Plif

Lecture 1 The development of accelerator concepts

William A. Barletta

Director, US Particle Accelerator School Dept. of Physics, MIT & UCLA Economics Faculty, University of Ljubljana

Motivations: Why does anyone care about accelerators?

University of Ljubljan

ECONOMICS

 $\tau^{1/2} = 6.5h$

Materials

Exciting products... exciting opportunities

Medicine

US PARTICLE ACCELERATOR SCHOOL

Basic Research

Accelerators are the hallmark of highly technological societies

University of Ljubljana FACULTY OF ECONOMICS

Societal applications & their technology develop from basic research

US PARTICLE ACCELERATOR SCHOOL

Source: U. Amaldi

Major research machines are a tiny fraction of the total, but...

Sources: W. Maciszewski & W. Scharf, L. Rivkin, * EPP2010, ** R. Hamm

The history of accelerators is a history of 100 years of invention

- ➤ phase stability,
- strong focusing
- colliding beam storage rings;

* Dominant accelerator technologies

- superconducting magnets
- high power RF production
- normal & superconducting RF acceleration
- * Substantial accomplishments in physics & technology
 - > non-linear dynamics, collective effects, beam diagnostics, etc.;

ACULTY O

CONOMIC

- * Years of experience with operating colliders.
 - Overcoming performance limits often requires development of sophisticated theories, experiments, or instrumentation

From R. Siemann: SLAC-PUB-7394January 1997

How do we get energy into the beam?

1000 TeV 100 TeV LHC Proton Storage Rings (equivalent energy) 10 TeV Tevatron 1 TeV LEP 200 Proton **Particle Energy** ILC Synchrotrons 100 GeV SLC Electron 10 GeV Synchrotrons Electron Linacs Synchrocyclotrons Betatrons 1 GeV Proton Linacs Sector-Focused Cyclotrons 100 MeV Cyclotrons Electrostatic Generators 10 MeV Rectifier Generators 1 MeV 1970 1930 1950 1990 2010 Year of Commissioning

University of Ljubljana

ECONOMICS

Simple DC (electrostatic) accelerator

University of Ljubljand

FACULTY OF ECONOMICS

Crockroft Walton high voltage dc accelerator column

Van de Graaff's generator a Round Hill MA

Suzie Sheehy: Things not to do with a particle accelerator

Change the charge of the beam from - to + at the HV electrode

Inside the Tandem van de Graaff at TUNL (Duke University)

Characteristics of DC accelerators

✤ Voltage limited by electrical breakdown (~10 kV/cm)

Plif

Why do we need RF structures & fields?

RF voltage generators allow higher energies in smaller accelerators

University of Linh

CONOMIC

- Beam duration must be a small fraction of an rf-cycle
- ✤ Gap should be a small fraction of an rf-wavelength
- No very high voltage generator
- No exposed HV hazard
- High voltage beam obtained by replicated structure

Phase shift between tubes is 180°

As the ions increase their velocity, drift tubes must get longer

$$L_{drift} = \frac{1}{2} \frac{v}{f_{rf}} = \frac{1}{2} \frac{\beta c}{f_{rf}} = \frac{1}{2} \beta \lambda_{rf}$$

Alternate drift tubes are not grounded (passive structures) ==> phase shift between tubes is 360°

$$L_{drift} = \beta \lambda_{rf}$$

N.B. The outside surface is at ground potential

The Alvarez linac: Time varying spatially stationary fields

Ultra-relativistic particles can "surf" the RF-field traveling at c

University of Ljubljand FACULTY OF

Linac size is set by E_{gap}; why not one gap? Microtron

28 MeV Microtron at HEP Laboratory University College London

Synchronism in the Microtron

$$\frac{1}{r_{orbit}} = \frac{eB}{pc} = \frac{eB}{mc^2\beta\gamma}$$

$$\tau_{rev} = \frac{2\pi r_{orbit}}{v} = \frac{2\pi r_{orbit}}{\beta c} = \frac{2\pi mc}{e} \frac{\gamma}{B}$$

Synchronism condition: $\Delta \tau_{rev} = N/f_{rf}$

$$\Delta \tau = \frac{N}{f_{rf}} = \frac{2\pi mc}{e} \frac{\Delta \gamma}{B} = \frac{\Delta \gamma}{f_{rf}}$$

If N = 1 for the first turn @ $\gamma \sim 1$

Or
$$\Delta \gamma = 1 \implies E_{rf} = mc^2$$

Possible for electrons but not for ions

But long as $\gamma \approx 1$, $\tau_{rev} \approx constant!$ Let's curl up the Wiederoe linac

Supply magnetic field to bend beam

$$\tau_{rev} = \frac{1}{f_{rf}} = \frac{2\pi mc}{eZ_{ion}} \frac{\gamma}{B} \approx \frac{2\pi mc}{eZ_{ion}B} = const.$$

And we have...

Lawrence, E.O. and Sloan, D.: Proc. Nat. Ac. Sc., 17, 64 (1931)

Lawrence, E.O. & Livingstone M.S.: Phys. Rev 37, 1707 (1931).

E.O. Lawrence & the 25-inch cyclotron

Orbit stability & weak focusing

- Early cyclotron builders found that the beam kept hitting the upper & lower pole pieces with a uniform field
- McMillan added vertical focusing of circulating
 particles by sloping magnetic fields from inwards to
 outwards rad

At any given moment, the average vertical B field sensed during one particle revolution is larger for smaller radii of curvature than for larger ones

This approach works well until we violate the synchronism condition

University of Liubli

CONOMICS

and **Synchronism condition:** $\Delta \tau_{rev} = N/f_{rf}$

$$\tau_{rev,o} = \frac{2\pi mc}{e} \frac{\gamma}{B} \approx \frac{2\pi mc}{eB}$$

✤ What do we mean by violate?

> Any generator has a bandwidth $\Delta f_{\rm rf}$

Therefore, synchronism fails when

$$\tau_{rev,n} - \tau_{rev,o} = \frac{2\pi mc}{e} \frac{(\gamma_n - 1)}{B} \approx \Delta f_{rf}$$

An obvious invention fixes this problem: Change $f_{rf} ==>$ the synchro-cyclotron

For B = constant, to maintain synchronism

$$f_{\rm rf} \sim 1/\gamma(t)$$

• The energy for an ion of charge Z follows from $r = \frac{ZeB}{cp}$

Ex: Lawrence's 184-in cyclotron R_{max} = 2.337 m B = 1.5 T M_{yoke}≈ 4300 tons !!

But this requires pulsed rather than CW operation (one bunch in the machine at a time)

==> Average current is reduced by the number of turns to full energy (\sim 1000x) to \sim 0.1 μ A

A different way to maintain synchronism: vertical (Thomas) focusing (1938)

- ✤ We need to find a way to increase the vertical focusing
- * One can obtain $\mathbf{F}_{\mathbf{z}}$ with $\mathbf{v}_{\mathbf{r}}$, \mathbf{B}_{θ}
- ✤ ==> find an azimuthal component B_{θ} & a radial velocity component v_r
- ✤ ==> a non-circular trajectory

===> Sectors & B increases with radius

Spiraled cyclotrons for proton therapy

Energy range: ~100 - 230 MeV Current: 5 nA - 500 nA ~ 240 tonnes

University of Ljubljan

FACULTY OF

Plif

Can the cyclotron reach ultra-relativistic energies?

 $\begin{array}{c} Remember \\ p \sim B\rho \end{array}$

(5 minute exercise)

Wiederoe's Ray Transformer for electrons

From Wiederoe's notebooks (1923-'28)

University of Ljubljand

ECONOMICS

He was dissuaded by his professor from building the ray transformer due to worries about beam-gas scattering

Let that be a lesson to you!

Transformer basics

The ray transformer realized as the Betatron (D. Kerst, 1940)

University of Ljubljan. FACULTY O ECONOMIC

The beam acts as a 1-turn secondary winding of the transformer Magnetic field energy is transferred directly to the electrons

Betatron as a tranformer

✤ Ampere's law

$$2\pi RE_{\vartheta} = -\frac{d}{dt}\Phi = -\dot{\Phi}$$

Radial equilibrium requires

$$\frac{1}{R} = \frac{eB_s}{pc}$$

Newton' s law

$$\dot{p} = eE_{\vartheta} = \frac{e\ \dot{\Phi}}{2\pi R}$$

$$\frac{1}{R} = \frac{eB_s}{pc} \Longrightarrow -\frac{1}{R^2} \frac{dR}{dt} = \frac{e}{c} \left(\frac{\dot{B}_s}{p} - \frac{B_s}{p^2} \dot{p} \right) = 0$$

$$\Rightarrow \dot{p} = \frac{\dot{B}_s}{B_s} p \Rightarrow \frac{e \dot{\Phi}}{2\pi R} = \frac{\dot{B}_s}{B_s} p$$

$$\dot{\Phi} = 2\pi R^2 \dot{B}_s$$

Donald Kerst's betatrons

Kerst originally used the phrase, Induction Accelerator

The Linear Betatron: Linear Induction Accelerator

N. Christofilos

$$\oint_C \mathbf{E} \cdot d\mathbf{l} = -\frac{\partial}{\partial t} \int_S \mathbf{B} \cdot d\mathbf{s}$$

Christofilos' contributions to accelerator science

Strong focusing (1949)

University of Ljubljand FACULTY OF

Christofilos' Astron Induction Linac & Astron CTR (1966)

Plif

Induction accelerators occupy a special niche, but now on to the mainstream

The size of monolithic cyclotron magnets was getting beyond the practical

In a classified report Mark Oliphant suggested

- ✤ Change the B field as the particles gained energy to maintain a constant orbit size (= Nλ_{rf})
 - Could synchronism of the particles with the rf be maintained?

Fundamental discovery by Veksler (1944) & MacMillan (1945)

Phase stability: Will bunch of finite length stay together & be accelerated?

Let's say that the synchronous particle makes the i^{th} revolution in time: T_i

Will particles close to the synchronous particle in phase stay close in phase?

Discovered by MacMillan & by Veksler

The GE 70 MeV synchrotron was first to produce observable synchrotron light (1947)

The first purpose-built synchrotron to operate was built with a glass vacuum chamber

Charges in circular orbit at constant speed radiate incoherently in a 1/γ cone

 $N_{\gamma} = 2\pi\alpha\gamma N_e$ per revolution

Electric field lines from a charge in circular motion

University of Ljubljana FACULTY OF ECONOMICS

Field energy flows to infinity

By the early 1950's 3 proton synchrotrons ad followed the first electron models

- ✤ 3-BeV "Cosmotron" at the Brookhaven (1952)
 - > 2000 ton magnet in four quadrants
 - ➤ 1 second acceleration time
 - Shielding recognized as major operational issue
- ✤ 1-BeV machine at Un. of Birmingham (UK) in 1953

Laminated magnets, no field free straight sections

- 6 BeV "Bevatron" University of California Radiation Laboratory (1954)
 - Vacuum chamber ~ 3 feet high
- ♦ Weak focusing precluded such a design at ≥ 10 GeV

Another great invention was needed

The BNL Cosmotron w. 4-sector magnets

The vacuum chamber of the 6 GeV Bevatron could fit whole physicists

University of Ljubljand FACULTY OF ECONOMICS

Strong focusing allowed shrinking the vacuum chamber to reasonable sizes

- Patented but not published by Christofilos (1949);
- Independently discovered and applied to AGS design by Courant, Livingston, and Snyder

University of Ljubljan. FACULTY O ECONOMIC

Small chambers meant much better vacuum making practical a **third great invention**

ADA - The first storage ring collider (e⁺e⁻) by B. Touschek at Frascati (1960)

The storage ring collider idea was invented by R. Wiederoe in 1943

- Collaboration with B. Touschek

– Patent disclosure 1949

G. O' Neill is often given credit for inventing the collider based on his 1956 paper

Princeton-Stanford colliding beam storage rings - 1960

Panofsky, Richter, & O'Neill

The next big step was the ISR at CERN

- ✤ 30 GeV per beam with > 60 A circulating current
 - ➢ Required extraordinary vacuum (10⁻¹¹ Torr)
 - Great beam dynamics challenge more stable than the solar system
- ✤ Then on to the 200 GeV collider at Fermilab (1972) and ...
- The SppS at CERN
 - Nobel invention:Stochastic cooling
- And finally the Tevatron
 Also requires a major technological advance

First machine to exploit superconducting magnet technology

niversity of Link

ACULTY O CONOMIC

The 70's brought another great invention

University of Liubli

ACULTY O

The Free Electron Laser (John Madey, Stanford, 1976)

Physics basis: Bunched electrons radiate coherently

Which brings us to the present...

Maybe not... Optical Particle Accelerator

Standard regime (LWFA): pulse duration matches plasma period

University of Ljublja

ECONOMICS

- Accelerating field ~ Sqrt(plasma density)
- Phase velocity < c : particle and wave de-phase
- Energy gain $\Delta W = eE_zL_{acc}$

RF-cavities in metal and in plasma Think back to the string of pillboxes

1 m RF cavity Courtesy of W. Mori & L. da Silva

 $G \sim 30 MeV/m$

 $G \sim 30 \ GeV/m$

There are many possible special topics after we cover the basics

What interests you?