Lepton Flavor Violation in Quarkonium and Tau Decays

Mauro Napsuciale²

Departamento de Física, Universidad de Guanajuato

November 5, 2015

²In collaboration with David Delepine and Eduardo Peinado [arXiv:1509.04057] 🤄 🗠 🤉

Mauro Napsuciale ³ (Departamento de Física<mark>Lepton Flavor Violation in Quarkonium and T</mark>

Overview

- The Standard Model
- 2 CMS new results on LFV
- (3) $H\mu\tau$ induced decays
- Quarkonium non-relativistic techniques
- 5 Calculation of the $H\mu\tau$ LFV decays

6 conclusions

$SU(3)_C \times SU(2)_L \times U(1)_Y$

Leptons spin = 1/2			Quarks spin = 1/2			Strong (color) spin = 1			Unified Electroweak spin = 1		
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge	Name	Mass GeV/c ²	Electric charge	Name	Mass GeV/c ²	Electric charge
ve electron neutrino	<1×10 ⁻⁸	0	U up	0.003	2/3	g gluon	0	0	γ photon	0	0
e electron	0.000511	-1	d down	0.006	-1/3				W-	80.4	-1
ν_{μ} muon neutrino	<0.0002	0	C charm	1.3	2/3				W+	80.4	+1
μ muon	0.106	-1	S strange	0.1	-1/3				Z	91.187	0
v_{τ} tau neutrino	<0.02	0	t top	175	2/3				v		
au tau	1.7771	-1	b bottom	4.3	-1/3				1		
						•		(1	l/2,1/2)		

(1/2,0), (0,1/2)

125.6

H Higgs

Mauro Napsuciale ⁵ (Departamento de FísicaLepton Flavor Violation in Quarkonium and T

Mixing in the quark sector

Weak interaction eigenstates differ from the mass eigenstates

★ ∃ ► ★

Mixing in the lepton sector

Neutrinos oscillate changing flavor...but charged leptons do not!

$$\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix} \qquad \begin{array}{c} \nu_e \leftrightarrow \nu_\mu \leftrightarrow \nu_\tau \\ e & \mu & \tau \end{array}$$

Charged lepton flavor violation occurs at one loop level in the SM but it is highly suppresed.

This is an example of a highly suppressed LFV process in the SM. New physics can provide mechanisms yielding a larger decay rate.

Where to look for LFV ?

- LFV leptonic decays
 - **1** radiative: $I_i \rightarrow I_j \gamma$
 - 2 leptonic: $I_i \rightarrow I_j \overline{I}_k I_k$
- μe conversion in nuclei
- Higgs and gauge boson decays:

$$\begin{array}{ccc} \mathbf{0} & Z \to I_i I_j \\ \mathbf{0} & H \to I_i I_j \end{array}$$

Quarkonium decays:

$$V \to I_i I_j$$

Searches for LFV processes: leptonic decays

LFV process	Present best	UL (90% CL)	Future sensitivity		
$\mathcal{B}(\mu ightarrow e \gamma)$	$1.2 imes 10^{-11}$	[MEGA 1999]			
	$2.8 imes 10^{-11}$	[MEG 2010]	$10^{-13} - 10^{-14}$	[MEG]	
$\mathcal{B}(au o e \gamma)$	$3.3 imes10^{-8}$	[BaBar 2010]	$3 imes 10^{-9}$	[SuperB]	
$\mathcal{B}(\tau ightarrow \mu \gamma)$	$4.4 imes10^{-8}$	[BaBar 2010]	$2.4 imes10^{-9}$	[SuperB]	
$\mathcal{B}(\mu ightarrow eear{e})$	1×10^{-12}	[SINDRUM 1988]	$10^{-13} - 10^{-14}$	[MEG]	
$\mathcal{B}(au ightarrow eear{e})$	$2.7 imes 10^{-8}$	[Belle 2010]	$10^{-9} - 10^{-10}$	[SuperB]	
$\mathcal{B}(\tau ightarrow \mu \mu \bar{\mu})$	$2.1 imes 10^{-8}$	[Belle 2010]	$10^{-9} - 10^{-10}$	[SuperB]	
${\cal B}(au o e \mu ar \mu)$	$2.7 imes10^{-8}$	[Belle 2010]	$10^{-9} - 10^{-10}$	[SuperB]	
$\mathcal{B}(au o \mu e ar{e})$	$1.8 imes 10^{-8}$	[Belle 2010]	$10^{-9} - 10^{-10}$	[SuperB]	

Image: A math a math

Searches for LFV processes: $\mu - e$ conversion and Z decays

LFV process	Present best	UL (90% CL)	Future sensitivity		
$\mathcal{R}(\mu \rightarrow e, \mathrm{Au})$	$7.0 imes 10^{-13}$	[SINDRUM2 2004]	10^{-16}	[Mu2E (Fermilab)]	
$\mathcal{R}(\mu \rightarrow e, \mathrm{Al})$			10^{-16}	[COMET (J-PARC)]	
$\mathcal{R}(\mu ightarrow e, \mathrm{Ti})$	4.3×10^{-12}	[SINDRUM2 2004]	10^{-18}	[PRISM/PRIME (J-PARC)]	
$\mathcal{B}(Z o \mu^{\pm} e^{\mp})$	$1.7 imes10^{-6}$	[LEP 1995]	$2 imes 10^{-9}$	[GigaZ]	
$\mathcal{B}(Z o \tau^{\pm} e^{\mp})$	$9.8 imes10^{-6}$	[LEP 1993]	$6.5\kappa imes 10^{-8}$	[GigaZ] $\kappa \in [0.2, 1]$	
$\mathcal{B}(Z\to\tau^\pm\mu^\mp)$	$1.2 imes 10^{-5}$	[LEP 1997]	$2.2\kappa imes 10^{-8}$	[GigaZ]	

3

Image: A match a ma

Searches for LFV processes: Quarkonium decays

$$\begin{split} & \mathrm{B}(\phi \to e\mu) < 2.0 \times 10^{-6}, \\ & \mathrm{B}(J/\psi \to e\mu) < 1.6 \times 10^{-7}, \\ & \mathrm{B}(J/\psi \to \mu\tau) < 2.0 \times 10^{-6}, \\ & \mathrm{B}(\Upsilon \to \mu\tau) < 6.0 \times 10^{-7}, \\ & \mathrm{B}(\Upsilon(2S) \to e\tau) < 8.3 \times 10^{-6}, \\ & \mathrm{B}(\Upsilon(2S) \to e\tau) < 8.3 \times 10^{-6}, \\ & \mathrm{B}(\Upsilon(2S) \to \mu\tau) < 2.0 \times 10^{-6}, \\ & \mathrm{B}(\Upsilon(2S) \to \mu\tau) < 3.1 \times 10^{-6}, \\ & \mathrm{B}(\Upsilon(3S) \to \mu\tau) < 3.1 \times 10^{-6}, \\ \end{split}$$

Image: A match a ma

3

Recently

Search for lepton-flavour-violating decays of the Higgs boson

The CMS Collaboration*

Abstract

The first direct search for lepton-flavour-violating decays of the recently discovered Higgs boson (H) is described. The search is performed in the H $\rightarrow \mu \tau_{\rm q}$ and H $\rightarrow \mu \tau_{\rm h}$ channels, where $\tau_{\rm e}$ and $\tau_{\rm h}$ are tau leptons reconstructed in the electronic and hadronic decay channels, respectively. The data sample used in this search was collected in pp collisions at a centre-of-mass energy of $\sqrt{2} = 8$ TeV with the CMS experiment at the CERN LHC and corresponds to an integrated luminosity of 19.7 fb⁻¹. The sensitivity of the search is an order of magnitude better than the existing indirect limits. A slight excess of signal events with a significance of 2.4 standard deviations is observed. The p-value of this excess at $M_{\rm H} = 125$ GeV is 0.000. The best fit branching fraction, B(H $\rightarrow \mu \tau$) < 1.51% at 95% confidence level is set. This limit is subsequently used to constrain the μ - τ Yuxawa couplings to be less than 3.6 × 10⁻³.

$H\mu\tau$ coupling

Figure 5: Left: Distribution of $M_{\rm ed}$ for all categories combined, with each category weighted by significance (S(S+B)). The significance is computed for the integral of the bins in the range 100 < $M_{\rm ed}$ < 180 GeV using $\mathcal{B}(H \rightarrow \mu r) = 0.48\%$. The MC Higgs signal shown is for $\mathcal{B}(H \rightarrow \mu r) = 0.48\%$. The bottom parel shows the fractional difference between the observed data and the fitted background. Kight: background subtracted $M_{\rm ed}$ distribution for all categories combined.

・ロト ・母ト・ きょう・

 $y \lesssim 3.6 imes 10^{-3}$

Same excess detected by ATLAS, but less sensitivity

Search for lepton–flavour–violating $H \rightarrow \mu \tau$ decays of the Higgs boson with the ATLAS detector

The ATLAS Collaboration

Abstract

A direct search for lepton–flavour–violating (LFV) $H \rightarrow \mu \tau$ decays of the recently discovered Higgs boson with the ATLAS detector at the LHC is presented. The analysis is performed in the $H \rightarrow \mu r_{\rm had}$ channel, where $r_{\rm had}$ is a hadronically decaying τ –lepton. The search is based on the data sample of proton–proton collisions collected by the ATLAS experiment corresponding to an integrated luminosity of 20.3 fb-1 at a centre–on–mass energy of $\sqrt{s} = 8$ TeV. No statistically significant excess of data over the predicted background is observed. The observed (expected) 95% confidence–level upper limit on the branching fraction, Br(H $\rightarrow \mu \tau$), is LSS% (1.24%).

Bind State S

Is this coupling consistent with existing data in other channels?

What is the new physics behind this coupling?

Here we address the first question: Higgs mediated LFV processes

Figure: The $\tau^- \rightarrow \mu^- \mu^+ \mu^-$ decay.

Figure: The $\overline{Q}Q[^{2S+1}L_J] \rightarrow \mu \tau$ decay.

Figure: The $\tau \to \mu \overline{Q} Q[^{2S+1}L_J]$ decay.

Figure: The $W \rightarrow \tau \mu \pi$ decay.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3. 3

Heavy Quarkonium annihilation and creation

- Non-relativistic systems: $v \approx \alpha_s(Mv)$ three different energy scales:
 - Quarkonium mass: M : perturbative calculations.
 - Quarkonium inverse size: Mv : NP
 - **3** Quarkonium energy levels: Mv^2 : NP
- NRQCD: Systematic expansion in v and α_s .
- Novelty: contributions from color octet $\bar{Q}Q$ configurations.
- Here we are interested in the order of magnitude of the BR's. In a first approximation we consider only color singlet contributions ⇒ old quarkonium techniques.

15 / 27

The invariant amplitude for the annihilation of color-singlet quarkonium in a ${}^{2S+1}L_J$ angular momentum configuration $\overline{Q}Q[{}^{2S+1}L_J] \to X$ is given by ¹⁸

$$\mathcal{M}[\overline{Q}Q[^{2S+1}L_J] \to X] = \int \frac{d^4q}{(2\pi)^4} \operatorname{Tr}[\mathcal{O}(Q,q)\chi(Q,q)]$$

 $\mathcal{O}(Q,q)$ is the operator entering the free quarks transition

$$\mathcal{M}[\overline{Q}(\frac{Q}{2}-q,s_2),Q(\frac{Q}{2}+q,s_1)\to X]=\overline{v}(\frac{Q}{2}-q,s_2)\mathcal{O}(Q,q)u(\frac{Q}{2}+q,s_1),$$

and $\chi(Q,q)$ denotes the wave function for the $\overline{Q}Q[^{2S+1}L_J]$ bound state

$$\chi(Q,q) = \sum_{M,S_z} 2\pi \delta(q^0 - \frac{\mathbf{q}^2}{2m_Q}) \psi_{LM}(\mathbf{q}) P_{S,S_z}(Q,q) \langle LM; SS_z | JJ_z \rangle.$$
(1)

¹⁸Kuhn et.al 1979, Guberina et.al. 1980

Mauro Napsuciale ¹⁹ (Departamento de Físic<mark>Lepton Flavor Violation in Quarkonium and T</mark>

Here, P_{S,S_z} stands for the spin projectors

$$P_{S,S_z}(Q,q) = \sqrt{\frac{N_c}{m_Q}} \sum_{s_1,s_2} u(\frac{Q}{2}+q,s_1)\overline{v}(\frac{Q}{2}-q,s_2) \langle \frac{1}{2}s_1; \frac{1}{2}s_2|SS_z\rangle$$
$$= \sqrt{\frac{N_c}{8m_Q^3}} (\frac{Q}{2}+q+m_Q) \left\{ \begin{array}{c} \gamma^5 \\ \neq(Q,S_z) \end{array} \right\} (\frac{Q}{2}+q-m_Q)$$

where $\varepsilon(Q, S_z)$ denotes the polarization vector of the spin one system.

(日) (同) (ヨ) (ヨ) (ヨ)

s-wave quarkonium

Wave function is rapidly damped in the relative momentum q. Leading terms are given by $P_{S,S_z}(Q,0)$ and $\mathcal{O}(Q,0)$. In the zero-binding approximation: $M \approx 2m_Q$

$$\mathcal{M}[\overline{Q}Q[^{2S+1}S_{J}] \to X] = \sqrt{\frac{3|R(0)|^{2}}{16\pi M}} \operatorname{Tr}\left[\mathcal{O}(Q,0) \left\{\begin{array}{c}\gamma^{5}\\ \notin(Q,S_{z})\end{array}\right\}(\not{Q}-M)\right] \operatorname{for}$$

with M denoting the quarkonium physical mass and

$$\int \frac{d^3q}{(2\pi)^3} \psi_{00}(\mathbf{q}) = \frac{R(0)}{\sqrt{4\pi}}.$$

p-wave quarkonium

The wave function at the origin vanishes \Rightarrow leading terms given by the linear term in the expansion in q.

$$\mathcal{M}[\overline{Q}Q[^{2S+1}P_J] \to X] = -i \sum_{M,S_z} \langle 1M; SS_z | JJ_z \rangle \times$$

$$\varepsilon_{\alpha}(M)\sqrt{\frac{3}{4\pi}}R'(0)\operatorname{Tr}\left[\mathcal{O}^{\alpha}(Q,0)P_{\mathcal{S},\mathcal{S}_{z}}(Q,0)+\mathcal{O}(Q,0)P_{\mathcal{S},\mathcal{S}_{z}}^{\alpha}(Q,0)
ight],$$

where

$${\cal A}^lpha({\cal Q},q)\equiv {\partial {\cal A}({\cal Q},q)\over \partial q_lpha}$$

and in this case

$$\int rac{d^3 q}{(2\pi)^3} q^lpha \psi_{1M}(\mathbf{q}) = -i \sqrt{rac{3}{4\pi}} R'(0) arepsilon_lpha(M).$$

The polarization vector $\varepsilon_{\alpha}(M)$ satisfy the following relations

$$\begin{split} &\sum_{M,S_z} \langle 1M; 1S_z | 00 \rangle \varepsilon_{\alpha}(M) \varepsilon_{\beta}(S_z) &= -g_{\alpha\beta} + \frac{Q_{\alpha}Q_{\beta}}{M^2}, \\ &\sum_{M,S_z} \langle 1M; 1S_z | 1J_z \rangle \varepsilon_{\alpha}(M) \varepsilon_{\beta}(S_z) &= \frac{-i}{M} \frac{1}{\sqrt{2}} \varepsilon_{\alpha\beta\mu\nu} Q^{\mu} \varepsilon^{\nu}(J_z), \\ &\sum_{M,S_z} \langle 1M; 1S_z | 2J_z \rangle \varepsilon_{\alpha}(M) \varepsilon_{\beta}(S_z) &= \varepsilon_{\alpha\beta}(J_z). \end{split}$$

• • • • • • • • • • • •

3

Higgs-Quarkonium Coupling

In the Standard Model

$$H \xrightarrow{f} g_{H\bar{f}f} = i \frac{m_f}{v} \Rightarrow \qquad \mathcal{O}(Q,q) = i \frac{m_Q}{v},$$

The Higgs couples only to ${}^{3}P_{0}$ quarkonium

$$\mathcal{M}[\overline{Q}Q[^{3}P_{0}] \to H] = \frac{3R'(0)}{v} \sqrt{\frac{3M}{\pi}}.$$
(2)

21 / 27

Mauro Napsuciale ²⁴ (Departamento de FísicLepton Flavor Violation in Quarkonium and T November 5, 2015

This coupling is proportional to R'(0) which is $\mathcal{O}(v^2)$ as compared with R(0).

Radiative decays involving s-wave quarkonium are of the same order!

 $H - \bar{Q}Q - \gamma$ coupling

$$\mathcal{M}[H \to \overline{Q}Q[^{3}S_{1}]\gamma] = \frac{ee_{Q}R(0)}{v}\sqrt{\frac{3M}{\pi}}T_{\mu\nu}\varepsilon^{\mu}\eta^{\nu}$$
with
$$T_{\mu\nu} = g_{\mu\nu} - \frac{Q^{\mu}k^{\nu}}{Q \cdot k}.$$

We calculate:

- $\ 2 \ \ \Upsilon \to \mu \tau \gamma$
- $3 \ \chi_{c0} \to \mu \tau$

- $0 \ \tau \to \mu \phi \gamma$
- $\bigcirc \tau \to 3\mu$
- $\textcircled{0} \tau \rightarrow \mu \mathrm{e}^+ \mathrm{e}^-$

These decays depend on y and on $|R_M(0)|^2$, $|R'_M(0)|^2$. We extract the non-perturbative matrix elements from the ${}^3P_0 \rightarrow \gamma \gamma$ decays and from ${}^3S_1 \rightarrow e^+e^-$ calculated in the same formalism.

23 / 27

$$\begin{split} &\Gamma(\overline{Q}Q[^{3}P_{0}] \rightarrow \gamma\gamma) = \frac{432\alpha^{2}e_{Q}^{2}|R'(0)|^{2}}{M^{4}} \\ &\Gamma(\overline{Q}Q[^{3}S_{1}] \rightarrow l^{+}l^{-}) = \frac{4\alpha^{2}e_{Q}^{2}|R(0)|^{2}}{M^{2}} \end{split}$$

Process	$\Gamma_{exp}(GeV)$	$ R(0) ^2(GeV^3)$	$ R'(0) ^2 (GeV^5)$
$ ho ightarrow e^+e^-$	$1.28 imes10^{-6}$	4.856	-
$J/\psi ightarrow e^+e^-$	$5.54 imes10^{-6}$	0.560	-
$\phi ightarrow e^+e^-$	$1.26 imes10^{-6}$	$5.53 imes10^{-2}$	-
$\chi^0_c \to \gamma \gamma$	$2.34 imes10^{-6}$	-	$3.10 imes 10^{-2}$
$f_0 \rightarrow \gamma \gamma$	$0.29 imes10^{-6}$	-	$1.08 imes10^{-4}$

Table: Numerical values of the non-perturbative matrix elements extracted from the leptonic and two photon decays of quarkonia.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

24 / 27

Branching ratios for lepton flavor violating decays involving the $H\mu\tau$ coupling.

Process	Branching Ratio	Upper limit	
$\chi_{b0} ightarrow \mu au$	$5.5 imes 10^{-17}$ ²⁸		
$\Upsilon \to \mu \tau \gamma$	$5.7 imes10^{-14}$		
$\chi_{\rm c0} \to \mu \tau$	$1.5 imes10^{-17}$		
$J/\psi ightarrow \mu au \gamma$	$5.1 imes10^{-17}$		
$ au ightarrow \mu f_0(980)$	$8.4 imes10^{-12}$	< 3.4 $ imes$ 10 ⁻⁸	
$ au o \mu \phi \gamma$	$1.7 imes10^{-14}$		
$ au ightarrow 3\mu$	$2.3 imes10^{-12}$	$<2.1 imes10^{-8}$	
$ au ightarrow \mu { m e}^+ { m e}^-$	$7.3 imes10^{-17}$	$< 1.8 imes 10^{-8}$	
$W o \mu \tau \pi$	$3.2 imes10^{-17}$		

conclusions

Conclusions

- Recently, CMS measured the $H\mu\tau$ decay finding $BR(H \rightarrow \mu\tau) = 0.84^{+0.39}_{-0.37}\%$ (best fit). The $H\tau\mu$ coupling y is constrained to $y \leq 3.6 \times 10^{-3}$.
- 2 y induces LFV decays of quarkonium and the au meson.
- We calculate these processes using quarkonium NR techniques.
- The $V \rightarrow \mu \tau$ decay width vanishes at leading order.
- The p wave decays are far from the reach of forthcoming experiments.
- Radiative decays of s-wave quarkonia are induced with branching ratios even larger than the p-wave non-radiative decays in the case of bb.
- All the calculated BR's induced by the $H\mu\tau$ coupling are smaller than the upper experimental limits.
- The most interesting process is $\tau \to \mu f_0(980)$ and deserves a closer look.

Nature of the $H\mu\tau$ coupling?

$\mathcal{GRACIAS}$

< 4 **1** → 4