C language**.
- No case sensitive!

Language features II

- All the sentences end with a semicolon (;).
- Comments:
 - **Start** with two slashes (//) or an exclamation mark (!) if they consist of a single line.
 - Are **enclosed** by (/*) and (*/) if they span over more of one line.
- Use arithmetics expresions (exp, log, sin, ...).
- **Differed expressions** make use of := .
- Predefined **constants** (pi, e, mp, me, ...).

Input sentences

- Standard **assignments**:
 - Machine parameters properties.
 - Lattice structure.
 - Beam parameters definitions.
 - Errors and imperfections assigments.
- Standard actions:
 - Calculation of the lattice functions.
 - Machine corrections.

Convections

- Units: all parameters are in terms of SI units, except the energy, expressed on GeV.
- Coordinate system:
 - The elements are located around the **reference orbit** (\hat{s}).
 - x̂ is the horizontal direction (the plane in which the beam is bent) and ŷ is the vertical direction.

Courtesy of W. Herr.

Optic variables I

- Coordinates in MAD-X (all referred to the ideal orbit):
 - x and y: Horizontal and vertical positions x and y, in [m].
 - px and py: Horizontal and vertical canonical momenta p_x and p_y divided by the reference momentum: $px = p_x/p_0$ and $py = p_y/p_0$, in [1].
 - s: Arc length s along the reference orbit, in [m].
 - deltap: Momentum deviation from the design momentum, deltap = $\Delta p/p_0$, in [1]. This quantity is used to **normalize** element strengths.

Optic variables II

- Twiss functions in MAD-X:
 - betx and bety: Horizontal and vertical beta functions β_x and β_y , in [m].
 - alfx and alfy: Horizontal and vertical alpha functions α_x and α_y, in [1].
 - mux and muy: Horizontal and vertical phase advances μ_x and μ_y , in $[2\pi]$.
 - dx: Dispersion function D_{χ} , in [m].

How to run MAD-X? Interactive mode

- In **Windows**, run the executable.
- In **Linux**, execute ./ madx in the containing directory.

X: ==> angle = 2*pi/1232; X: ==> value, angle; X: ==> value, asin(1.0)*2; X: ==> dx = gauss()*2.0; X: ==> value, dx; X: ==> value, dx; X: ==> dx := gauss()*2.0; X: ==> value, dx; X: ==> value, dx; X: ==> value, dx;

Differed expression

• After writting your script in a separe file my.file (a file with a given lattice, for example), you can call it in **Windows** and **Linux** after opening MAD-X:

> madx
X: ==> call, file = "my.file";

In Linux, you can also type in the terminal

```
> madx < "my.file"</pre>
```


III. Machine description

- General format and classes
- Element definition: Dipoles
- Element definition: Quadrupoles
- Sequences

- All the machine elements must be defined.
- Element definitions follow a general format:

name: keyword, attributes;

- Elements may be described one-by-one, or as a member of a **class**.
 - All objects belonging to the same class share the same properties.

Element definition: Dipoles

• For bending magnets (dipoles):

$$k_0 = \frac{1}{p/c} B_y [in T] \left[= \frac{1}{\rho} = \frac{angle}{l} \right] [in rad/m]$$

• A dipole defined uniquely:

DIP01: SBEND, L=10.0, ANGLE=angle, $K0 = k_0$;

• Defining a class:

MBL: SBEND, L=10.0, ANGLE = 0.0145444;

• Creation of magnets (instances) from the same class:

DIP02: MBL; DIP03: MBL;

- ! (instances of the class MBL)
- ! (instances of the class MBL)

Courtesy of W. Herr.

Element definition: Quadrupoles

• For quadrupoles:

$$k_1 = \frac{1}{p/c} \frac{\delta B_y}{\delta x} [in \quad T/m] \left[= \frac{1}{l \cdot f} \right]$$

- A quadrupole defined uniquely: • $MQA: QUADRUPOLE, L=3.3, K1 = k_1;$
- Defining a class:

MQ: QUADRUPOLE, L=3.3, K1 = 1.23E-02;

Creation of a magnet (instance) from the same class:
 QUAD01: MQ;

Courtesy of W. Herr.

Sequences

circum = 6912; ←	A constant	
<pre>// bending magnets as thin lenses mbsps: multipole,knl={0.007272205}; <-</pre>	Dipole defined as multipole!	lsf, at = 3.6425; ch, at = 4.2425;
<pre>// quadrupoles and sextupoles kqf = 0.0146315; kqd = -0.0146434; qfsps: quadrupole,l=3.085,k1 := kqf; qdsps: quadrupole,l=3.085,k1 := kqd; lsf: sextupole,l=1.0, k2 = 1.9518486 lsd: sextupole,l=1.0, k2 = -3.7618842 // monitors and orbit correctors bpm: monitor,l=0.1; ch: hkicker,l=0.1; cv: vkicker,l=0.1;</pre>	Elements definitions	<pre>bpm, at = 4.3425; mbsps, at = 5.0425; mbsps, at = 11.4425; mbsps, at = 23.6425; mbsps, at = 30.0425; : bpm, at = 6884.3425; mbsps, at = 6885.0425; mbsps, at = 6891.4425; mbsps, at = 6903.6425; mbsps, at = 6910.0425; end_machine: marker, at = 6912;</pre>
<pre>cassps: sequence, l = circum; < start_machine: marker, at = 0; afara = 1 5405;</pre>	Sequence starts here	endsequence;
qropo, at = 1.0420,		Courtesy of W. Herr.

IV. MAD-X commands

- Basic commands
- Main script
- Output: Twiss summary and Twiss table
- Output: Plot and Survey

Basic commands

• Declaration of commands follow a **general format**:

command, attributes;

- Some **basic** commands (we have already saw some of them):
 - Call an external file (the definition of a machine, for example):
 call, file = "my.file";
 - **Print** a value in the terminal:

value, variable_name;

Basic commands

• Define a **beam**:

beam, particle = [proton | electron], energy = value;

• Compute the value of the **twiss functions** at each element:

select, flag = twiss, column = [name, s, betx, bety, mux, ...];
twiss, save, centre, file = "my.twiss";

• Make a **plot**:

plot, haxis = s, vaxis = [betx, bety, ...], colour = 100;

• Geometry of the ring:

survey, file = "my.survey";

Main script

<pre>// Read input file with machine description call file="sps.seq"; <</pre>	Read the accelerator lattice
// Define the beam for the machine Beam, particle=proton, sequence=cassps, energy=450.0; <	The type of beam and its energy
<pre>// Use the sequence with the name: cassps use, sequence=cassps;</pre>	Use the sequence of the lattice
<pre>// Define the type and amount of output select,flag=twiss,column=name,s,betx,bety; <</pre>	Keep the accelerator parameter in each element of the lattice
<pre>// Execute the Twiss command to calculate the Twiss parameters // Compute at the centre of the element and write to: twiss.out twiss,save,centre,file=twiss.out; // Plot the horizontal and vertical beta function between the\\ // 10th and 16th occurence of a defocussing quadrupole\\ plot having=s varing=bets bety colour=100 range=cd[10]/cd[16]:'</pre>	Keep the information in a twiss file
<pre>// get the geometrical layout (survey) survey,file=survey.cas; < </pre>	Obtain the study geometry. Courtesy of W. Herr.
stop;	

Output: Twiss summary

			Momentum compaction factor α_n , in [1]	Transition energy gamma γ_{tr} , in [1]	
+++++ table: summ				, I	
Machine length	→ length	orbit5	alfa	gammatr	
(circumference),	6912	-0	0.001667526597	24.4885807	
in [m]			\checkmark		
Horizontal tune	→ q1	dq1	betxmax	dxmax	IVIaximum
<i>Q_x</i> , in [1]	26.57999204	-8.828683153e-09	108.7763569	2.575386926	β_x^+ , in [m]
Horizontal	dxrms	xcomax	xcorms	a2 <	← Vertical tune
chromaticity Q'_x , I in [1]	1.926988371	0	0	26.62004577	<i>Q_y</i> , in [1]
Vertical	> dq2	betymax	dymax	dyrms	
in [1]	4.9186549e-08	108.7331749	0	0	
Maximum	ycomax	ycorms	deltap	synch_1	
vertical beta eta_y^+ , in [m]	0	0	o ↑	0	
			Momentum deviation Q_y , in [1]	Cour	tesy of W. Herr.

Output: Twiss table

* NAME	S	BETX	BETY
\$ %s	%le	%le	%le
"CASSPS\$START"	0	101.5961579	20.70328425
"START_MACHINE"	0	101.5961579	20.70328425
"DRIFT_0"	0.77125	105.1499566	19.94571028
"QF"	1.5425	108.7763569	19.26082066
"DRIFT_1"	2.5925	103.8571423	20.21112973
"LSF"	3.6425	99.07249356	21.29615787
"DRIFT_2"	3.9424975	97.73017837	21.6309074
"CH"	4.2425	96.39882586	21.97666007
"DRIFT_3"	4.2925	96.17800362	22.03535424
"BPM"	4.3425	95.95748651	22.0943539
"DRIFT_4"	4.6925025	94.4223997	22.51590816
"MBSPS"	5.0425	92.90228648	22.95242507
"DRIFT_5"	8.2425	79.69728195	27.63752778
"MBSPS"	11.4425	67.74212222	33.5738988
"DRIFT_6"	17.5425	48.41469349	48.35614376
"MBSPS"	23.6425	33.6289371	67.68523387
"DRIFT_5"	26.8425	27.68865546	79.6433337
"MBSPS"	30.0425	22.99821861	92.85270185
"DRIFT_7"	31.7925	20.96178735	100.6058286
"QD"	33.5425	19.29915001	108.7331749
"DRIFT_1"	34.5925	20.25187715	103.8118608

.

Courtesy of W. Herr.

Output: Plots

Courtesy of W. Herr.

MAD-X | MEPAS-2015 | B. Yee-Rendon, L. Medina

Output: Survey

Courtesy of W. Herr.

Exercise I

- Design a proton accelerator with the following properties:
 - Particle momentum: 20 GeV/c.
 - Circumference: 1000 m.
 - Dipole length: 5 m.
 - Maximum dipole field: 3 T.
 - Quadrupole length: 3 m.

Use 8 FODO cells, the most basic cell used in accelerators

Courtesy of W. Herr.