Lecture 2

Motivations and Preliminaries:

William A. Barletta
Director, US Particle Accelerator School
Dept. of Physics, MIT \& UCLA
Economics Faculty, University of Ljubljana

Iliit

The Basics: Special Relativity

||| Energy \& Mass units

* To describe the energy of individual particles, we use the eV , the energy that a unit charge

$$
e=1.6 \times 10^{-19} \text { Coulomb }
$$

gains when it falls through a potential, $\Delta \Phi=1$ volt.

$$
1 \mathrm{eV}=1.6 \times 10^{-19} \text { Joule }
$$

* We can use Einstein' s relation to convert rest mass to energy units

$$
E_{o}=m c^{2}
$$

* For electrons,

$$
\boldsymbol{E}_{o, e}=9.1 \times 10^{-31} \mathrm{~kg} \mathrm{x}\left(3 \times 10^{8} \mathrm{~m} / \mathrm{sec}\right)^{2}=81.9 \times 10^{-15} \mathrm{~J}=0.512 \mathrm{MeV}
$$

* For protons,

$$
\boldsymbol{E}_{o, p}=938 \mathrm{MeV}
$$

||RE Relativity: transformation of physical laws between inertial frames

What is an inertial frame?

How can you tell?

In an inertial frame free bodies have no acceleration

||| Postulate of Galilean relativity

Under the Galilean transformation

$$
\begin{aligned}
& x^{\prime}=x-V_{x} t \\
& y^{\prime}=y \\
& z^{\prime}=z \\
& t^{\prime}=t
\end{aligned} \quad \Rightarrow v_{x}^{\prime}=v_{x}-V_{x}
$$

the laws of physics remain invariant in all inertial frames.

$$
F=m \frac{d^{2}}{d t^{2}} x \quad \text { in ALL frames of reference }
$$

Not true for electrodynamics !
For example, the propagation of light

||| Observational basis of special relativity

Observation 1: Light never overtakes light in empty space $==>$ Velocity of light is the same for all observers

For this discussion let $\mathrm{c}=1$

Space-time diagrams

|||| Relativistic invariance

Observation 2:
All the laws of physics are the same in all inertial frames

* This requires the invariance of the space-time interval

$$
\left(c t^{\prime}\right)^{2}-x^{\prime 2}-y^{\prime 2}-z^{\prime 2}=(c t)^{2}-x^{2}-y^{2}-z^{2}
$$

$$
\begin{aligned}
& c t^{\prime}=\gamma(c t-\beta z) \\
& x^{\prime}=x \\
& y^{\prime}=y \\
& z^{\prime}=\gamma(z-\beta c t)
\end{aligned}
$$

where Einstein's relativistic factors are

$$
\beta=\frac{|\mathbf{v}|}{c} \quad \text { and } \quad \gamma=1 / \sqrt{1-\beta^{2}}
$$

Iliii

$$
\begin{gathered}
x^{\prime}=\frac{x-v t}{\sqrt{1-v^{2} / c^{2}}}, t^{\prime}=\frac{t-\left(v / c^{2}\right) x}{\sqrt{1-v^{2} / c^{2}}} \\
y^{\prime}=y, z^{\prime}=z
\end{gathered}
$$

Or in matrix form

$$
\left(\begin{array}{c}
c t^{\prime} \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\gamma & -\gamma \beta & 0 & 0 \\
-\gamma \beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right)
$$

Show that the Lorentz transformation preserves 4-interval

|l|| Proper time \& proper length

* Define proper time, τ, as duration measured in the rest frame
* The length of an object in its rest frame is L_{o}
* As seen by an observer moving at v , the duration, \mathscr{F}, is

And the length, L, is

$$
\begin{aligned}
& \mathscr{T}=\frac{\tau}{\sqrt{1-v^{2} / c^{2}}} \equiv \gamma \tau>\tau \\
& , \text { is }
\end{aligned}
$$

$$
L=L_{o} / \gamma
$$

* To describe physical quantities in space-time, we introduce quantities with well defined transformations between different inertial frames.
* Lorentz scalars are quantities described by a single number that has the same value in all inertial frames.
$>$ That is, a scalar is a Lorentz invariant
$>$ Example: the charge on an electron is a scalar
$>$ What is another example?
* Lorentz four-vectors, w^{α}, have 1 time-like \& 3 space-like components ($\alpha=0,1,2,3$)
$>\mathrm{x}^{\alpha}=(\mathrm{ct}, \mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{ct}, \mathrm{x})$ [Also, $\mathrm{x}_{\alpha}=(\mathrm{ct},-\mathrm{x},-\mathrm{y},-\mathrm{z})$
$>$ Note Latin indices $\mathrm{i}=1,2,3$

\||| Four-vectors \& scalar products

* Norm of w^{α} is a Lorentz scalar (invariant in all frames)

$$
\begin{gathered}
|w|=\left(w^{\alpha} w_{\alpha}\right)^{1 / 2}=\left(w_{o}^{2}-w_{1}^{2}-w_{2}^{2}-w_{3}^{2}\right)^{1 / 2} \\
|w|^{2}=g_{\mu v} w^{u} w^{v} \text { where the metric tensor is }
\end{gathered}
$$

$$
g_{\mu \nu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

* For two 4-vectors u^{α} and v^{α} their scalar (dot) product is

$$
u \bullet v=\left(u^{\alpha} v_{\alpha}\right)=\left(u_{0} v_{0}-u_{1} v_{1}-u_{2} v_{2}-u_{3} v_{3}\right)
$$

|||| Velocity, energy and momentum

* For a particle with 3-velocity \boldsymbol{v}, the 4 -velocity is

$$
u^{\alpha}=(\gamma c, \gamma \mathbf{v})=\frac{d x^{\alpha}}{d \tau}
$$

* Total energy, E, of a particle equals its rest mass, m_{o}, plus kinetic energy, T

$$
E=m_{o} c^{2}+T=\gamma m_{o} c^{2}
$$

Note that the energy is not a Lorentz invariant

$$
(E)^{2}=p^{2} c^{2}+\left(m c^{2}\right)^{2}=\left(\gamma m_{o} c^{2}\right)^{2}
$$

|l|| Tutorial exercise: 10 minutes

* The Fermilab Alvarez Linac accelerates protons to a kinetic energy of 400 MeV
$>$ a) Calculate the total energy of the protons in units of MeV
$>$ b) Calculate the momentum of the protons in units of $\mathrm{MeV} / \mathrm{c}$
$>$ c) Calculate the relativistic gamma factor
$>$ d) Calculate the proton velocity in units of the velocity of light.

Iliī

Motivation: Discovery science

How do we understand the underlying structure of things?

Iliī
 Motivations: How it all began
 Paradigm 1: Fixed target experiments

Fig1. Marsden-Geiger experiment.
Rutherford explains scattering of alpha particles on gold discovering the nucleus \& urges ... On to higher energy probes!

Rutherford articulated Figure of Merit 1

Particle energy on target

Iliit
 Why we use energetic beams for research?

* Resolution of "Matter" Microscopes
> Wavelength of Particles ($\gamma, \mathrm{e}, \mathrm{p}, \ldots$) (de Broglie, 1923)

$$
\lambda=\mathrm{h} / \mathrm{p}=1.2 \mathrm{fm} / p[\mathrm{GeV} / \mathrm{c}]
$$

> Higher momentum => shorter wavelength $=>$ better resolution

* Energy to Matter
> Higher energy produces heavier particles

\|He The advantage of the fixed target physics: Figure of Merit 2

Events
$\frac{\text { Events }}{\text { second }}=\sigma_{\text {process }} \circ \underbrace{\text { Flux } \circ T \operatorname{arget} \text { Number Density } \circ \text { Path Length }}_{\text {Luminosity }}$
Typical values:
Flux (particle current) $\sim 10^{12}-10^{14} \mathrm{~s}^{-1}$
Number density of the target $\sim \rho N_{A}(Z / A) \sim 5 \times 6 \times 10^{23} / 2$
Path length through the target $\sim 10 \mathrm{~cm}$
Luminosity $\sim 15 \times 10^{23} \times 10^{14} \sim 10^{36}-10^{38} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Ideal for precision \& rare process physics, BUT how much energy is available for new physics

|||| Momentum \& available energy

* The 4-momentum, p^{μ}, is

$$
p^{u}=m_{o} u^{u}=\left(c \gamma m_{0}, \gamma m_{0} \mathbf{v}\right)
$$

* Recalling that

$$
E=m_{o} c^{2}+T=\gamma m_{o} c^{2}
$$

we have

$$
\begin{gathered}
p^{u}=m_{o} u^{u}=\left(c \gamma m_{0}, \gamma m_{0} \mathbf{v}\right)=\left(\frac{E}{c}, \gamma m_{0} \mathbf{v}\right) \\
p^{2}=\left(m^{2} c^{2} \gamma^{2}-\gamma^{2} m^{2} v^{2}\right)=\left[m^{2} c^{2} \gamma^{2}-\gamma^{2} m^{2} c^{2}\left(1-\frac{1}{\gamma^{2}}\right)\right] \\
=\left(m^{2} c^{2} \gamma^{2}-\gamma^{2} m^{2} c^{2}+m^{2} c^{2}\right)=m^{2} c^{2}
\end{gathered}
$$

\|Re Scalars are Lorentz invariant: Particle collisions

* Two particles have equal rest mass m_{0}.

Laboratory Frame (LF): one particle at rest, total energy is E.

$$
\mathbf{P}_{\mathbf{1}}=\left(E_{1} / c, \mathbf{p}_{\mathbf{1}}\right) \quad \mathbf{P}_{\mathbf{2}}=\left(m_{0} c, \mathbf{0}\right)
$$

Centre of Momentum Frame (CMF): Velocities are equal \& opposite, total energy is E_{cm}.

$$
\begin{gathered}
\mathbf{P}_{\mathbf{1}}=\stackrel{\circ}{\mathbf{P}_{\mathbf{2}}=\left(E_{\mathrm{cm}} /(2 c), \mathbf{p}\right)} \\
\text { Exercise: Relate E to } E_{c m}
\end{gathered}
$$

$\|$ The fixed target paradigm has its limits

|l|| A great invention comes to the rescue

Collide beams !

If $m_{1}=m_{2}$ and if $E_{1}=E_{2}=E$

$$
E_{c m}=2 E
$$

The full kinetic energy of both particles is now available to physical processes

| ${ }^{-1}$ ADA - The first storage ring collider ($\mathrm{e}^{+} \mathrm{e}^{-}$) by B. Touschek at Frascati (1960)

The storage ring collider idea was invented by Rolf Wiederoe in 1943!

- Collaboration with Bruno Touschek
- Patent disclosure 1949

Ertellt auf Grund des Ersten पberlettungsgesetzes vom 8. Jult 1949 (wablivs
BUNDESREPUBLIK DEUTSCHLAND

ist dst Exboder genonst worden

Aktiengesellschaft Brown, Boveri \& Cie, Baden (Schweiz)
Anordnung zur Herbeiführung von Kernreaktionen
Patentert Lo Coblet der Bundercopusisik Deutcoland rose o. Seppiomber tows in
 Patentertellung bekenaigandat om 25.Mdra 166

$$
E_{c m}=2 E_{\text {beam }}
$$

||| Discovery science requires discovery technology

||F| This looks too good to be true! What about the luminosity?

Events $=$ Cross - section $\times\langle$ Collision Rate $\rangle \times$ Time
Beam energy: sets scale of physics accessible

Luminosity $=\frac{\mathrm{N}_{1} \times \mathrm{N}_{2} \times \text { frequency }}{\text { Overlap Area }}=\frac{\mathrm{N}_{1} \times \mathrm{N}_{2} \times f}{4 \pi \sigma_{x} \sigma_{y}} \times$ Correction factors

We want large charge/bunch, high collision frequency \& small spot size

$$
\text { Luminosity } \sim 10^{31}-10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

||| Bondi's k-factor

$\because \mathrm{k}_{\mathrm{A} \text { to } \mathrm{B}}=\mathrm{k}_{\mathrm{B} \text { to } \mathrm{A}}$

* k is known as the relativistic Doppler shift
* The diagram shows A \& B moving apart; the Doppler shift decreases frequencies
* Measurements:
$>$ Time - how do we do it?
> Distance- how do we do it?

||PE Doppler shift of frequency Harvard v. Yale crew teams

Distinguish between coordinate transformations \& observations

* Yale sets his signal to flash at a constant interval, $\Delta \mathrm{t}^{\prime}$
* Harvard sees the interval foreshortened by $\mathrm{K}(\mathrm{v})$ as Yale approaches
* Harvard see the interval stretched by $\mathrm{K}(-\mathrm{v})$ as Yale moves away
Homework: Using the world line diagram

$$
\begin{aligned}
& \text { Show } K(v)=K^{-1}(-v) \\
& \text { For } \gamma \text { large find } K(\gamma)
\end{aligned}
$$

|||| Computing the Doppler shift

Observer A says that E happens at a position x and a time t

Then $v_{A B}=x / t$
Write x and t in terms of k and T

\|He Head-on Compton scattering by an ultra-relativistic electron

* What wavelength is the photon that is scattered by 180° ?

Write your answer in terms of $K(\gamma)$

Iliī

* Remember the Compton scattering of photons up shifts the energy by $4 \gamma^{2}$

* Where are the photons?
$>$ The beam tube is filled with thermal photons (25 meV)
* In LEP-3 these photons can be up-shifted as much as 2.4 GeV
$>2 \%$ of beam energy cannot be contained easily
$>$ We need to put in the Compton cross-section and photon density to find out how rapidly beam is lost

\|| Undulator radiation: What is $\lambda_{\text {rad }}$?

An electron in the lab oscillating at frequency, f, emits dipole radiation of frequency f

Illiit

The Basics - Mechanics

|||| Newton's law

* We all know

$$
\mathbf{F}=\frac{d}{d t} \mathbf{p}
$$

* The 4-vector form is

$$
F^{\mu}=\left(\gamma c \frac{d m}{d t}, \gamma \frac{d \mathbf{p}}{d t}\right)=\frac{d p^{u}}{d \tau}
$$

* Differentiate $p^{2}=m_{o}^{2} c^{2}$ with respect to τ

$$
p_{\mu} \frac{d p^{u}}{d \tau}=p_{\mu} F^{u}=\frac{d\left(m c^{2}\right)}{d t}-\mathbf{F} \nwarrow \mathbf{y}=0
$$

* The work is the rate of changing mc^{2}

||| Harmonic oscillators \& pendula

* Motion in the presence of a linear restoring force

$$
\begin{gathered}
F=-k x \\
\ddot{x}+\frac{k}{m} x=0 \\
x=A \sin \omega_{o} t \text { where } \omega_{o}=\sqrt{k / m}
\end{gathered}
$$

$\%$ It is worth noting that the simple harmonic oscillator is a linearized example of the pendulum equation

$$
\ddot{x}+\omega_{o}^{2} \sin (x) \approx \ddot{x}+\omega_{o}^{2}\left(x-x^{3} / 6\right)=0
$$

that governs the free electron laser instability

||| Solution to the pendulum equation

* Use energy conservation to solve the equation exactly
* Multiply $\ddot{x}+\omega_{o}^{2} \sin (x)=0$ by \dot{x} to get

$$
\frac{1}{2} \frac{d}{d t} \dot{x}^{2}-\omega_{o}^{2} \frac{d}{d t} \cos x=0
$$

* Integrating we find that the energy is conserved

Simulation with 50 equally distributed pendula

IIIII

IIIII

Iliī

 Simulation with 50 equally distributed pendula

Iliii

IIIIT

time $=1.5500000000000007$
Theta

Iliit

IIIII

IIIIT

IIIIT

Iliii

IIIIT

IIIII

|||| Recall the solution to the ODE

|| Beams subject to non-linear forces are commonplace in accelerators

* Examples include
> Space charge forces in beams with non-uniform charge distributions
$>$ Forces from magnets higher order than quadrupoles
- Electromagnetic interactions of beams with external structures
- Free Electron Lasers
- Wakefields

|l|il Properties of harmonic oscillators

* Total energy is conserved

$$
U=\frac{p^{2}}{2 m}+\frac{m \omega_{o}^{2} x^{2}}{2}
$$

* If there are slow changes in m or ω, then $I=U / \omega_{o}$ remains invariant

$$
\frac{\Delta \omega_{0}}{\omega_{0}}=\frac{\Delta U}{U}
$$

This effect is important as a diagnostic
in measuring resonant properties of structures

|l||i Lorentz force on a charged particle

* Force, \mathbf{F}, on a charged particle of charge q in an electric field \mathbf{E} and a magnetic field, \mathbf{B}

$$
\mathbf{F}=q\left(\mathbf{E}+\frac{1}{c} \mathbf{v} \times \mathbf{B}\right)
$$

* $E=$ electric field with units of force per unit charge, newtons/coulomb $=$ volts $/ \mathrm{m}$.
* $\mathrm{B}=$ magnetic flux density or magnetic induction, with units of newtons/ampere- $\mathrm{m}=\mathrm{Tesla}=\mathrm{Weber} / \mathrm{m}^{2}$.

|l||| A simple problem - bending radius

* Compute the bending radius, R , of a non-relativistic particle particle in a uniform magnetic field, B .
$>$ Charge $=\mathrm{q}$
$>$ Energy $=\mathrm{mv}^{2} / 2$

$$
\begin{aligned}
F_{\text {Lorentz }} & =q \frac{v}{c} B=F_{\text {centripital }}=\frac{m v^{2}}{\rho} \\
& \Rightarrow \rho=\frac{m v c}{q B}=\frac{p c}{q B}
\end{aligned}
$$

$$
\rho(\mathrm{m})=3.34\left(\frac{p}{1 \mathrm{GeV} / \mathrm{c}}\right)\left(\frac{1}{q}\right)\left(\frac{1 \mathrm{~T}}{B}\right)
$$

Iliī
 10 minute exercise from Whittum

* Exercise: A charged particle has a kinetic energy of 50 keV . You wish to apply as large a force as possible. You may choose either an electric field of $500 \mathrm{kV} / \mathrm{m}$ or a magnetic induction of 0.1 T . Which should you choose
$>$ (a) for an electron,
$>$ (b) for a proton?

||| The fields come from charges $\&$ currents

* Coulomb's Law

$$
\mathbf{F}_{1 \rightarrow 2}=q_{2}\left(\frac{1}{4 \pi \varepsilon_{u}} \frac{q_{1}}{r_{1,2}} \hat{\mathbf{r}}_{1 \rightarrow 2}\right)=q_{2} \mathbf{E}_{1}
$$

* Biot-Savart Law

$\mathrm{i}_{2} \mathrm{dl}_{2}$

$$
d \mathbf{F}_{1 \rightarrow 2}=i_{2} d \mathbf{l}_{2} \times\left(\frac{\mu_{0}}{4 \pi} \frac{\left(\dot{i}_{1} d l_{1} \times \hat{\mathbf{r}}_{12}\right)}{r_{1.2}^{2}}\right)=i_{2} d \mathbf{l}_{2} \times \mathbf{B}_{2}
$$

|||| Compute the B-field from current loop

* On axis there is only B_{z} by symmetry
* The Biot-Savart law says

$$
\begin{gathered}
\mathrm{B}=\int_{\text {wire }}(\mathrm{d} \overrightarrow{\mathrm{~B}})_{z}=\int_{\text {wire }} \frac{I}{c r^{2}}|d \vec{l} \times \hat{r}| \sin \theta \\
|d \mathbf{l} \times \hat{\mathbf{r}}|=|d \mathbf{l}|=R d \varphi \\
\sin \theta=R / r \text { and } r=\sqrt{R^{2}+z^{2}} \\
\mathbf{B}=\frac{I}{c r^{2}} R \sin \theta \int_{0}^{2 \pi} d \varphi \hat{\mathbf{z}}=\frac{2 \pi / R^{2}}{c\left(R^{2}+z^{2}\right)^{3 / 2}} \hat{\mathbf{z}}
\end{gathered}
$$

|||i] The far field b-field has a static dipole form

Importantly the ring of current does not radiate

II Question to ponder: What is the field from this situation?

$\|^{-1}$ Electric displacement \& magnetic field

In vacuum,

* The electric displacement is $\mathbf{D}=\varepsilon_{0} \mathbf{E}$,
* The magnetic field is $\mathbf{H}=\mathbf{B} / \mu_{\text {o }}$

Where

$$
\varepsilon_{\mathrm{o}}=8.85 \times 10^{-12} \mathrm{farad} / \mathrm{m} \& \mu_{\mathrm{o}}=4 \pi \times 10^{-7} \text { henry } / \mathrm{m} .
$$

|l|i| Maxwell's equations (1)

* Electric charge density ρ is source of the electric field, \mathbf{E} (Gauss' s law)

$$
\nabla \cdot \mathbf{E}=\rho
$$

* Electric current density $\mathbf{J}=\rho \mathbf{u}$ is source of the magnetic induction field \mathbf{B} (Ampere's law)

$$
\mathbf{V} \times \mathbf{B}=\mu_{0} \mathbf{J}+\mu_{0} \varepsilon_{r} \frac{\dot{\partial} \mathbf{E}}{\partial t}
$$

If we want big magnetic fields, we need large current supplies

|||| Maxwell's equations (2)

* Field lines of \mathbf{B} are closed; i.e., no magnetic monopoles.

$$
\nabla \cdot \mathbf{B}=0
$$

* Electromotive force around a closed circuit is proportional to rate of change of B through the circuit (Faraday's law).

$$
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}
$$

|||| Maxwell' s equations: integral form

$$
\begin{gathered}
\vec{\nabla} \bullet \vec{E}=\frac{\rho}{\varepsilon_{0}} \Rightarrow \oint_{S} \vec{E} \bullet d \vec{a}=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}} \text { Gauss' Law } \\
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \Rightarrow \oint_{C} \vec{E} \bullet d \vec{l}=-\oint_{S} \frac{\partial \vec{B}}{\partial t} \bullet d \vec{a} \text { Faraday' s Law } \\
\vec{\nabla} \times \vec{B}=\mu_{0} J+\mu_{0} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t}=>\quad \text { Displacement current } \\
\oint_{C} \vec{B} \bullet d \vec{l}=\mu_{0} I_{\text {enclosed }}+\mu_{0} \varepsilon_{0} \oint_{S} \frac{\partial \vec{E}}{\partial t} \bullet d \vec{a} \text { Ampere' s Law }
\end{gathered}
$$

Iliii Boundary conditions for a perfect conductor: $\sigma=\infty$

1. If electric field lines terminate on a surface, they do so normal to the surface
a) any tangential component would quickly be neutralized by lateral motion of charge within the surface.
b) The E-field must be normal to a conducting surface
2. Magnetic field lines avoid surfaces
a) otherwise they would terminate, since the magnetic field is zero within the conductor
i. The normal component of B must be continuous across the boundary for $\sigma \neq \infty$

||| Exercise from Whittum

* Exercise: A charged particle has a kinetic energy of 50 keV . You wish to apply as large a force as possible. You may choose either an electric field of $500 \mathrm{kV} / \mathrm{m}$ or a magnetic induction of 0.1 T . Which should you choose
$>$ (a) for an electron,
$>(\mathrm{b})$ for a proton?

IIIIIT
 Lorentz transformations of E.M. fields

$$
\begin{array}{ll}
E_{z^{\prime}}^{\prime}=E_{z} & B_{z^{\prime}}^{\prime}=B_{z} \\
E_{x^{\prime}}^{\prime}=\gamma\left(E_{x}-v B_{y}\right) & B_{x^{\prime}}^{\prime}=\gamma\left(B_{x}+\frac{v}{c^{2}} E_{y}\right) \\
E_{y^{\prime}}^{\prime}=\gamma\left(E_{y}+v B_{x}\right) & B_{y^{\prime}}^{\prime}=\gamma\left(B_{y}-\frac{v}{c^{2}} E_{x}\right)
\end{array}
$$

Fields are invariant along the direction of motion, z

Iliī
 Example: Lorentz stripping \& dissociation

* An ion moving in a magnetic field B experiences a Lorentz force that bends its trajectory \& also tends to break it up
$>$ the protons \& electrons are bent in opposite directions
$>$ The binding energy of the extra electron is only 0.755 eV .
$>$ The breakup is a probabilistic, quantum mechanical process
* In the ion rest frame, the stripping force is effected by the electric field E that is the Lorentz-transform of the magnetic field B in the lab,

$$
\mathrm{E}=\kappa \beta \gamma \mathrm{B}, \text { where } \kappa=0.3 \mathrm{GV} / \mathrm{T}-\mathrm{m} .
$$

Example for $\mathbf{H}_{2}{ }^{+}$:

The huge field distorts ion potential energy
Potential curves for lowest two electronic states of H_{2}^{+}in D.C. Field
Field along molecular axis, $\mathrm{J}_{\text {rot }}=0$, accurate calculations using DVR grids in Prolate Coordinates

||F Fields of a relativistic point charge

* Let's evaluate the EM fields from a point charge q moving ultra-relativistically at velocity v in the lab
* In the rest frame of the charge, it has a static \mathbf{E} field only:

$$
\mathbf{E}^{\prime}=\frac{1}{4 \pi \varepsilon_{o}} \frac{q \mathbf{r}^{\prime}}{r^{\prime 3}}
$$

where \mathbf{r} is the vector from the charge to the observer

* To find \mathbf{E} and \mathbf{B} in the lab, use the Lorentz transformation for coordinates time and the transformation for the fields

Iliit

This effect is offers us
 a non-destructive beam diagnostic

* Pass the charge through a hole in a conducting foil
* The foil clips off the field for a time $\Delta \mathrm{t} \sim \mathrm{a} / \mathrm{c} \gamma$
* The fields should look restored on the other side
$==>$ radiation from the hole

|||| The vector potential, A_{μ}

* The Electric and magnetic fields can be derived from a four-vector potential, $\mathrm{A}_{\mu}=(\phi, \mathbf{A})$

$$
\begin{aligned}
& \mathbf{E}=\nabla \phi \\
& \mathbf{B}=\nabla \times \mathbf{A}
\end{aligned}
$$

* A_{μ} transforms like the vector (ct, \mathbf{r})

$$
\begin{aligned}
& \phi^{\prime}=\gamma\left(\phi-v A_{z}\right) \\
& A_{x}^{\prime}=A_{x} \\
& A_{y}^{\prime}=A_{y} \\
& A_{z}^{\prime}=\gamma\left(A_{z}-\frac{v}{c^{2}} \phi\right)
\end{aligned}
$$

|||| Energy balance \& the Poynting theorem

* The energy/unit volume of E-M field is

$$
u=\frac{1}{2}(\boldsymbol{E} \cdot \boldsymbol{D}+\boldsymbol{H} \cdot \boldsymbol{B})=\frac{\epsilon_{0}}{2}\left(E^{2}+c^{2} B^{2}\right)
$$

* The Poynting vector, $\boldsymbol{S}=\boldsymbol{E} \times \boldsymbol{H}=$ energy flux
* The Poynting theorem says

$$
\frac{\partial}{\partial t} \int_{V} u d V=-\int_{V} \boldsymbol{j} \cdot \boldsymbol{E} d V-\int_{A} \boldsymbol{n} \cdot \boldsymbol{S} d A
$$ rate of change of

EM energy due to $=-\begin{aligned} & \text { work done by } \mathbf{E} \\ & \text { interaction }\end{aligned} \quad-\begin{aligned} & \text { EM energy flow } \\ & \text { through the }\end{aligned}$
enclosing surface with moving charges

IIIIIT
 Some other characteristics of beams

* Beams particles have random (thermal) \perp motion

$$
\boldsymbol{\vartheta}_{x}=\left\langle\frac{p_{x}^{x}}{p_{z}^{2}}\right\rangle^{1 / 2}>0
$$

* Beams must be confined against thermal expansion during transport

|||| Beams have internal (self-forces)

* Space charge forces
> Like charges repel
> Like currents attract
* For a long thin beam

$$
\begin{aligned}
& E_{s p}(V / \mathrm{cm})=\frac{60 I_{\text {beam }}(A)}{R_{\text {beam }}(\mathrm{cm})} \\
& B_{\theta}(\text { gauss })=\frac{I_{\text {beam }}(A)}{5 R_{\text {beam }}(\mathrm{cm})}
\end{aligned}
$$

Iliii
 Net force due to transverse self-fields

In vacuum:
Beam' s transverse self-force scale as $1 / \gamma^{2}$
$>$ Space charge repulsion: $\mathrm{E}_{\mathrm{sp}, \perp} \sim \mathrm{N}_{\text {beam }}$
> Pinch field: $\mathrm{B}_{\theta} \sim \mathrm{I}_{\text {beam }} \sim \mathrm{v}_{\mathrm{z}} \mathrm{N}_{\text {beam }} \sim \mathrm{V}_{\mathrm{z}} \mathrm{E}_{\text {sp }}$
$\therefore \mathrm{F}_{\mathrm{sp}, \perp}=\mathrm{q}\left(\mathrm{E}_{\mathrm{sp}, \perp}+\mathrm{v}_{\mathrm{z}} \times \mathrm{B}_{\theta}\right) \sim\left(1-\mathrm{v}^{2}\right) \mathrm{N}_{\text {beam }} \sim \mathrm{N}_{\text {beam }} / \gamma^{2}$

Beams in collision are not in vacuum (beam-beam effects)

|l|e Example: Megagauss fields in linear collider

```
electrons positrons
```

At Interaction Point space charge cancels; currents add ==> strong beam-beam focus
==> Luminosity enhancement
$==>$ Strong synchrotron radiation

Consider 250 GeV beams with 1 kA focused to 100 nm

$$
\mathrm{B}_{\text {peak }} \sim 40 \text { Mgauss }
$$

Iliī

Accelerators

IHE The first accelerators: DC (electrostatic) accelerators

||| What is final energy of the beam?

|||- The "magnetic salad bowl" Possible high energy DC accelerator?

At $t=0$ the ion source at 1 injects a proton of energy E_{o} in the gap pointed at a hole in plate 2 . The entire device is imbedded in a constant magnetic (dipole) field, B, pointing out of the surface.

Exiting the plate 2, the proton enters the innermost virtual beam pipe.

If $B=100$ Gauss and $E_{0}=100 \mathrm{keV}$, what is the radius of the first orbit?

After 10,000 revolutions, what is the energy of the proton as it leaves plate 2.

Iliit
 Maxwell forbids this!

$$
\nabla \times \mathbf{E}=-\frac{d \mathbf{B}}{d t}
$$

or in integral form
$\oint_{C} \mathbf{E} \cdot d \mathbf{s}=-\frac{\partial}{\partial t} \int_{S} \mathbf{B} \cdot \mathbf{n} d a$
\therefore There is no acceleration without time-varying magnetic flux

Circuit theory

Accelerator physicists often use network (circuit) analogs of accelerator systems

1) $R F$ systems
2) Vacuum systems
3) Control systems

Iliī
 Example: Vacuum design storage ring Synchrotron radiation in hard bends of CESR-B

Estimate the pumping speed needed for Titanium pumps \& NEG pumps

Figure 5. Schematic of the pumping scheme and beam chamber in the hard bend transition region of the high energy ring of CESR-B

Figure 5. Circuit model of the pumping in the HER transition section

14-E Basic concepts: Start with dc circuits

* Kirchoff' s law' s
> The sum of Voltage drops around any loop equals zero
$>$ The sum of the currents into any node equals zero

* Ohm' s law:
$>$ The voltage drop across a resistance: $\mathrm{V}=\mathrm{I} \mathrm{R}$

|||| Ohm's Law Generalized

* Basic approach is the Fourier analysis of a circuit
* Start with

$$
\tilde{V}=V e^{j(\omega t+\varphi)}
$$

* Instead of V = IR where the quantities are real we write

$$
\tilde{V}(\omega)=\tilde{I}(\omega) \vec{Z}(\omega)
$$

* We know this works for resistors.

$$
\mathrm{V}(\mathrm{t})=\mathrm{RI}(\mathrm{t}) \Longrightarrow \mathrm{Z}_{\mathrm{R}} \text { is real }=\mathrm{R}
$$

* What about capacitors \& inductors?

|||| Impedance of Capacitors

* For a capacitor

$$
I=C\left(\frac{d V}{d t}\right) \Rightarrow \tilde{I}=C \frac{d}{d t} V e^{j(\omega t+\varphi)}=j \omega C \tilde{V}
$$

* So our generalized Ohm' s law is

$$
\tilde{V}=\tilde{I} Z_{C}
$$

where

$$
\tilde{Z}_{C}=\frac{1}{j \omega C}
$$

||| Impedance of Inductors

* For a capacitor

$$
V=L\left(\frac{d I}{d t}\right) \Rightarrow \tilde{V}=L \frac{d}{d t} I e^{j(\omega t+\varphi)}=j \omega L \tilde{I}
$$

* So our generalized Ohm's law is

$$
\tilde{V}=\tilde{I} Z_{L}
$$

Where

$$
\tilde{Z}_{L}=j \omega L
$$

\|\| Combining impedances

* The algebraic form of Ohm's Law is preserved
$==>$ impedances follow the same rules for combination in series and parallel as for resistors
* For example

$$
\begin{aligned}
& Z_{\text {series }}=Z_{1}+Z_{2} \\
& Z_{\text {parallel }}=\left[1 / Z_{1}+1 / Z_{2}\right]^{-1}=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}
\end{aligned}
$$

* We can now solve circuits using Kirkhoff's laws, but in the frequency domain

|||F Exercise: Compute the impedance \mathbf{Z}

 looking into the terminals (10 miutes)

|||cooking into the terminals, we have

$$
Z(\omega)=\left[j \omega C+(j \omega L+R)^{-1}\right]^{-1}
$$

$$
Z(\omega)=\frac{1}{j \omega C+(j \omega L+R)^{-1}}=\frac{(j \omega L+R)}{(j \omega L+R) j \omega C+1}=\frac{(j \omega L+R)}{\left(1-\omega^{2} L C\right)+j \omega R C}=X+j \varphi
$$

The resonant frequency is $\omega_{\mathrm{o}}=1 / \sqrt{L C}$

|||il Resonant behavior of the lumped circuit

Converting the denominator of Z to a real number we see that

The width is $\frac{\Delta \omega}{\omega_{0}}=\frac{R}{\sqrt{L / \cdot C}}$

|l||i More basics from circuits - Q

$$
Q=\frac{\omega_{o} \circ \text { Energy stored }}{\text { Time average power loss }}=\frac{2 \pi \circ \text { Energy stored }}{\text { Energy per cycle }}
$$

$$
\mathscr{C}=\frac{1}{2} L I_{o} I_{o}^{*} \quad\langle\mathscr{P}\rangle=\left\langle\mathrm{i}^{2}(t)\right\rangle R=\frac{1}{2} I_{o} I_{o}^{*} R_{\text {surface }}
$$

$$
\therefore Q=\frac{\sqrt{\mathrm{L} / \mathrm{C}}}{\mathrm{R}}=\left(\frac{\Delta \omega}{\omega_{o}}\right)^{-1}
$$

Iliī

RF-cavities

\|HE RF-cavities for acceleration: The heart of modern accelerators

|l| RF cativties: Basic concepts

* Fields and voltages are complex quantities.
$>$ For standing wave structures use phasor representation

* For cavity driven externally, phase of the voltage is

$$
\theta=\omega t+\theta_{\mathrm{o}}
$$

$*$ For electrons $\mathrm{v} \approx \mathrm{c}$; therefore $\mathrm{z}=\mathrm{z}_{\mathrm{o}}+\mathrm{ct}$

||| Basic principles and concepts

* Superposition
* Energy conservation
* Orthogonality (of cavity modes)
* Causality

Reciprocity \& superposition

* If you can kick the beam, the beam can kick you
\qquad

$$
\text { Total cavity voltage }=\mathrm{V}_{\text {generator }}+\mathrm{V}_{\text {beam-induced }}
$$

Fields in cavity $=\mathbf{E}_{\text {generator }}+\mathbf{E}_{\text {beam-induced }}$

||||| Basic principles: Energy conservation

* Total energy in the particles and the cavity is conserved
> Beam loading

$\Delta \mathbf{W}_{\mathrm{c}}=\mathbf{U}_{\mathbf{i}}-\mathbf{U}_{\mathrm{f}}$

Iliī
 Basics: Orthogonality of normal modes

* Maxwell's equations are linear
> The EM field is NOT a source of EM fields
* Therefore,
$>$ Each mode in the cavity can be treated independently in computing fields induced by a charge crossing the cavity.
$>$ The total stored energy is equals the sum of the energies in the separate modes.
$>$ The total field is the phasor sum of all the individual mode fields at any instant.

\||| Basic principles: Causality

* No disturbance ahead of a charge moving at $\mathrm{v} \approx \mathrm{c}$
* In a mode analysis of the growth of beam-induced fields, field must vanish ahead of the moving charge for each mode

||| Basic components of an RF cavity

||FE We have already solved this circuit Lumped circuit analogy of resonant cavity

$$
\begin{gathered}
Z(\omega)=\left[j \omega C+(j \omega L+R)^{-1}\right]^{-1} \\
Z(\omega)=\frac{1}{j \omega C+(j \omega L+R)^{-1}}=\frac{(j \omega L+R)}{(j \omega L+R) j \omega C+1}=\frac{(j \omega L+R)}{\left(1-\omega^{2} L C\right)+j \omega R C}
\end{gathered}
$$

The resonant frequency is $\omega_{\mathrm{o}}=1 / \sqrt{L C}$

\|\| \mathbf{Q} of the lumped circuit analogy

Converting the denominator of Z to a real number we see that

$$
|Z(\omega)| \sim\left[\left(1-\frac{\omega^{2}}{\omega_{o}^{2}}\right)^{2}+(\omega R C)^{2}\right]^{-1}
$$

The width is $\frac{\Delta \omega}{\omega_{0}}=\frac{R}{\sqrt{L / C}}$

Iliii
 Translate circuit model to a cavity model: Directly driven, re-entrant RF cavity

Outer region: Large, single turn Inductor

$$
L=\frac{\mu_{o} \pi a^{2}}{2 \pi(R+a)}
$$

Central region: Large plate Capacitor

$$
\begin{gathered}
C=\varepsilon_{o} \frac{\pi R^{2}}{d} \\
\omega_{o}=1 / \sqrt{L C}=c\left[\frac{2((R+a) d}{\pi R^{2} a^{2}}\right]^{1 / 2}
\end{gathered}
$$

Q - set by resistance in outer region

\|\| Properties of the RF pillbox cavity

$$
\sigma_{w a l l s}=\infty
$$

* We want lowest mode: with only $\mathbf{E}_{z} \& \mathbf{B}_{\theta}$
* Maxwell' s equations are:

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r B_{\theta}\right)=\frac{1}{c^{2}} \frac{\partial}{\partial t} E_{z} \quad \text { and } \frac{\partial}{\partial r} E_{z}=\frac{\partial}{\partial t} B_{\theta}
$$

* Take derivatives

$$
\begin{gathered}
\frac{\partial}{\partial t}\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r B_{\theta}\right)\right]=\frac{\partial}{\partial t}\left[\frac{\partial B_{\theta}}{\partial r}+\frac{B_{\theta}}{r}\right]=\frac{1}{c^{2}} \frac{\partial^{2} E_{z}}{\partial t^{2}} \\
\frac{\partial}{\partial r} \frac{\partial E_{z}}{\partial r}=\frac{\partial}{\partial r} \frac{\partial B_{\theta}}{\partial t} \\
=\Rightarrow \frac{\partial^{2} E_{z}}{\partial r^{2}}+\frac{1}{r} \frac{\partial E_{z}}{\partial r}=\frac{1}{c^{2}} \frac{\partial^{2} E_{z}}{\partial t^{2}}
\end{gathered}
$$

\|\| For a mode with frequency ω

*

$$
E_{z}(r, t)=E_{z}(r) e^{i \omega t}
$$

* Therefore, $\quad E_{z}^{\prime \prime}+\frac{E_{z}^{\prime}}{r}+\left(\frac{\omega}{c}\right)^{2} E_{z}=0$
$>$ (Bessel's equation, 0 order)
* Hence,

$$
E_{z}(r)=E_{o} J_{o}\left(\frac{\omega}{c} r\right)
$$

* Apply boundary condition for conducting walls, $\mathrm{E}_{\mathrm{z}}(\mathrm{R})=0$, therefore

$$
\frac{2 \pi f}{c} b=2.405
$$

$\left\|\|\right.$ E-fields \& equivalent circuit: $\mathrm{T}_{\text {on10 }}$ mode

L

|||| Simple consequences of pillbox model

* Increasing R lowers frequency
$==>$ Stored Energy, $\mathscr{E} \sim \omega^{-2}$

$$
\mathscr{E} \sim \mathrm{E}_{\mathrm{z}}^{2}
$$

* Beam loading lowers E_{z} for the next bunch
* Lowering ω lowers the fractional beam loading
* Raising ω lowers $Q \sim \omega^{-1 / 2}$
* If time between beam pulses,

$$
\mathrm{T}_{\mathrm{s}} \sim Q / \omega
$$

almost all \mathscr{E} is lost in the walls

||1- The beam tube complicates the field modes (\& cell design)

* Peak E no longer on axis

$>\mathrm{E}_{\mathrm{pk}} \sim 2-3 \times \mathrm{E}_{\mathrm{acc}}$
$\Rightarrow \mathrm{FOM}=\mathrm{E}_{\mathrm{pk}} / \mathrm{E}_{\mathrm{acc}}$
* ω_{0} more sensitive to cavity dimensions
> Mechanical tuning \& detuning
* Beam tubes add length \& €'s w/o acceleration
* Beam induced voltages $\sim \mathrm{a}^{-3}$
> Instabilities

