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The Basics: Special Relativity 



US Particle Accelerator School

Energy & Mass units 

v  To describe the energy of individual particles, we use the eV, the energy that a 
unit charge  

 gains when it falls through a potential, ΔΦ = 1 volt. 
 
 
v  We can use Einstein’s relation to convert rest mass to energy units  

Eo = mc2 
v  For electrons, 

  Eo,e = 9.1x10-31 kg x (3x108 m/sec)2 = 81.9x10-15 J  = 0.512 MeV 
 

v  For protons, 
 

   Eo,p = 938 MeV 

€ 

e = 1.6 ×10−19  Coulomb

€ 

1 eV = 1.6 ×10−19  Joule
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Relativity: transformation of physical laws 
between inertial frames 

v 

What is an inertial frame? 
 
 
 
 
 

How can you tell? 

x 

y 

z 

xʹ′ 

yʹ′ 

zʹ′ 

In an inertial frame free bodies have no acceleration 
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Under the Galilean transformation 
 
 
 
 
 
 
the laws of physics remain invariant in all inertial frames. 

Postulate of Galilean relativity 

€ 

" x = x −Vx t
" y = y
" z = z

t '= t

Not true for electrodynamics ! 
 

For example, the propagation of light 

€ 

⇒  # v x = vx −Vx

reference of frames ALLin     2

2

x
dt
d

mF =
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Observational basis of special relativity 

Observation 1: Light never overtakes light in empty space 
==> Velocity of light is the same for all observers 

 

For this discussion let c = 1 

x 

t 

v = c = 1 
World line 

of physicist 
at rest  

World line 
of physicist 

moving at 
velocity v  

Space-time diagrams 
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Relativistic invariance 

Observation 2:  
All the laws of physics are the same in all inertial frames 

v   This requires the invariance of the space-time interval 

€ 

c " t ( )2 − " x 2 − " y 2 − " z 2 = ct( )2 − x 2 − y 2 − z2

x 

t 

v = c = 1 World line 
of physicist 

at rest  

World line of physicist 
moving at velocity v  tʹ′ 

xʹ′ 
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Lorentz boost replaces Galilean transformation 

where Einstein’s relativistic factors are 

€ 

c " t = γ ct − βz( )
" x = x
" y = y

" z = γ z − βct( )

€ 

β =
v
c

    and    γ = 1
1- β 2



US Particle Accelerator School

Thus we have the Lorentz transformation 

Or in matrix form 
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Show that the Lorentz transformation preserves 4-interval	
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Proper time & proper length 

v  Define proper time, τ, as duration measured in the rest frame 

v  The length of an object in its rest frame is Lo 

v  As seen by an observer moving at v, the duration, T , is  

And the length, L,  is 

T =
τ

1− v
2

c2
≡ γτ > τ

L = Lo/γ	
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Lorentz scalar invariants & four-vectors 

v  To describe physical quantities in space-time, we introduce 
quantities with well defined transformations between 
different inertial frames. 

v  Lorentz scalars are quantities described by a single 
number that has the same value in all inertial frames. 
Ø  That is, a scalar is a Lorentz invariant  
Ø  Example: the charge on an electron is a scalar 
Ø  What is another example? 

v  Lorentz four-vectors, wα, have 1 time-like & 3 space-like 
components (α = 0, 1, 2, 3) 
Ø  xα = (ct, x, y, z) = (ct, x)  [Also, xα = (ct, -x, -y, -z)  
Ø  Note Latin indices i =1, 2, 3 
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Four-vectors & scalar products 

v  Norm of wα is a Lorentz scalar (invariant in all frames) 

v  For two 4-vectors uα and vα  their scalar (dot) product is 

€ 

w = (wαwα )
1/ 2 = (wo

2 − w1
2 − w2

2 − w3
2)1/ 2

w
2
= gµνw

µwν    where the metric tensor is 

        gµν =

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

"

#

$
$
$
$

%

&

'
'
'
'

€ 

u•v = (uαvα ) = (u0v0 − u1v1 − u2v2 − u3v3)
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Velocity, energy and momentum 

v  For a particle with 3-velocity v, the 4-velocity is 

v  Total energy, E, of a particle  equals its rest mass, mo, plus 
kinetic energy, T 

 

Note that the energy is not a Lorentz invariant 

€ 

E = moc
2 + T = γmoc

2
€ 

uα = (γc,γv) =
dx α

dτ

(E)2 = p2c2 + mc2( )
2
= γmoc

2( )
2
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Tutorial exercise: 10 minutes 

v  The Fermilab Alvarez Linac accelerates protons to a 
kinetic energy of 400 MeV 

Ø  a) Calculate the total energy of the protons in units of MeV 

Ø  b) Calculate the momentum of the protons in units of MeV/c 

Ø  c) Calculate the relativistic gamma factor 

Ø  d) Calculate the proton velocity in units of the velocity of light. 
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Motivation: Discovery science 

How do we understand  
the underlying structure of things? 
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Motivations: How it all began 
Paradigm 1: Fixed target experiments  

Rutherford explains scattering of alpha particles on gold 
discovering the nucleus & urges … On to higher energy probes! 
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Rutherford articulated Figure of Merit 1 

Particle energy on target 
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Why we use energetic beams for research? 

v   Resolution of "Matter" Microscopes 
Ø  Wavelength of Particles (γ, e, p, ...)  (de Broglie, 1923) 

Ø  Higher momentum => shorter wavelength => better resolution 

v  Energy to Matter 
Ø  Higher energy produces heavier particles 

λ   =  	
 h / p	
 =  1.2  fm/ 	
 p	
   	
[  GeV/c]  	
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The advantage of the fixed target physics: 
Figure of Merit 2 

Events
second

=σ process Flux T arget  Number  Density  Path Length

Luminosity 

Typical values: 
 

 Flux (particle current) ~  1012 - 1014 s-1       
 Number density of the target ~ ρ NA (Z/A) ~ 5 x 6 x 1023 / 2  
 Path length through the target ~ 10 cm 

 

Luminosity ~ 15 x 1023 x 1014 ~ 1036 – 1038 cm-2s-1 

Ideal for precision & rare process physics,  
BUT how much energy is available for new physics 
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Momentum & available energy 

v  The 4-momentum, pµ, is 

v  Recalling that 

 

we have 

€ 

E = moc
2 + T = γmoc

2

€ 

pµ = mou
µ = (cγm 0,γm 0v)

€ 

p2 = (m 2c 2γ 2 − γ 2m 2v 2 ) = m 2c 2γ 2 − γ 2m 2c 2 (1− 1
γ 2

)
$ 

% 
& 

' 

( 
) 

    = (m 2c 2γ 2 −γ 2m 2c 2 + m 2c 2 ) = m 2c 2

€ 

pµ = mou
µ = (cγm 0,γm 0v) = (E

c
,γm0v)
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Scalars are Lorentz invariant: 
Particle collisions 

v  Two particles have equal rest mass m0. 

Laboratory Frame (LF): one particle at rest, total energy is E. 

Centre of Momentum Frame (CMF): Velocities are 
equal & opposite, total energy is Ecm. 

Exercise: Relate E to Ecm  

projectile	
 target	
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The fixed target paradigm has its limits 

Ecm = m1
2 +m2

2 + 2m2c
2Ebeam

       ≈ 2mc2Ebeam   for  equal  masses

Invariance of  
(p1 + p2)µ • (p1 + p2)µ 

in Lorentz frames implies that 
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A great invention comes to the rescue 

Collide beams ! 

 

If m1 = m2    and if    E1 = E2 = E 
 

Ecm = 2 E 
 

The full kinetic energy of both particles  
is now available to physical processes 
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ADA - The first storage ring collider (e+e-) 
by B. Touschek at  Frascati (1960)  

The storage ring collider idea was invented  
by Rolf Wiederoe in 1943! 
  – Collaboration with Bruno Touschek 
  – Patent disclosure 1949 

Completed in less than one year 

€ 

Ecm = 2E beam
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Discovery science requires discovery technology 

New detectors	
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This looks too good to be true! 
What about the luminosity? 

€ 

Events =  Cross - section ×  〈Collision Rate〉 ×Time

Beam energy: sets scale of physics accessible 

Luminosity = N1 ×  N2× frequency
Overlap Area

=
N1 ×  N2× f

4πσ xσ y
 ×Correction factors

We want large charge/bunch, high collision frequency & small spot size 	


Luminosity ~ 1031 – 1034 cm-2s-1 
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Bondi’s k-factor 

v  k A to B = k B to A  

v  k  is known as the relativistic 
Doppler shift 

v  The diagram shows A & B moving 
apart; the Doppler shift decreases 
frequencies 

v  Measurements:   
Ø  Time – how do we do it? 
Ø  Distance– how do we do it? 
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Doppler shift of frequency 
Harvard v. Yale crew teams 

Distinguish between coordinate 
transformations & observations 

v  Yale sets his signal to flash at a 
constant interval, Δt' 

v  Harvard sees the interval 
foreshortened by K(v) as Yale 
approaches 

v  Harvard see  the interval stretched 
by K(-v) as Yale moves away 

Light  
cone 

Light  
cone 

Harvard  
at rest 

Yale rows  
past at  
velocity v 

Homework: Using the world line diagram 
Show K(v) = K-1(-v)  
For γ large find K(γ)  

K<1 

K>1 
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Computing the Doppler shift 

A	

B	


Event E	


T	

kT	


k2T	

Observer A says that E happens at	


a position x and a time t	

	


Then vAB = x / t	

	


Write x and  t in terms of k and T	
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Head-on Compton scattering  
by an ultra-relativistic electron 

v  What wavelength is the photon that is scattered by 180°? 
  

Write your answer in terms of K(γ) 

E=γmc2 λout 

λin 
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Source of beam loss in electron synchrotrons 

v  Remember the Compton scattering of photons up shifts the 
energy by 4 γ2 

v  Where are the photons? 
Ø  The beam tube is filled with thermal photons (25 meV) 

v  In LEP-3 these photons can be up-shifted  as much as  2.4 GeV  
Ø  2% of beam energy cannot be contained easily  
Ø  We need to put in the Compton cross-section and photon density to find 

out how rapidly beam is lost 

E=γmc2 λout 

λin 
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Undulator radiation: What is λrad? 

An electron in the lab oscillating at frequency, f,  
emits dipole radiation of frequency f 

 f 

What about the 
relativistic electron? 
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The Basics - Mechanics 
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Newton’s law 

v  We all know 

v  The 4-vector form is 

v  Differentiate                     with respect to τ	


v  The work is the rate of changing mc2    

€ 

F =
d 
dt
p

€ 

F µ = γc dm
dt
,γ dp
dt

# 

$ 
% 

& 

' 
( =

dpµ

dτ

€ 

p2 = mo
2c 2

  

€ 

pµ

dpµ

dτ
= pµF

µ =
d(mc 2 )
dt

− Fv = 0
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v  Motion in the presence of a linear restoring force 

v  It is worth noting that the simple harmonic oscillator is a 
linearized example of the pendulum equation 

 
   that governs the free electron laser instability 

Harmonic oscillators & pendula 

€ 

F = −kx

€ 

˙ ̇ x + k
m

x = 0

€ 

x = A sinω ot  where  ω o = k
m

€ 

˙ ̇ x +ωo
2 sin(x) ≈ ˙ ̇ x +ωo

2 (x − x 3

6 ) = 0
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Solution to the pendulum equation 

v  Use energy conservation to solve the equation exactly 

v  Multiply        by          to get 

v  Integrating we find that the energy is conserved 

x +ωo
2 sin(x) = 0 x

1
2
d
dt
x2 −ωo

2 d
dt
cos x = 0

€ 

1
2ω o

2
˙ x 2 − cos x = cons tant =  energy of t he system = E

With x= θ  

Stupakov: Chapter 1 
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Simulation with 50 equally distributed pendula	
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Let’s look at the phase space:	

Simulation with 50 equally distributed pendula	
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Simulation with 200 equally distributed pendula	
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Simulation with 1000 equally distributed pendula	
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Simulation with 2000 equally distributed pendula	




US Particle Accelerator School



US Particle Accelerator School



US Particle Accelerator School

€ 

1
2ω o

2
˙ x 2 − cos x = cons tant =  energy of t he system = E

With x= θ  

Recall the solution to the ODE	
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Beams subject to non-linear forces  
are commonplace in accelerators 

v  Examples include  
Ø  Space charge forces in beams with non-uniform charge 

distributions  
Ø  Forces from magnets higher order than quadrupoles 
Ø  Electromagnetic interactions of beams with external structures 

•  Free Electron Lasers  
•  Wakefields  
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Properties of harmonic oscillators 

v  Total energy is conserved 

v  If there are slow changes in m or ω, then I = U/ωo remains 
invariant 

€ 

U =
p 2

2m
+
mωo

2x 2

2

This effect is important as a diagnostic  
in measuring resonant properties of structures  
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Lorentz force on a charged particle 

v  Force, F, on a charged particle of charge q  
 in an electric field E and a magnetic field, B 

 
 
 
 
v  E =  electric field with units of force per unit charge, 

newtons/coulomb = volts/m.  

v  B = magnetic flux density or magnetic induction, with 
units of newtons/ampere-m = Tesla = Weber/m2. 

€ 

F = q E +
1
c
v ×B

# 

$ 
% 

& 

' 
( 
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A simple problem - bending radius 

v  Compute the bending radius, R, of a non-relativistic 
particle  particle in a uniform magnetic field, B. 
Ø   Charge = q 
Ø   Energy = mv2/2 

€ 

FLor ent z =  q v
c
B =  Fcentripital  =  mv

2

ρ

         ⇒ ρ =
mvc
qB

=
pc
qB

ρ m( )= 3.34  p
1 GeV/c
$ 

% 
& 

' 

( 
)  

1
q

$ 

% 
& 
' 

( 
)  

1 T
B

$ 

% 
& 

' 

( 
) 



US Particle Accelerator School

10 minute exercise from Whittum 

v  Exercise:  A charged particle has a kinetic energy of 50 
keV. You wish to apply as large a force as possible. You 
may choose either an electric field of 500 kV/m or a 
magnetic induction of 0.1 T. Which should you choose  
Ø (a) for an electron,  
Ø (b) for a proton?  
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The fields come from charges & currents 

v  Coulomb’s Law 

v  Biot-Savart Law 

r1,2 

r1,2 
i1dl1 

i2dl2 
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Compute the B-field from current loop 

v  On axis there is  only Bz by symmetry 

v  The Biot-Savart law says 

€ 

sinθ = R r    and   r = R2 + z2

€ 

dl× ˆ r = dl = Rdϕ

€ 

B =
I
cr 2 R sinθ dϕ ˆ z  =  2πIR 2

c R2 + z 2( )
3 / 2

0

2π

∫  ˆ z 

R 

r 
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The far field B-field has a static dipole form 

Importantly the ring of current does not radiate 
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Question to ponder: 
What is the field from this situation? 

R 

r



US Particle Accelerator School

Electric displacement & magnetic field 

In vacuum,  
 
v  The electric displacement is D = εoE,  

v  The magnetic field is H = B/µo 

Where 

εo = 8.85x10-12 farad/m   &   µo= 4 π x10-7  henry/m. 



US Particle Accelerator School

v  Electric charge density ρ is source of the electric field, E 
(Gauss’s law) 

v  Electric current density J =  ρu is source of the magnetic 
induction field B (Ampere’s law) 

 
 
 

If we want big magnetic fields, we need large current supplies 

Maxwell’s equations (1) 
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v  Field lines of B are closed; i.e., no magnetic monopoles. 

v  Electromotive force around a closed circuit is proportional 
to rate of change of B through the circuit (Faraday’s law).  

Maxwell’s equations (2) 

€ 

∇ •B = 0

€ 

∇ ×E = −
∂B
∂t
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Maxwell’s equations: integral form 

Displacement current 



US Particle Accelerator School

Boundary conditions for a perfect conductor: 
σ = ∞ 

1.  If electric field lines terminate on a surface, they do so 
normal to the surface 
a)  any tangential component would quickly be neutralized by lateral 

motion of charge within the surface. 

b)  The E-field must be normal to a conducting surface 

2.  Magnetic field lines avoid surfaces 
a)  otherwise they would terminate, since the magnetic field is zero 

within the conductor 

i.  The normal component of B must be continuous across the 

boundary for σ ≠ ∞ 
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Exercise from Whittum 

v  Exercise:  A charged particle has a kinetic energy of 50 
keV. You wish to apply as large a force as possible. You 
may choose either an electric field of 500 kV/m or a 
magnetic induction of 0.1 T. Which should you choose  
Ø (a) for an electron,  
Ø (b) for a proton?  
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Lorentz transformations of E.M. fields 

Fields are invariant along the direction of motion, z € 

" E " z = E z

" E "  x = γ Ex − vBy( )
" E "  y = γ Ey + vBx( )

€ 

" B "  z = Bz

" B "  x = γ Bx +
v
c 2

Ey

$ 

% 
& 

' 

( 
) 

" B "  y = γ By −
v
c 2

E x

$ 

% 
& 

' 

( 
) 
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Example: Lorentz stripping & dissociation 

v   An ion moving in a magnetic field B experiences a 
Lorentz force that bends its trajectory & also tends to 
break it up  
Ø  the protons & electrons are bent in opposite directions 
Ø  The binding energy of the extra electron is only 0.755 eV. 
Ø  The breakup is a probabilistic, quantum mechanical  process 

v  In the ion rest frame, the stripping force is effected by the 
electric field E  that is the Lorentz-transform of the 
magnetic field B  in the lab, 

E  = κ β γ B, where κ = 0.3 GV/T-m. 
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Example for H2

+: 
The huge field distorts ion potential energy 
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Fields of a relativistic point charge 

v  Let’s evaluate the EM fields from a point charge q moving 
ultra-relativistically at velocity v in the lab 

v  In the rest frame of the charge, it has a static E field only: 
 

 
where r is the vector from the charge to the observer 
 

v  To find E and B in the lab, use the Lorentz transformation 
for coordinates time and the transformation for the fields 

z	


€ 

" E =
1
4πεo

q " r 
" r 3

Stupakov: Ch. 15.1	
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This effect is offers us  
a non-destructive beam diagnostic 

v  Pass the charge through a hole in a conducting foil 

v  The foil clips off the field for a time Δt  ~ a/cγ 

v  The fields should look restored on the other side  

 ==> radiation from the hole  

Stupakov: Ch.16.4	
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The vector potential, Aµ 

v   The Electric and magnetic fields can be derived from a 
four-vector potential, Aµ = ( φ, Α ) 

v  Aµ transforms like the vector (ct, r) 

€ 

" φ = γ φ − vAz( )
" A x = Ax

" A y = Ay

" A z = γ Az −
v
c 2
φ

& 

' 
( 

) 

* 
+ 

€ 

E =∇φ

B =∇ ×A
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Energy balance & the Poynting theorem 

v  The energy/unit volume of E-M field is 

v  The Poynting vector, S = E × H  = energy flux 

v  The Poynting theorem says 

Stupakov: Ch. 1, p 9, 10 

rate of change of  
EM energy due to  
interaction  
with moving charges 

work done by E  
on moving charges 

EM energy flow  
through the 
enclosing surface 

=  - - 
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v  Beams particles have random (thermal) ⊥ motion 

v  Beams must be confined against thermal expansion during 
transport 

Some other  characteristics of beams 

ϑ x =
px
x

pz
2

1/2

> 0
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Beams have internal (self-forces) 

v  Space charge forces 
Ø  Like charges repel 
Ø  Like currents attract 

v  For a long thin beam  

Esp (V / cm) =
60 Ibeam(A)
Rbeam(cm)

Bθ (gauss) =  Ibeam(A)
5 Rbeam(cm)
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Net force due to transverse self-fields 

In vacuum:  
 Beam’s transverse self-force scale as 1/γ2 
Ø  Space charge repulsion: Esp,⊥ ~ Nbeam  
Ø  Pinch field: Bθ ~ Ibeam ~  vz Nbeam ~ vz Esp  

∴ Fsp ,⊥ =  q (Esp,⊥ + vz x Bθ) ~ (1-v2) Nbeam ~ Nbeam/γ2 

Beams in collision are not in vacuum (beam-beam effects)	
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Example: Megagauss fields  
in linear collider 

electrons	
 positrons	


At Interaction Point space charge cancels; currents add 	

==>  strong beam-beam focus	


	
==> Luminosity enhancement	

	
==> Strong synchrotron radiation	


Consider 250 GeV beams with 1 kA focused to  100 nm	


Bpeak ~ 40 Mgauss	
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Accelerators 
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The first accelerators:  
DC (electrostatic) accelerators 

   High  
   voltage   
generator 

Electrical ground 

 Vacuum  
enclosure 

+ 
- 

Parallel plates 

+ 

Experiment 

+ 

Note the exposed high voltage hazard	

The energy is limited 	


by high voltage break down	
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What is final energy of the beam? 

+ V - + V - + V - 
••• 

+ V - 

N cells 

beam 



US Particle Accelerator School

The “magnetic salad bowl” 
Possible high energy DC accelerator? 

At t = 0 the ion source at 1 injects a proton  

of energy Eo in the gap pointed at a hole in plate 2.  

The entire device is imbedded in a constant  

magnetic (dipole) field, B,  

pointing out of the surface. 
 

Exiting the plate 2, the proton enters the  

innermost virtual beam pipe.  
 

If B = 100 Gauss and Eo = 100 keV,  

what is the radius of the first orbit? 
 

After 10,000 revolutions, what is the energy  

of the proton as it leaves plate 2. 
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Maxwell forbids this! 

+ V - 

B � 
or in integral form 

€ 

∇×E = −
dB
dt

€ 

E
C∫ ⋅ds = −

∂
∂t

B ⋅
S∫  n da

∴  There is no acceleration  
without time-varying magnetic flux 

C 
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Circuit theory 

Accelerator physicists often use  
network (circuit) analogs of accelerator systems 

1)  RF systems 
2)  Vacuum systems 
3)  Control systems 
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Example: Vacuum design storage ring 
Synchrotron radiation in hard bends of CESR-B 

Estimate the pumping speed needed for Titanium pumps & NEG pumps	


System requirement: Pch < 1.7 nTorr	
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Basic concepts: 
Start with dc circuits 

v  Kirchoff’s law’s  
Ø  The sum of Voltage drops around any loop equals zero 
Ø  The sum of the currents into any node equals zero 

v  Ohm’s law:   
Ø  The voltage drop across a resistance:  V = I R 
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Ohm's Law Generalized 

v  Basic approach is the Fourier analysis of a circuit 

v  Start with  

v  Instead of V = IR where the quantities are real we write 

 
 

v   We know this works for resistors.   

V(t) = R I(t) ==> ZR is real = R 
 

v  What about capacitors & inductors? 

€ 

˜ V = Ve j (ω t +ϕ )

V (ω) = I (ω)

Z(ω)
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Impedance of Capacitors 

v  For a capacitor 

v  So our generalized Ohm’s law is 

where 
€ 

I = C dV
dt

" 

# 
$ 

% 

& 
'  ⇒  ˜ I = C d

dt
Ve j(ωt +ϕ ) = jωC ˜ V 

  

€ 

˜ V = ˜ I 
 
Z C

ZC =
1
jωC
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Impedance of Inductors 

v  For a capacitor 

v  So our generalized Ohm’s law is 

Where 
 
 
 

€ 

V = L dI
dt
" 

# 
$ 

% 

& 
'  ⇒  ˜ V = L d

dt
Ie j(ωt +ϕ ) = jωL˜ I 

  

€ 

˜ V = ˜ I 
 
Z L

€ 

˜ Z L = jωL
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Combining impedances 

v  The algebraic form of Ohm's Law is preserved   

==> impedances follow the same rules for combination in    
 series and parallel as for resistors 

 

v  For example 

v  We can now solve circuits using Kirkhoff’s laws, but in 
the frequency domain 

€ 

Zseries = Z1 + Z2

Z par allel = 1
Z1

+ 1
Z2

" 
# $ 

% 
& ' 

−1

=
Z1Z2
Z1 + Z2
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Exercise: Compute the impedance   Z 
looking into the terminals  (10 miutes) 

V(t) 

I(t) 

C 

L 

R 
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Looking into the terminals, we have   

€ 

Z (ω ) = jωC + ( jωL + R)−1[ ]−1

€ 

The resonant frequency is ωo = 1
LC€ 

Z (ω ) =
1

jωC + ( jωL + R)−1
=

( jωL + R)
( jωL + R) jωC +1

=
( jωL + R)

(1−ω 2LC) + jωRC
= X + jϕ

V(t) 

I(t) 

C 
L 

R
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Resonant behavior of the lumped circuit 

The width is 

 Z(ω) ~ 1−ω
2

ωo
2

"

#
$$

%

&
''

2

+ (ωRC)2
(

)

*
*

+

,

-
-

−1

Converting the denominator of Z to a real number we see that  
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More basics from circuits - Q 

Q =  
ωo   Energy  stored

Time average power  loss
= 2π Energy  stored
Energy  per  cycle

E  = 
1
2
L IoIo

*

and 

P  = i2 (t) R = 1
2
IoIo

*Rsurface

∴   Q = 
L

C
R

 = Δω
ωo

#

$
%%

&

'
((

−1
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RF-cavities 
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RF-cavities for acceleration: 
The heart of modern accelerators 

Microtron Synchrotron 

Linac 
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RF cativties: Basic concepts 

v  Fields and voltages are complex quantities. 
Ø  For standing wave structures use phasor representation 

v  For cavity driven externally, phase of the voltage is 
	
 	
 	
 	
θ = ωt  + θο	


v  For electrons v ≈ c;  therefore z = zo+ct 

€ 

˜ V = Veiω t     where    V = ˜ V 

Zo  is the reference plane 

At t = 0 particle receives maximum voltage gain 
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Basic principles and concepts 

v  Superposition 

v  Energy conservation 

v  Orthogonality (of cavity modes) 

v  Causality 
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Basic principles: 
Reciprocity & superposition 

v  If you can kick the beam, the beam can kick you 

==> 

Total cavity voltage  =  Vgenerator+ Vbeam-induced  
  

Fields in cavity = Egenerator+ Ebeam-induced  
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Basic principles: Energy conservation 

v  Total energy in the particles and the cavity is conserved 
Ø  Beam loading 

ΔWc  = Ui - Uf  
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Basics: Orthogonality of normal modes 

v  Maxwell’s equations are linear 
Ø  The EM field is NOT a source of EM fields 

v  Therefore, 
Ø  Each mode in the cavity can be treated independently in computing 

fields induced by a charge crossing the cavity.  

Ø  The total stored energy is equals the sum of the energies in the 
separate modes.  

Ø  The total field is the phasor sum of all the individual mode fields at 
any instant. 
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Basic principles: Causality 

v  No disturbance ahead of a charge moving at v ≈ c 

v  In a mode analysis of the growth of beam-induced fields, 
field must vanish ahead of the moving charge for each mode 
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Basic components of an RF cavity 

Outer region: Large, single turn Inductor 

Central region: Large plate Capacitor 

Beam (Load) current  

Displacement current 

Wall current 

Power feed from rf - generator 
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We have already solved this circuit 
Lumped circuit analogy of resonant cavity 

V(t) 

I(t) 

C 
L 

R

€ 

Z (ω ) = jωC + ( jωL + R)−1[ ]−1

€ 

The resonant frequency is ωo = 1
LC€ 

Z (ω ) =
1

jωC + ( jωL + R)−1
=

( jωL + R)
( jωL + R) jωC +1

=
( jωL + R)

(1−ω 2LC) + jωRC
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Q of the lumped circuit analogy 

The width is 

€ 

 Z (ω ) ~ 1− ω
2

ω o
2

$ 

% 
& 

' 

( 
) 

2

+ (ωRC) 2
* 

+ 
, 
, 

- 

. 
/ 
/ 

−1

Converting the denominator of Z to a real number we see that  
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Translate circuit model to a cavity model: 
Directly driven, re-entrant RF cavity 

Outer region: Large, single turn Inductor 

Central region: Large plate Capacitor € 

L =
µoπa

2

2π(R + a)

€ 

C = εo
πR 2

d

€ 

ωo = 1
LC

= c 2((R + a)d
πR2a2

$ 

% & 
' 

( ) 

1
2

Q – set by resistance in outer region  

€ 

Q =
L
C
R

Expanding outer region  
raises Q 

Narrowing gap  
raises shunt impedance 

Source: Humphries, Charged Particle 
Accelerators 
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Properties of the RF pillbox cavity 

v  We want lowest mode: with only  Ez & Bθ	


v  Maxwell’s equations are: 

     and 

v  Take derivatives 

 
 ==> 

€ 

1
r
∂

∂r
rBθ( ) =

1
c2

∂

∂t
Ez

€ 

∂

∂r
Ez =

∂

∂t
Bθ

€ 

∂

∂t
1
r
∂

∂r
rBθ( )

$ 

% & 
' 

( ) 
=
∂

∂t
∂Bθ
∂r

+
Bθ
r

$ 

% & 
'  

(  )  
=
1
c 2

∂ 2Ez
∂t 2

€ 

∂

∂r
∂Ez
∂r

=
∂

∂r
∂Bθ
∂t

€ 

∂ 2Ez
∂r 2

+
1
r
∂Ez
∂r

=
1
c 2

∂ 2Ez
∂t 2

d 

Ez 

b 

Bθ 

€ 

σ wal ls = ∞
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For a mode with frequency ω 

v    

v   Therefore,          

Ø  (Bessel’s equation, 0 order) 

v  Hence, 

v  Apply boundary condition for conducting walls, Ez(R) = 0, 
therefore 

€ 

Ez r, t( ) = Ez (r) eiω t

€ 

" " E z +
" E z

r
+

ω

c
$ 

% 
& 

' 

( 
) 

2

Ez = 0

€ 

Ez (r) = Eo Jo
ω

c
r

# 

$ 
% 

&  

'  
(  

€ 

2πf
c
b = 2.405
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E-fields & equivalent circuit: Ton1o mode 

Ez 

Bθ 

R
el

at
iv

e 
in

te
ns

ity
 

r/R 

T010 

C L 
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Simple consequences of pillbox model 

L 

Ez 

R 

Bθ 

v  Increasing R lowers frequency 

      ==> Stored Energy, E ~ ω-2 

v                   E  ~  Ez
2 

v  Beam loading lowers Ez for the 
next bunch 

v  Lowering ω lowers the fractional 
beam loading 

v  Raising ω lowers Q ~ ω -1/2 

v  If time between beam pulses,  
  Ts ~ Q/ω   

      almost all E is lost in the walls 
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The beam tube complicates the field modes 
(& cell design) 

Ez 

Bθ 

v  Peak E no longer on axis 
Ø  Epk ~ 2 - 3 x Eacc  
Ø  FOM = Epk/Eacc 

v  ωo more sensitive to  cavity 
dimensions 
Ø  Mechanical tuning & detuning 

v  Beam tubes add length & €’s 
w/o acceleration 

v  Beam induced voltages ~ a-3 

Ø  Instabilities 

a 


