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Motivations:  
Why does anyone care about 
accelerators? 

Medicine 

Materials 

Basic Research 

Exciting products…      
 exciting opportunities 
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Accelerators are the hallmark  
of highly technological societies 

Source: U. Amaldi 

Societal applications & their technology develop from basic research 

forensics 
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Accelerators are big business 

Sources: W. Maciszewski & W. Scharf, L. Rivkin, * EPP2010, ** R. Hamm  

Major research machines are a tiny fraction of the total, but… 
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The history of accelerators is a history  
of 100 years of invention 

v  Great principles of accelerator physics 
Ø  phase stability,  
Ø  strong focusing 
Ø  colliding beam storage rings; 

v  Dominant accelerator technologies 
Ø  superconducting magnets 
Ø  high power RF production  
Ø  normal & superconducting RF acceleration 

v  Substantial accomplishments in physics & technology 
Ø  non-linear dynamics, collective effects, beam diagnostics, etc.; 

v  Years of experience with operating colliders.  
Ø  Overcoming performance limits often requires development of 

sophisticated theories, experiments, or instrumentation 

From R. Siemann: SLAC-PUB-7394January 1997 
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How do we get energy into the beam? 
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Simple DC (electrostatic) accelerator 

   High  
   voltage   
generator + 

- 
Parallel plates 

Electrical ground 

 Vacuum  
enclosure + 

Experiment 

+ 
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Crockroft Walton  
high voltage dc accelerator column 

Crockroft-Walton at FNAL accelerates H- to 750keV Eout = Nstage Eac 

beam 
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Van de Graaff generators 

Van de Graaff’s generator a Round Hill MA 
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 Suzie Sheehy: 
Things not to do with a particle accelerator 
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Van de Graff accelerators are still used 
The Tandem “Trick” 

Change the charge of the beam from - to + at the HV electrode 

FSU tandem 
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Inside the Tandem van de Graaff  
at TUNL (Duke University) 
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Characteristics of DC accelerators 

v  Voltage limited by electrical breakdown (~10 kV/cm) 
Ø  High voltage 

 ==> Large size (25 m for 25 MV) 
Ø  Exposed high voltage terminal  

 ==> Safety envelope 

v  High impedance structures  
Ø  Low beam currents 

v  Generates continuous beams 

Sparking electric field limits in the Kilpatrick 
model, including electrode gap dependence 
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Why do we need RF structures & fields? 
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RF voltage generators allow higher energies 
in smaller accelerators 

v  Beam duration must be a small fraction of an rf-cycle 

v  Gap should be a small fraction of an rf-wavelength 

v  No very high voltage generator 

v  No exposed HV hazard 

v  High voltage beam obtained by replicated structure 
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The ion linac (Wiederoe) 

Phase shift between tubes is 180o 

As the ions increase their velocity, drift tubes must get longer 

€ 

Ldrift =
1
2
v
frf

=
1
2
βc
frf

=
1
2
βλrf
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Wiederoe and his linac:  
A missed Nobel prize 
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Alvarez linac 

RF 
source 

Ion 
source 

Evacuated metal cylinder 

Alternate drift tubes are not grounded (passive structures) 
==> phase shift between tubes is 360o 

N.B. The outside surface is at ground potential 

Ldrift = βλrf 
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The Alvarez linac:  
Time varying spatially stationary fields 
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Ultra-relativistic particles can “surf”  
the RF-field traveling at c 

RF- in = Po 

z 

RF-out 
= PL 

Egap 
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Linac size is set by Egap; why not one gap? 
Microtron 

Synchronism condition:  
Δτrev = N/frf 

RF-cavity 

B

Note that in cavity  
dB/dt ≠0 
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28 MeV Microtron at HEP Laboratory 
University College London 
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Synchronism in the Microtron 

€ 

1
rorbit

=
eB
pc

=
eB
mc 2βγ

€ 

τ rev =
2πrorbit
v

=
2πrorbit
βc

=
2π mc
e

γ
B

Synchronism condition: Δτrev = N/frf 

If N = 1 for the first turn @ γ ~ 1 

€ 

Δτ =
N
frf

=
2π mc
e

Δγ
B

=
Δγ
frf

Or  Δγ = 1 ==> Erf = mc2 

Possible for electrons but not for ions 
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But long as γ ≈ 1, τrev ≈ constant! 
Let’s curl up the Wiederoe linac 

Bend the drift tubes Connect equipotentials  Eliminate excess Cu  

Supply magnetic field to bend beam 

€ 

τ rev =
1
f rf

=
2π mc
eZion

γ
B
≈

2π mc
eZionB

= const.



US Particle Accelerator School

And we have… 

Lawrence, E.O. and Sloan, D.: Proc. Nat. Ac. Sc., 
17, 64 (1931) 
 

Lawrence, E.O. & Livingstone M.S.: Phys. Rev 37, 
1707 (1931). 
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The classic cyclotron 

Ion source Dee 
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E.O. Lawrence & the 25-inch cyclotron 
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Orbit stability & weak focusing 

v  Early cyclotron builders found that the beam kept 
hitting the upper & lower pole pieces with a uniform 
field 

v  McMillan added vertical focusing of circulating 
particles by sloping magnetic fields, from inwards to 
outwards radii 

v  At any given moment, the average vertical B field 
sensed during one particle revolution is larger for 
smaller radii of curvature than for larger ones 
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This approach works well  
until we violate the synchronism condition 

v  Recall that  

 and 

v  What do we mean by violate? 
Ø  Any generator has a bandwidth Δfrf   

v  Therefore, synchronism fails when 

  

Synchronism condition: Δτrev = N/frf 

€ 

τ rev,o =
2π mc
e

γ
B
≈

2π mc
eB
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τ rev,n −τ rev,o =
2π mc
e

γ n −1( )
B

≈ Δfrf
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An obvious invention fixes this problem:  
Change frf ==> the synchro-cyclotron  

v  For B = constant, to maintain synchronism 
 frf ~ 1/γ(t) 

v   The energy for an ion of charge Z follows from 

€ 

1
r

=
ZeB
cp

Ex: Lawrence’s 184-in cyclotron 
      Rmax = 2.337 m 
      B = 1.5 T 
      Myoke≈ 4300 tons !! 

€ 

By (r) ~
1
r

But this requires pulsed rather than 
CW operation  
(one bunch in the machine at a time) 
 

==> Average current is reduced by 
the number of turns to full energy 
(~1000x) to ~ 0.1 µA 
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A different way to maintain synchronism: 
vertical (Thomas) focusing (1938) 

v  We need to find a way to increase the vertical focusing 
v  One can obtain Fz with vr , Bθ  
v  ==> find an azimuthal  component Βθ  & a radial velocity 

component vr  
v  ==> a non-circular trajectory 

 

===> Sectors  &  B increases with radius 
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Spiraled cyclotrons for proton therapy 

Energy range: ~100 - 230 MeV	

Current: 5 nA - 500 nA	


~ 240 tonnes	

	

	


4 m	




US Particle Accelerator School

Can the cyclotron reach ultra-relativistic energies? 

Remember  
p ~ Bρ	


 
(5 minute exercise) 
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Wiederoe’s Ray Transformer for electrons 

 From Wiederoe’s notebooks 
(1923-’28) 

He was dissuaded by his professor 
from building the ray transformer due  
to worries about beam-gas scattering 
 
Let that be a lesson to you! 
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Transformer basics 
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The ray transformer realized as the 
Betatron (D. Kerst, 1940) 

Φ	


Bs 

R 

The beam acts as a 1-turn secondary winding of the transformer 
 

Magnetic field energy is transferred directly to the electrons 
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Betatron as a tranformer 

v  Ampere’s law 

v  Radial equilibrium requires 

v  Newton’s law 

2πREϑ = −
d
dt
Φ = − Φ

€ 

1
R

=
eBs
pc

p = eEϑ =
e Φ
2πR
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For the orbit size to remain invariant: 
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Donald Kerst’s betatrons 

Kerst originally used the phrase, Induction Accelerator 



US Particle Accelerator School

The Linear Betatron:  
Linear Induction Accelerator 

€ 

E
C∫ ⋅dl = − ∂

∂t
B ⋅
S∫  ds
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Christofilos’ contributions to  
accelerator science 

Strong focusing (1949) 

Induction linac (1949) 
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Christofilos’ Astron Induction Linac & 
Astron CTR (1966) 
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A closer look at the induction cell 

µ, ε 

€ 

vg = 1
µε

= 1
µrεr

€ 

Zcore = µ
ε = 120π µr

εr
  Ohms

V·Δt = ΔB ·A 

B 

H 
ΔB 

-B r 

B s 

Core hysteresis loop!

iL 

€ 

iL = V
L
c

t
Leakage current magnetizes core!

A 
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Induction accelerators occupy a special niche,  
but now on to the mainstream 
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The size of monolithic cyclotron magnets 
was getting beyond the practical 

In a classified report Mark Oliphant suggested 
v  Change the B field as the particles  gained energy to maintain a 

constant orbit size (= Nλrf) 
Ø  Could synchronism of the particles with the rf be maintained?  

Synchrotron 
at Berkeley  

Fundamental discovery by Veksler (1944) & MacMillan (1945) 
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Phase stability: Will bunch of finite length 
stay together & be accelerated? 

Let’s say that the synchronous particle 
makes the ith revolution in time: Ti  
 
Will particles close to the synchronous 
particle in phase stay close in phase? 

Discovered by MacMillan & by Veksler 

V 
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What do we mean by phase? 
Let’s consider non-relativistic ions 

From E. J. N. Wilson CAS lecture 

ΔΕ	


φ	


A 
B 

φs How does the ellipse 
change as B lags 
further behind A? 



US Particle Accelerator School

The GE 70 MeV synchrotron was first to 
produce observable synchrotron light (1947) 

The first purpose-built synchrotron to operate was built with a glass 
vacuum chamber   
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Charges in circular orbit at constant speed 
radiate incoherently in a 1/γ cone 

Field energy flows to infinity  

dQ = q dl 

a 

Electric field lines from a charge  
in circular motion 

Nγ = 2 π α γ Ne per revolution	
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By the early 1950’s 3 proton synchrotrons 
ad followed the first electron models 

v  3-BeV "Cosmotron" at the Brookhaven (1952) 
Ø  2000 ton magnet in four quadrants 
Ø  1 second acceleration time 
Ø  Shielding recognized as major operational issue 

v  1-BeV machine at Un. of Birmingham (UK) in 1953 
Ø  Laminated magnets, no field free straight sections 

v  6 BeV “Bevatron” University of California Radiation 
Laboratory (1954) 
Ø  Vacuum chamber ~ 3 feet high 

v  Weak focusing precluded such a design at ≥10 GeV  

Another great invention was needed 
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The BNL Cosmotron w. 4-sector magnets 
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The vacuum chamber of the  
6 GeV Bevatron could fit whole physicists 

Bevatron magnet aperture 
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Strong focusing allowed shrinking the 
vacuum chamber to reasonable sizes 

v  Patented but not published by Christofilos (1949);  
v  Independently discovered and applied to AGS design by Courant, 

Livingston, and Snyder   

Cosmotron 
AGS 

Small chambers meant much better vacuum making 
practical a third great invention  
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ADA - The first storage ring collider (e+e-) 
by B. Touschek at  Frascati (1960)  

The storage ring collider idea was invented by 
R. Wiederoe in 1943 
  – Collaboration with B. Touschek 
  – Patent disclosure 1949 

Completed in less than one year 
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G. O’Neill is often given credit for inventing  
the collider based on his 1956 paper 
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v   30 GeV per beam with > 60 A circulating current 
Ø  Required extraordinary vacuum (10-11 Torr) 
Ø  Great beam dynamics challenge - more stable than the solar system 

v  Then on to the 200 GeV collider at Fermilab (1972) and … 

v  The SppS at CERN 
Ø  Nobel invention: 

 Stochastic cooling 

v  And finally the Tevatron 
Ø  Also requires a major 
technological advance 

The next big step was the ISR at CERN 

First machine to exploit  
superconducting magnet technology 

– 
– 
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The 70’s brought another great invention 

v  The Free Electron Laser (John Madey, Stanford, 1976) 

v  Physics basis: Bunched electrons radiate coherently 

v  Madey’s discovery: the bunching can be self-induced! 
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Which brings us to the present… 

X-ray FELS 

New Light Sources 

LHC	


Is this the end of the line? 
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Maybe not… Optical Particle Accelerator 

plasma 

λp 

laser pulse 

electron motion high ne low ne 

Standard regime (LWFA): pulse duration matches plasma period 

• Accelerating field ~ Sqrt(plasma density)  
• Phase velocity < c : particle and wave de-phase  
• Energy gain ΔW = eEzLacc 
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RF-cavities in metal and in plasma 
Think back to the string of pillboxes 

Plasma cavity 
 
 

100 µm 1 m 

RF cavity 
 

Courtesy of W. Mori & L. da Silva 

G  ~  30 MeV/m    G ~ 30 GeV/m 
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There are many possible special topics  
after we cover the basics 

What interests you? 


