

Ivan Heredia de la Cruz Department of Physics, CINVESTAV & CONACYT Nov. 5, 2015 MWPF2015, Mazatlan, Mexico

Thursday, November 5, 15

2

2

The LHC

- The LHC
- The CMS Experiment

2

- The LHC
- The CMS Experiment
- B production & properties

2

The LHC

- The CMS Experiment
- B production & properties
- A new B baryon

2

The LHC

- The CMS Experiment
- B production & properties
- A new B baryon
- Rare decays: strict tests of SM.

2

The LHC

- The CMS Experiment
- B production & properties
- A new B baryon
- Rare decays: strict tests of SM.
- Quarkonium

2

The LHC

- The CMS Experiment
- B production & properties
- A new B baryon
- Rare decays: strict tests of SM.
- Quarkonium
- Exotica: unexpected particles

2

The LHC

- The CMS Experiment
- B production & properties
- A new B baryon
- Rare decays: strict tests of SM.
- Quarkonium
- Exotica: unexpected particles
- Summary

LHC

- 27 km tunnel, ~100 m underground.
- pp collisions @7-8 TeV in Run I (2011-2). Now
 13 TeV (just stopped).
- Bunches of ~10¹¹ p crossing every 50 ns →
 25 ns.

LHC SCHEDULE

 The HL-LHC running starts in 2025 and continues beyond LS4 until 2035

5

LHC SCHEDULE

 The HL-LHC running starts in 2025 and continues beyond LS4 until 2035

5

CMS

- Multipurpose detector:
 - Designed to search and study new particles with masses ~0.1 - 1 TeV.
 - New particles would decay to bottom quarks.

PV (xy) resolution ~ 20 μm Track & μ p_T resolution ~ 1.5%

 $<\mu>_{2011} = 8$ $<\mu>_{2012} = 21 <\mu>_{2015} \sim 40$

CMS Experiment at LHC, CERM Data recorded: Mon May 28-01:16:20/2012 CE91 Run/Event: 195099/35438125 Lumi/Section: 65 Oxbit/Crossing: 16992111 (2295

0.15ns

LHC Bunch Crossing 1ns Clip

-0.12ns 0.4ns

0.11ns

-0.05ns 0.2ns

(define to be t=0)

Ons

Estimated PU~50

4 jets with E->40

aw SE-2 TeV

BPH PROGRAM (~10% BANDWIDTH)

Bottom physics @ CMS, Ivan Heredia, MWPF-2015

9

9

9

9

9

• Quite good agreement with MC@NLO.

- Quite good agreement with MC@NLO.
- Pythia failing mainly in normalization and w.r.t. rapidity.

• Quite good agreement with MC@NLO.

• Pythia failing mainly in normalization and w.r.t. rapidity.

Bottom physics @ CMS, Ivan Heredia, MWPF-2015

Measurements @ 13 TeV coming soon...

B BARYON PRODUCTION @ 7 TEV

10

B BARYON PRODUCTION @ 7 TEV

10

A_b LIFETIME

11

- Early predictions too high: $\tau(\Lambda_b)/\tau(B^0) > 0.9.$
- Recent HQE @NLO & $O(m_b^{-4})$: $\tau(\Lambda_b) / \tau(B^0) \approx 0.88.$
- Simultaneous UL-Fit to mass (J/ψΛ) and proper decay time.

A_b LIFETIME

11

- Early predictions too high: $\tau(\Lambda_b)/\tau(B^0) > 0.9.$
- Recent HQE @NLO & $O(m_b^{-4})$: $\tau(\Lambda_b) / \tau(B^0) \approx 0.88.$
- Simultaneous UL-Fit to mass (J/ψΛ) and proper decay time.

Results ($\sqrt{s} = 7$ TeV) JHEP 07 (2013) 163 $\tau_{\Lambda_b^0} = (1.503 \pm 0.052 \pm 0.031)$ ps

$$\tau(\Lambda_b)/\tau(B^0)=0.98\pm0.04$$

A_b LIFETIME

- Early predictions too high: $\tau(\Lambda_b)/\tau(B^0) > 0.9.$
- Recent HQE @NLO & $O(m_b^{-4})$: $\tau(\Lambda_b) / \tau(B^0) \approx 0.88.$
- Simultaneous UL-Fit to mass (J/ψΛ) and proper decay time.

Results ($\sqrt{s} = 7$ TeV) JHEP 07 (2013) 163 $\tau_{\Lambda_b^0} = (1.503 \pm 0.052 \pm 0.031)$ ps

 $\tau(\Lambda_b)/\tau(B^0)=0.98\pm0.04$

A more precise lifetime measurement, together with B⁺, B⁰, B_s (effective and CPodd), **Ξ**_b lifetimes (legacy paper) and *polarization* measurements coming soon... Bottom physics @ CMS, Ivan Heredia, MWPF-2015

OBSERVATION OF A NEW BARYON

Bottom physics @ CMS, Ivan Heredia, MWPF-2015

Thursday, November 5, 15

OBSERVATION OF A NEW BARYON

Bottom physics @ CMS, Ivan Heredia, MWPF-2015

50

($\Gamma = 0.51 \pm 0.16$ MeV expected)

12

Now looking for Ξ_{bb} ...

B+ a RARE $B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ ar

- FCNC decay forbidden @LO. Helicity $(m_{\mu}/m_B)^4$ & CKM d suppressed.
- Reliable predictions:
- Sensitive to NP:
 - MSSM ($tan\beta \gg 0$).
 - 2HDM.
 - Leptoquarks.
 - 4th gen quark, etc.

RESULTS $B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ and $B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$

 $\mathbf{B}(B^0)$

$B_s^0 \rightarrow \mu^+ \mu^- \& B_s^0 \rightarrow \mu^+ \mu^-$: Future

Estimate of analysis sensitivity						
$\mathcal{L}(fb^{-1})$	$N(\mathbf{B}_s)$	$N(\mathbf{B}^0)$	$\delta \mathcal{B}(\mathbf{B}_s \to \mu \mu)$	$\delta \mathcal{B}(B^0 \to \mu \mu)$	B ⁰ sign.	$\delta \frac{\mathcal{B}(\mathbf{B}^0 \to \mu \mu)}{\mathcal{B}(\mathbf{B}_s \to \mu \mu)}$
20	18.2	2.2	35%	>100%	0.0-1.5 σ	>100%
100	159	19	14%	63%	0.6-2.5 σ	66%
300	478	57	12%	41%	1.5-3.5 σ	43%
300 (barrel)	346	42	13%	48%	1.2-3.3 σ	50%
3000 (barrel)	2250	271	11%	18%	5.6-8.0 σ	21%

Thursday, November 5, 15

RARE DECAY $B^0 \rightarrow K^*(892)^0 \mu^+ \mu^-$

- Not allowed @LO (BR~10⁻⁶).
- Complementary to $B^{0}_{s} \rightarrow \mu + \mu^{-}$ (V/A vs. S/P-S interactions).
- Deviations of **BR**, F_L (frac. of K^{*0} long. pol), and A_{FB} (µ's) from SM in $q^2 = m_{\mu\mu}^2$ dep. can point to NP.

$$\frac{1}{\Gamma} \frac{d^{3}\Gamma}{d\cos\vartheta_{k}d\cos\vartheta_{l}dq^{2}} = \frac{9}{16} \left\{ \begin{bmatrix} \frac{2}{3}F_{s} + \frac{4}{3}A_{s}\cos\vartheta_{K} \end{bmatrix} (1 - \cos^{2}\vartheta_{l}) \\ + (1 - F_{s}) \left[2F_{L}\cos^{2}\vartheta_{K}(1 - \cos^{2}\vartheta_{l}) \\ + \frac{1}{2}(1 - F_{L})(1 - \cos^{2}\vartheta_{K})(1 + \cos^{2}\vartheta_{l}) \\ + \frac{4}{3}A_{FB}(1 - \cos^{2}\vartheta_{K})\cos\vartheta_{l} \end{bmatrix} \right\}$$

φ is integrated (flat acceptance) $F_S = Kπ$ S-wave fraction $A_S = S\&P$ waves interference amplitude

Bottom physics @ CMS, Ivan Heredia, MWPF-2015

 B^0

17

17

QUARKONIUM POLARIZATION

• Quarkonia (cc or bb) ~ nonrelativistic systems $\Rightarrow \sigma's$ reproduced by NRQCD.

QUARKONIUM POLARIZATION

- Quarkonia (cc or bb) ~ nonrelativistic systems ⇒ σ's reproduced by NRQCD.
- Large transverse Pol.
 expected (λ_θ ~1 @ high pT).
 Not seen by CDF in J/ψ.

QUARKONIUM POLARIZATION

- Quarkonia ($c\bar{c}$ or $b\bar{b}$) ~ nonrelativistic systems $\Rightarrow \sigma's$ reproduced by NRQCD.
- Large transverse Pol.
 expected (λ_θ ~1 @ high pT).
 Not seen by CDF in J/ψ.
- Y(nS) is a better lab for NRQCD than J/ψ or ψ' .
- Angular analysis of $Q \rightarrow \mu^{+}\mu^{-}$: $\log \vartheta, \varphi | \lambda \rangle \stackrel{(1)}{=} = \frac{\vartheta}{(3 + \lambda_{\vartheta})} \frac{1}{(3 + \lambda_{\vartheta})$

RESULTS: J/ψ , ψ (2S) & Y(nS) POLARIZATIONS

0 5

0 2

19

CMS

pp

Stat. uncert., 68.3 % CL Tot. uncert., 68.3 % CL Tot. uncert., 95.5 % CL Tot. uncert., 99.7 % CL

Y(1S)

 $\sqrt{s} = 7 \text{ TeV}$ L = 4.9 fb⁻¹

Y(1S)

Y(1S)

Y(2S)

Y(2S)

Y(2S)

HX frame, |y| < 0.6

Y(3S)

Y(3S)

Y(3S)

Y(3S)

Results ($\sqrt{s} = 7 \text{ TeV}$) PRL 110 (2013) 081802 & PLB 727 (2013) 381

- All polarizations are consistent with zero.
- Excludes large polarizations in the explored Ş kinematical region.
- $\stackrel{\text{\tiny \sc set}}{=}$ For λ_{θ} , in clear disagreement with NRQCD predictions, even for Y(3S)!

20

CDF PRL 108, 151802 (2012), tot. uncert., 68.3% CL NLO NRQCD at √s = 1.96 TeV, PRD83, 114021 (2011)

NNLO* CSM at \sqrt{s} = 1.8 TeV, PRL101, 152001 (2008)

30

35 40

45 50 *p*_{_}[GeV]

25

CMS, tot. uncert., 68.3% CL

15

10

 λ_{ϑ}

-0.5

-1-

-1.5-

*р*_т [GeV]

·· CS. 68.3% CI · CS, 99.7% CL - HX, 68.3% CL

HX. 99.7% CL

 $pp \sqrt{s} = 7 \text{ TeV}$ $I = 4.9 \text{ fb}^{-1}$ 0.5

Bottom physics @ CMS, Ivan Heredia, MWPF-2015

RESULTS: J/ψ , ψ (2S) & Y(nS) POLARIZATIONS

0 5

CMS

pp

Y(1S)

 $\sqrt{s} = 7 \text{ TeV}$ L = 4.9 fb⁻¹

Y(1S)

CMS, tot. uncert., 68.3% CL

15

10

20

Bottom physics @ CMS, Ivan Heredia, MWPF-2015

CDF PRL 108, 151802 (2012), tot. uncert., 68.3% CL NLO NRQCD at √s = 1.96 TeV, PRD83, 114021 (2011)

NNLO* CSM at \sqrt{s} = 1.8 TeV, PRL101, 152001 (2008)

30

35

40

45 50 *p*_{_}[GeV]

25

HX frame, |y| < 0.6 Stat. uncert., 68.3 % CL Tot. uncert., 68.3 % CL Tot. uncert., 95.5 % CL Tot. uncert., 99.7 % CL Y(1S) Y(2S) Y(3S) 0 2 -0.2 -0.4 Y(1S) Y(2S) Y(3S) 0.4 02 -0.2 -0.4 10 15 20 35 40 45 10 15 20 25 30 35 40 45 10 15 20 25 30 35 40 45 25 30 50 p_ [GeV] p_{_} [GeV] *p*_т [GeV]

Y(2S)

Y(2S)

Y(3S)

Y(3S)

Results ($\sqrt{s} = 7 \text{ TeV}$) PRL 110 (2013) 081802 & PLB 727 (2013) 381

- All polarizations are consistent with zero.
- Excludes large polarizations in the explored Ş kinematical region.
- $\stackrel{\text{\tiny \sc set}}{=}$ For λ_{θ} , in clear disagreement with NRQCD predictions, even for Y(3S)!

Studies ongoing at 13 TeV.

 λ_{ϑ}

-0.5

-1-

-1.5-

· CS. 68.3% CI · CS, 99.7% CL - HX, 68.3% C

HX. 99.7% CL

 $pp \sqrt{s} = 7 \text{ TeV}$ $I = 4.9 \text{ fb}^{-1}$ 0.5

19

CONFIRMATIC 5.2 4.2 < M(J/ψK⁺K⁻) < 4.23 GeV EXOTIC Y(4144 **Full Fit** Signal Bkg

≥10

- Evidence of a resonance near $\psi \phi$ thesh. in $B^+ \rightarrow \psi \phi K^+ (CDF/09, D0)$.
- CDF/11 found ~5 σ . D0 ~3 σ .
- Not confirmed by Belle & MLHCb. CMS extracts $B_{2000}^{3000} \xrightarrow{D0 \text{ Run II, 10.4 fb}^{1}} \xrightarrow{D0 \text{ Run II, 10.4 fb}^{1}} \xrightarrow{(a)} \xrightarrow{(a)} \xrightarrow{(a)} \xrightarrow{(b) \text{ Run II, 10.4 fb}^{1}} \xrightarrow{(a)} \xrightarrow{(a) \text{ Run II, 10.4 fb}^{1}} \xrightarrow{(a) \text{ Run II, 10.4 fb}^{1}}$ signal in intervals Of 5.4 5.6 M(J/\u03c6 \u03c6) [GeV] 4.3 4.35 4.4

Bottom physics @ CMS, Ivan Heredia, MWPF-2015

(d)

M(J/ψ φ) [GeV]

M(J/ψ φ) [GeV]

CONFIRMATIC 5.2 4.2 < M(J/ψK⁺K^{*}) < 4.23 GeV EXOTIC Y(4) 4 **Full Fit** Signal

- Evidence of a resonance near $\psi \phi$ thesh. in $B^+ \rightarrow \psi \phi K^+ (CDF/09, D0)$.
- CDF/11 found ~5 σ . D0 ~3 σ .
- Not confirmed by Belle & LHCb. CMS extracts $B_{2000}^{3000} \xrightarrow{\text{Do Run II, 10.4 fb}} (\mu^+\mu^-)_{1000}^{2000} (K_{\text{Signal}}^{\text{Do Run II, 10.4 fb}})_{1000}$ signal in intervals Of 5.4 5.6 M(J/\u03c6 \u03c6) [GeV] 1(J/ψ φ) [GeV]

∆m [GeV] Bottom physics @ CMS, Ivan Heredia, MWPF-2015

Results ($\sqrt{s} = 7 \text{ TeV}$)

PLB 734 (2014) 261-281

 $m_1 = m_{Y(4140)} = 4148.0 \pm 2.4 \pm 6.3$ MeV, $\Gamma_1 = 28 + 15_{-11} \pm 19$ MeV, signif. > 5 σ . $R_{YK/\psi\phi K} = (10 + 3)\%$, consistent with CDF (15%) and LHCb (<7%). $m_2 = 4313.8 \pm 5.3 \pm 7.3$ MeV, signif. not reported due to possible *K*₂ contam.

4.2 4.25 4.3 4.35 4.4

D0 Run II. 10.4 fb¹

M(J/ψ φ) [GeV]

M(J/ψ φ) [GeV]

CONFIRMATIC 5.2 4.2 < M(J/ψK⁺K⁻) < 4.23 GeV Data EXOTIC Y(4) **Full Fit**

- Evidence of a resonance near $\psi \phi$ thesh. in $B^+ \rightarrow \psi \phi K^+ (CDF/09, D0)$.
- CDF/11 found ~5 σ . D0 ~3 σ .
- Not confirmed by Belle & LHCb. CMS extracts $B_{2000}^{3000} \xrightarrow{D0 \text{ Run II, 10.4 fb}}{D0 \text{ Run II, 10.4 fb}} (W^+ W^-)_{1000}^{2000} (K^{\text{Data-0.0}}_{\text{Fit}})_{1000}^{1000}$ signal in intervals Of 5.4 5.6 M(J/\u03c6 \u03c6) [GeV] J/ψ φ) [GeV]

Results ($\sqrt{s} = 7 \text{ TeV}$)

- PLB 734 (2014) 261-281
- $m_1 = m_{Y(4140)} = 4148.0 \pm 2.4 \pm 6.3$ MeV,
- $\Gamma_1 = 28 + 15_{-11} \pm 19$ MeV, signif. > 5 σ .
- $R_{YK/\psi\phi K} = (10 + 3)\%$, consistent with CDF (15%) and LHCb (<7%).
- $m_2 = 4313.8 \pm 5.3 \pm 7.3$ MeV, signif. not reported due to possible *K*₂ contam.

Now looking LHCb pentaquark!

4.2 4.25 4.3 4.35 4.4

D0 Run II. 10.4 fb

M(J/ψ φ) [GeV]

M(J/ψ φ) [GeV]

SKIPPED TODAY

* Run II early analyses.

* Properties:

- 1. CP-violating weak phase ϕ_s in $B_s^0 \rightarrow J/\psi\phi$ (arXiv:1507.07527, 2015).
- 2. BR(B⁰_s \rightarrow J/ ψ f₀(980)) (arXiv:1501.06089, 2015).

* Production @ 7 - 8 TeV:

- 3. Cross section ratio $\sigma(\chi_{b2}(1P)) / \sigma(\chi_{b1}(1P))$ (arXiv:1409.5761, 2015).
- 4. Y(*n*S) differential cross sections (arXiv:1501.07750v1, 2015).
- 5. Y(*n*S) cross sections (PRD D 83, 112004 (2011) & PLB 727 (2013) 101–125).
- 6. Relative prompt production rate of χ_{c2} and χ_{c1} (Eur. Phys. J. C (2012) 72:2251)
- 7. Prompt J/ ψ and ψ (2S) double-differential cross sections (arXiv:1502.04155, 2015).
- 8. Prompt J/ ψ pair production (JHEP09(2014)094).
- 9. Prompt and non-prompt J/ ψ production (Eur. Phys. J. C (2011) 71: 1575)
- 10. J/ ψ and ψ (2S) production (JHEP02(2012)011).
- 11. Cross section for production of $b\overline{b}X$ decaying to muons (JHEP06(2012)110).
- 12. Inclusive b-hadron production cross section with muons (JHEP03(2011)090).

21

- 13. Inclusive b-jet production (JHEP04(2012)084).
- 14. **BB** angular correlations (JHEP03(2011)136).

Bottom physics @ CMS, Ivan Heredia, MWPF-2015

Bottonium

Charmonium

b-quark/ hadron

SKIPPED TODAY

* Run II early analyses.

* Properties:

- 1. CP-violating weak phase ϕ_s in $B_s^0 \rightarrow J/\psi\phi$ (arXiv:1507.07527, 2015).
- 2. BR(B⁰_s \rightarrow J/ ψ f₀(980)) (arXiv:1501.06089, 2015).

* Production @ 7 - 8 TeV:

- 3. Cross section ratio $\sigma(\chi_{b2}(1P)) / \sigma(\chi_{b1}(1P))$ (arXiv:1409.5761, 2015).
- 4. Y(*n*S) differential cross sections (arXiv:1501.07750v1, 2015).
- 5. Y(*n*S) cross sections (PRD D 83, 112004 (2011) & PLB 727 (2013) 101–125).
- 6. Relative prompt production rate of χ_{c2} and χ_{c1} (Eur. Phys. J. C (2012) 72:2251)
- 7. Prompt J/ ψ and ψ (2S) double-differential cross sections (arXiv:1502.04155/201/5).
- 8. Prompt J/ ψ pair production (JHEP09(2014)094).
- 9. Prompt and non-prompt J/ ψ production (Eur. Phys. J. C (2011) 71: 1575)
- 10. J/ ψ and ψ (2S) production (JHEP02(2012)011).
- 11. Cross section for production of **bb**X decaying to muons (JHEP06(2012)110).
- 12. Inclusive b-hadron production cross section with muons (JHEP03(2011)090).

21

- 13. Inclusive b-jet production (JHEP04(2012)084).
- 14. **BB** angular correlations (JHEP03(2011)136).

Bottom physics @ CMS, Ivan Heredia, MWPF-2015

Measuring

at 13 TeV!

Bottonium

Charmonium

b-quark/ hadron

SUMMARY

- Successful BPH (dimuon) CMS program.
- Several important observations/discoveries.
- CMS tops some important analyses or is competitive with LHCb.
- Many results using Run I data are in the pipeline and we are already analyzing Run II.
- The *Mexican group* is involved in several BPH analyses (quarkonium, B properties, CP violation, rare decays, new particle searches, exotics, ...).

SUMMARY

- Successful BPH (dimuon) CMS program.
- Several important observations/discoveries.
- CMS tops some important analyses or is competitive with LHCb.
- Many results using Run I data are in the pipeline and we are already analyzing Run II.
- The *Mexican group* is involved in several BPH analyses (quarkonium, B properties, CP violation, rare decays, new particle searches, exotics, ...).

22

BACK-UP

B CROSS SECTION VS THEORY

LUMINOSITY

CMS Peak Luminosity Per Day, pp

Thursday, November 5, 15

B_c^+ MESON @ 7 TEV

- *b* and *c* heavy quarks competing in decay (decays faster).
- Reconstructed in $J/\psi\pi^+$ and $J/\psi\pi^+\pi^+\pi^-$.
- Cross section
 measurements could
 help improve B_c
 (double heavy)
 production models.

$$\begin{aligned} & \text{Results } \left(\sqrt{\text{s}} = 7 \text{ TeV} \right) \quad \text{JHEP 01 (2015) 063} \\ & \frac{\sigma(\text{B}_{\text{c}}^{+}) \mathcal{B}(\text{B}_{\text{c}}^{+} \to \text{J}/\psi \pi^{+})}{\sigma(\text{B}^{+}) \mathcal{B}(\text{B}^{+} \to \text{J}/\psi \text{K}^{+})} = \\ & [0.48 \pm 0.05 \text{ (stat)} \pm 0.03 \text{ (syst)} \pm 0.05 \text{ } (\tau_{\text{B}_{\text{c}}})]\% \\ & \frac{\mathcal{B}(\text{B}_{\text{c}}^{+} \to \text{J}/\psi \pi^{+} \pi^{+} \pi^{-})}{\mathcal{B}(\text{B}_{\text{c}}^{+} \to \text{J}/\psi \pi^{+})} = \\ & 2.55 \pm 0.80 \text{ (stat)} \pm 0.33 \text{ (syst)}_{-0.01}^{+0.04} (\tau_{\text{B}_{\text{c}}}) \end{aligned}$$

FRACTION OF NON-PROMPT J/PSI

A_b LIFETIME HISTORY

Bottom physics @ CMS, Ivan Heredia, MWPF-2015

28

SEARCH FOR A NEW B BARYON

- Quark model predicts 3 bsd (ground) baryon states:
 - Ξ_b (lightest state).
 - \blacksquare Ξ_b' .

•
$$\Xi_{b}^{*}$$
 (in $j = 1$, $J^{p} = 3/2^{+}$ sextet).

SEARCH FOR A NEW B BARYON

30

- Quark model predicts 3 bsd (ground) baryon states:
 - Ξ_b (lightest state).
 - Ξ_b'.
 - Ξ_{b}^{*} (in j = 1, $J^{p} = 3/2^{+}$ sextet).
- Ξ_b decays weakly.
- Ξ_b^('*) predominately decays strongly to Ξ_bπ, then E.M. to Ξ_bγ.
- CMS is inefficient to (soft)
 γ detection.
 Bottom physics @ CMS, Ivan Heredia, MWPF-2015

 $J^p =$ spin-parity of baryon

SEARCH FOR A NEW B BARYON

30

- Quark model predicts 3 bsd (ground) baryon states:
 - Ξ_b (lightest state).
 - Ξ_b'.
 - Ξ_{b}^{*} (in j = 1, $J^{P} = 3/2^{+}$ sextet).
- $\blacksquare \Xi_b \text{ decays weakly.}$
- Ξ_b^('*) predominately decays strongly to Ξ_bπ, then E.M. to Ξ_bγ.
- CMS is inefficient to (soft)
 γ detection.
 Bottom physics @ CMS, Ivan Heredia, MWPF-2015

- Theory: $m_{\Xi_b^{\circ}} m_{\Xi_{b^{-}}} < m_{\pi}$ \Rightarrow kinematically forbidden.
- Then look for:
 - $\Xi_b^{*0} \rightarrow \Xi_b^- \pi^+$

- Trained 3 BDT (MC = signal, SB = bkg) to reject bkg.:
 - To train \Leftrightarrow test \Leftrightarrow apply (1/3 sample).
 - Divide 2011-12, barrel & endcap \Rightarrow 12 BDT!
 - 12 input variables (quality, kinematic, isolation) \Rightarrow 1 MV.

- Trained 3 BDT (MC = signal, SB = bkg) to reject bkg.:
 - To train \Leftrightarrow test \Leftrightarrow apply (1/3 sample).
 - Divide 2011-12, barrel & endcap \Rightarrow 12 BDT!
 - 12 input variables (quality, kinematic, isolation) \Rightarrow 1 MV.
 - Best signal-to-bkg BDT selection used to set BR($B^0 \rightarrow \mu^+\mu^-$) limit.

- Trained 3 BDT (MC = signal, SB = bkg) to reject bkg.:
 - To train \Leftrightarrow test \Leftrightarrow apply (1/3 sample).
 - Divide 2011-12, barrel & endcap \Rightarrow 12 BDT!
 - 12 input variables (quality, kinematic, isolation) \Rightarrow 1 MV.
- Best signal-to-bkg BDT selection used to set $BR(B^0 \rightarrow \mu^+\mu^-)$ limit.
- Use MV to define 12 event categories w/different purities:
 - Simultaneous fit to all categories to extract $BR(B^{0}_{s} \rightarrow \mu^{+}\mu^{-})$.

- Trained 3 BDT (MC = signal, SB = bkg) to reject bkg.:
 - To train \Leftrightarrow test \Leftrightarrow apply (1/3 sample).
 - Divide 2011-12, barrel & endcap \Rightarrow 12 BDT!
 - 12 input variables (quality, kinematic, isolation) \Rightarrow 1 MV.
- Best signal-to-bkg BDT selection used to set BR($B^0 \rightarrow \mu^+\mu^-$) limit.
- Use MV to define 12 event categories w/different purities:
 - Simultaneous fit to all categories to extract $BR(B^0_s \rightarrow \mu^+\mu^-)$.
- Combinatorial bkg. extrapolated from sidebands (SB).

- Trained 3 BDT (MC = signal, SB = bkg) to reject bkg.:
 - To train \Leftrightarrow test \Leftrightarrow apply (1/3 sample).
 - Divide 2011-12, barrel & endcap \Rightarrow 12 BDT!
 - 12 input variables (quality, kinematic, isolation) \Rightarrow 1 MV.
- Best signal-to-bkg BDT selection used to set $BR(B^0 \rightarrow \mu^+\mu^-)$ limit.
- Use MV to define 12 event categories w/different purities:
 - Simultaneous fit to all categories to extract $BR(B^{0}_{s} \rightarrow \mu^{+}\mu^{-})$.
- Combinatorial bkg. extrapolated from sidebands (SB).
- Semileptonic ($\Lambda_b \rightarrow p\mu v$) & peaking (B \rightarrow hh') bkgs. from MC.

- Trained 3 BDT (MC = signal, SB = bkg) to reject bkg.:
 - To train \Leftrightarrow test \Leftrightarrow apply (1/3 sample).
 - Divide 2011-12, barrel & endcap \Rightarrow 12 BDT!
 - 12 input variables (quality, kinematic, isolation) \Rightarrow 1 MV.
- Best signal-to-bkg BDT selection used to set BR($B^0 \rightarrow \mu^+\mu^-$) limit.
- Use MV to define 12 event categories w/different purities:
 - Simultaneous fit to all categories to extract $BR(B^{0}_{s} \rightarrow \mu^{+}\mu^{-})$.
- Combinatorial bkg. extrapolated from sidebands (SB).
- Semileptonic ($\Lambda_b \rightarrow p\mu v$) & peaking (B \rightarrow hh') bkgs. from MC.
- $B^+ \rightarrow J/\psi K^+ \& B^0_s \rightarrow J/\psi \phi$ as normaliz. & control samples.

- Trained 3 BDT (MC = signal, SB = bkg) to reject bkg.:
 - To train \Leftrightarrow test \Leftrightarrow apply (1/3 sample).
 - Divide 2011-12, barrel & endcap \Rightarrow 12 BDT!
 - 12 input variables (quality, kinematic, isolation) \Rightarrow 1 MV.
- Best signal-to-bkg BDT selection used to set BR($B^0 \rightarrow \mu^+ \mu^-$) limit.
- Use MV to define 12 event categories w/different purities:
 - Simultaneous fit to all categories to extract $BR(B^0_s \rightarrow \mu^+\mu^-)$.
- Combinatorial bkg. extrapolated from sidebands (SB).
- Semileptonic ($\Lambda_b \rightarrow p\mu v$) & peaking (B \rightarrow hh') bkgs. from MC.
- $B^+ \rightarrow J/\psi K^+ \& B^0_s \rightarrow J/\psi \phi$ as normaliz. & control samples.

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \frac{N_s}{N_{\text{obs}}^{B^+}} \frac{f_u}{f_s} \frac{\varepsilon_{\text{tot}}^{B^+}}{\varepsilon_{\text{tot}}} \mathcal{B}(B^+)$$

31

efficiencies

from MC

CMS Experiment at the LHC, CERN Data recorded: 2012-Nov-30 07:19:44.547430 GMT Run / Event / LS: 208307 / 997510994 / 748

Dimuon trigger + blind analysis
$B \rightarrow \mu^{\dagger}\mu^{-}$

•Signal:

 Two isolated muons from a secondary vertex

- $= M(\mu^+\mu^-) \sim M(B^{\circ}_{s(d)})$
- Momentum aligned with flight direction

•BKG:

- Combinatorial from uncorrelated B semileptonic decays
- Physical:
 - Peaking B \rightarrow hh' (h=misidentified K, π) (BR~10⁻⁷/10⁻⁵)
 - Non Peaking B h $\mu\nu$, B h $\mu\mu$, Λ_b p $\mu\nu$

33

RESULTS $B^{0}_{s} \rightarrow \mu^{+}\mu^{-}$ and $B^{0} \rightarrow \mu^{+}\mu^{-}$

 $\begin{array}{l} \text{Results (full sample)} \\ \mathcal{B}(B^0_s \to \mu^+ \mu^-) = (3.0^{+1.0}_{-0.9}) \times 10^{-9} \\ \mathcal{B}(B^0_d \to \mu^+ \mu^-) = (3.5^{+2.1}_{-1.8}) \times 10^{-10} \\ \mathcal{B}(B^0_d \to \mu^+ \mu^-) < 1.1 \times 10^{-9} \ @ 95\% \text{ C.L.} \end{array}$

1.4 1.2 1

RESULTS $B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ and $B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$

3

ADDITIONAL RESULTS OF $B^0 \rightarrow K^*{}^0\mu^+\mu^-$

q² (GeV²)

fit results for the overall fit (solid line), the signal contribution (dashed line), the combinatorial background contribution (dot-dashed line), and the peaking background contribution (dotted line).

Bottom physics @ CMS, Ivan Heredia, MWPF-2015

35

Rare B decays: New Physics probes

Weak decay of hadron M into final state F described via an Effective Hamiltonian expressed by means of Operator Product Expansion:

$$A(M \to F) = \langle F | H_{eff} | M \rangle = \frac{G_F}{\sqrt{2}} \sum_i V_{CKM}^i C_i(\mu) \langle F | Q_i(\mu) | M \rangle$$

 $C_i(\mu)$: Wilson Coefficients (perturbative short distance couplings) $Q_i(\mu)$: Hadronic Matrix Elements (non -perturbative long distance effects)

NP could modify Wilson Coefficients $C_i(\mu)$ and/or add new operators $Q_i(\mu)$

• Complementary information $B \rightarrow \mu\mu$: Scalar/Pseudoscalar interactions from different rare decays:

36

B- $K^{(*)}\mu\mu$: Vector/axial interactions

THEORY OF $B^0 \rightarrow K^*(892)^0 \mu^+ \mu^-$

37

Rare semileptonic $|\Delta B| = |\Delta S| = 1$ decays are described by an effective Hamiltonian

$$\mathcal{H}_{\rm eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha_e}{4\pi} \sum_i \mathcal{C}_i(\mu) \mathcal{O}_i(\mu). \tag{2}$$

In the SM $b \rightarrow s\ell^+\ell^-$ processes are mainly governed by the operators $\mathcal{O}_{7,9,10}$, which will be referred to as the SM operator basis. Beyond the SM chirality-flipped ones $\mathcal{O}_{7',9',10'}$, collectively denoted here by SM', may appear.

Semileptonic

penguin operators

$$\mathcal{O}_{7(7')} = \frac{m_b}{e} [\bar{s}\sigma^{\mu\nu}P_{R(L)}b]F_{\mu\nu}, \quad \text{(magnetic} \\ \mathcal{O}_{9(9')} = [\bar{s}\gamma_{\mu}P_{L(R)}b][\bar{\ell}\gamma^{\mu}\ell], \quad \text{(vector)} \\ \mathcal{O}_{10(10')} = [\bar{s}\gamma_{\mu}P_{L(R)}b][\bar{\ell}\gamma^{\mu}\gamma_5\ell]. \quad \text{(axial)}$$

$$\frac{8\pi}{3} \frac{d^4\Gamma}{dq^2 d\cos\theta_\ell d\cos\theta_K d\phi} = (J_{1s} + J_{2s}\cos2\theta_\ell + J_{6s}\cos\theta_\ell)\sin^2\theta_K + (J_{1c} + J_{2c}\cos2\theta_\ell + J_{6c}\cos\theta_\ell)\cos^2\theta_K + (J_3\cos2\phi + J_9\sin2\phi)\sin^2\theta_K\sin^2\theta_\ell + (J_4\cos\phi + J_8\sin\phi)\sin2\theta_K\sin2\theta_\ell + (J_5\cos\phi + J_7\sin\phi)\sin2\theta_K\sin\theta_\ell,$$

Bottom physics @ CMS, Ivan Heredia, MWPF-2015

$$\langle J_i \rangle = \int_{q^2_{\rm min}}^{q^2_{\rm max}} dq^2 J_i(q^2)$$

d

$$\frac{d\langle\Gamma\rangle}{l\cos\theta_{\ell}} = \langle J_{1s}\rangle + \frac{\langle J_{1c}\rangle}{2} + \left(\langle J_{6s}\rangle + \frac{\langle J_{6c}\rangle}{2}\right)\cos\theta_{\ell} + \left(\langle J_{2s}\rangle + \frac{\langle J_{2c}\rangle}{2}\right)\cos2\theta_{\ell},$$
(A5)

$$\frac{d\langle\Gamma\rangle}{\cos\theta_{K}} = \frac{3}{2} \left[\left(\langle J_{1s} \rangle - \frac{1}{3} \langle J_{2s} \rangle \right) \sin^{2}\theta_{K} + \left(\langle J_{1c} \rangle - \frac{1}{3} \langle J_{2c} \rangle \right) \cos^{2}\theta_{K} \right]$$
(A6)

$$\langle A_{\rm FB} \rangle \langle \Gamma \rangle = \langle J_{6s} \rangle + \frac{\langle J_{6c} \rangle}{2};$$
$$\langle F_L \rangle = \frac{1}{\langle \Gamma \rangle} \left(\langle J_{1c} \rangle - \frac{1}{3} \langle J_{2c} \rangle \right),$$

$$\langle F_T \rangle = \frac{2}{\langle \Gamma \rangle} \left(\langle J_{1s} \rangle - \frac{1}{3} \langle J_{2s} \rangle \right),$$

$B \to K^* \ \mu^+ \mu^- \ at \ LHCb$

JHEP 08 (2013) 131

Altmannshofer et al.

[JHEP 01 (2009) 019

Decay described in three angles (θ_I , θ_K , ϕ) and dimuon mass q^2 Fit to θ_I , θ_K , ϕ and q^2 to extract the interesting parameters

$$\frac{1}{\Gamma} \frac{\mathrm{d}^{4}\Gamma}{\mathrm{d}\cos\theta_{\ell}\,\mathrm{d}\cos\theta_{K}\,\mathrm{d}\hat{\phi}\,\mathrm{d}q^{2}} = \frac{9}{16\pi} \left[F_{\mathrm{L}}\cos^{2}\theta_{K} + \frac{3}{4}(1 - F_{\mathrm{L}})(1 - \cos^{2}\theta_{K}) + F_{\mathrm{L}}\cos^{2}\theta_{K}(2\cos^{2}\theta_{\ell} - 1) + \frac{1}{4}(1 - F_{\mathrm{L}})(1 - \cos^{2}\theta_{K})(2\cos^{2}\theta_{\ell} - 1) + \frac{1}{4}(1 - F_{\mathrm{L}})(1 - \cos^{2}\theta_{K})(2\cos^{2}\theta_{\ell} - 1) + S_{3}(1 - \cos^{2}\theta_{K})(1 - \cos^{2}\theta_{\ell})\cos 2\hat{\phi} + \frac{4}{3}A_{\mathrm{FB}}(1 - \cos^{2}\theta_{K})\cos\theta_{\ell} + S_{9}(1 - \cos^{2}\theta_{K})(1 - \cos^{2}\theta_{\ell})\sin 2\hat{\phi} \right]$$

Forward-backward asymmetry S₆ = 4/3 A_{FB}

- Transverse asymmetry $S_3 = (1-F_L)A_T^2$
- Fraction of longitudinal K* polarization F_L
- CP asymmetry S₉

20 August 2014

IPA workshop, 18-22 August, London

PRL 111 191801 (2013)

P'₅ anomaly

LHCb also measured

$$P_{4,5}^{\prime} = \frac{S_{4,5}}{\sqrt{F_L(1-F_L)}} \begin{bmatrix} \frac{3}{4}(1-F_L)\sin^2\theta_K + F_L\cos^2\theta_K + \frac{1}{4}(1-F_L)\sin^2\theta_K\cos 2\theta_\ell} \\ -F_L\cos^2\theta_K\cos 2\theta_\ell + S_3\sin^2\theta_K\sin^2\theta_\ell\cos 2\phi \\ +S_4\sin 2\theta_K\sin 2\theta_\ell\cos \phi + S_5\sin 2\theta_K\sin \theta_\ell\cos \phi \\ +S_6\sin^2\theta_K\cos \theta_\ell + S_7\sin 2\theta_K\sin \theta_\ell\sin \phi \\ +S_8\sin 2\theta_K\sin 2\theta_\ell\sin \phi + S_9\sin^2\theta_K\sin^2\theta_\ell\sin 2\phi \end{bmatrix},$$

which are quite free from form-factor uncertainties [Decotes-Genon et al. JHEP 05 (2013) 137]

Local discrepancy in P' $_5$ at 3.7 σ (probability that at least one bin varies by this much is 0.5%

P'₅ anomaly

Many theoretical papers to understand data

Altmannshofer & Straub perform a global analysis and find discrepancies at the level of 3σ. Data best described by **modified C**₉, by introducing a **flavour-changing Z' boson** at O(1TeV or higher). [EPJC 73 2646 (2013), Gaul, Goertz & Haisch, JHEP 01 (2014) 069]

Data could be also explained by floating **formfactor uncertainties**. In this way the discrepancy can be reduced to $\approx 2\sigma$. [Jaeger & Camalich, JHEP 05 (2013) 043]

Lattice QCD predictions + measurements in related channels can help clarify the situation

STATUS OF $B \rightarrow X\mu^+\mu^-$

# of events	BaBar 433fb ⁻¹	Belle 605fb ⁻¹	CDF 9.6fb ⁻¹	LHCb 1 / 3 fb ⁻¹	ATLAS 5fb ⁻¹	CMS 5fb ⁻¹
$B^0 \to K^{*0} \ell^{\!+}\!\ell^{\!-}$	137±44*	247±54*	288±20	2361±56	466±34	415±29
$\mathrm{B}^+ \mathop{\longrightarrow} \mathrm{K}^{*+} \ell^+ \ell^-$			24±6	162±16		
$B^+ \mathop{\longrightarrow} K^+ \ell^+ \ell^-$	153±41*	162±38*	319±23	4746±81		
$\mathrm{B}^0 \to \mathrm{K}^0_{\ s} \ell^{\!+} \ell^{\!-}$			32±8	176±17		
$B_s \longrightarrow \varphi \; \ell^+ \ell^-$			62±9	174±15		
$\Lambda_{\rm b} {\longrightarrow} \Lambda \ell^+ \ell^-$			51±7	78±12		
$B^+ \mathop{\longrightarrow} \pi^+ \ell^+ \ell^-$		limit		25±7		
Babar arXiv:1204.3933 ATLAS (preliminary) LHCb Belle arXiv:0904.0770 [ATLAS-CONF-2013-038] arxiv:1403.8044 CDF arXiv:1107.3753 + 1108.0695 CMS (preliminary) +1305.2168 + ICHEP 2012 [CMS-BPH-11-009] +JHEP12(2012)125				*mixture of B ⁰ and B [±] and ℓ = e, μ other experiments: $\ell = \mu$ only		

Reference theory of production & polarization of quarkonia

NRQCD : effective field theory that treats heavy quarkonia as non-relativistic systems. Inclusive quarkonium production can be factorized in two distinct steps: possibly colored QQ pair of any possible ^{3S+1}L, quantum numbers green anti blue Step-2: formation of a bound state driven by non-pert. QCD

Inclusive xsection for producing quarkonium (*H*) with enough large momentum transfer p_{τ} :

$$\sigma(A+B \to H+X) = \sum_{n} \sigma(A+B \to [Q\bar{Q}]_n + X) \circ P([Q\bar{Q}]_n \to H) , \quad n = {}^{2S+1} L_J^{[C]}$$

Long-distance matrixdetermined from fitselements (LDMEs)to experimental data

relative relevance given by $v = v/c \ll 1$ (scaling rules)

calculated by perturbative QCD (expansions in α_s)

Theoretical predictions are organized as double expansions in α_s and v. Truncation of *v*-expansion for *S*-wave states in NRQCD includes 4 terms:

Short-distance

coefficients (SDCs)

<u>Step-1</u>: $Q\overline{Q}$ production in the

regime of perturbative QCD

Color Singlet (CS) term 3 Color Octet (CO) terms

NRQCD predicts the existence of intermediate CO states in nature, that subsequently evolve into physical color-singlet quarkonia by non-perturbative emission of soft gluons.

Recent developments to explain production Xsections & polarization get reasonable agreement with data excluding data at low p_T: unpolarized CO contribution dominates the production [PLB 737 (2014) 98 (data-driven approach)] [PRL 113 (2014) 022001 (leading-power fragm. formalism)] Bottom physics @ CMS, Ivan Heredia, MWPF-2015

Polarization of S-wave states

The polarization of a vector meson decaying into a lepton pair is reflected in the leptons' angular distributions. The most general 2D angular distribution W for the dileptons is specified by 3 polarization parameters λ_{θ} , λ_{ϕ} , $\lambda_{\phi\phi}$:

 $W = \frac{d^2 N}{d(\cos\theta)d\phi} \propto \frac{1}{3+\lambda_{\theta}} \left(1 + \lambda_{\theta}\cos^2\theta + \lambda_{\phi}\sin^2\theta\cos2\phi + \lambda_{\theta\phi}\sin2\theta\cos\phi\right) \text{ where } \theta \& \phi \text{ for } \vec{p}(\ell^+) \text{ in meson rest frame}$

The choice of a polarization frame that is not unique: there are 3 conventional frames: HX, CS, PX.

Two extreme angular decay distributions: Each CS and CO term has a specific polarization; @NLO, in HX----> $\lambda_{\theta} = +1 (\lambda_{\phi} = 0, \lambda_{\theta\phi} = 0) \begin{bmatrix} CS \ ^{3}S_{1}^{[1]} : \lambda_{\theta} = -1 \text{ [longitudinal]} \\ CO \ ^{1}S_{0}^{[8]} : \lambda_{\theta} = 0 \text{ [isotropic]} \\ CO \ ^{3}S_{1}^{[8]} : \lambda_{\theta} = +1 (@ \text{ high } p_{T}) \text{ [transverse]} \end{bmatrix}$

All LHC results compatible with each other: the polarizations cluster around the unpolarized limit Thus the dominant production mechanism must be CO ${}^{1}S_{0}^{[8]}$ $(\lambda_{\theta} = 0, \lambda_{\phi} = 0, \lambda_{\phi} = 0)$

If the ${}^{3}S_{1}^{[8]}$ term becomes dominant @higher p_T/M, the quarkonia @ high p_T should be transversely polarized: need analysis with 2012 data and with Run-II data ! Test if this hierarchy among CO contributions holds also for P-wave states !

quarkonium

rest frame

Φ

production vlane ~

x

Full angular decay distribution

• Two extreme angular decay distributions

• Unless the full angular distribution is measured, two very different physical cases are indistinguishable.

• The shape of the distribution is invariant and can be characterized by the frame invariant parameter $\tilde{\lambda} = (\lambda_{\vartheta} + 3\lambda_{\varphi})/(1 - \lambda_{\varphi})$

44

J/ψ & ψ' POLARIZATIONS VS. NRQCD

HX frame:

45

Bottom physics @ CMS, Ivan Heredia, MWPF-2015

Thursday, November 5, 15

X(3872) PROMPT PRODUCTION IN pp

Already observed by LHCb, but measured only σ_{inclusive} (P+NP).

X(3872) PROMPT PRODUCTION IN pp

Already observed by LHCb, but measured only σ_{inclusive} (P+NP).

X(3872) PROMPT PRODUCTION IN pp

Already observed by LHCb, but measured only σ_{inclusive} (P+NP).

Results ($\sqrt{s} = 7 \text{ TeV}$)

JHEP 04 (2013) 154

- Unpolarized $J^{PC} = 1^{++}$ state assumed.
- Fraction of X(3872) coming from b hadrons (NP) is $0.263 \pm 0.023 \pm 0.016$.
- No p_T dependence of NP (or P) fraction.
- **NRQCD** predictions (assuming **cc**) for P fraction is evidently off.

 $\underset{\text{Bottom physics @ CMS, Ivan Heredia, MWPF-2015}}{\approx} R = \frac{\sigma(\text{pp} \rightarrow X(3872) + \text{anything}) \cdot \mathcal{B}(X(3872) \rightarrow J/\psi\pi^{+}\pi^{-})}{\sigma(\text{pp} \rightarrow \psi(2S) + \text{anything}) \cdot \mathcal{B}(\psi(2S) \rightarrow J/\psi\pi^{+}\pi^{-})}$

47

Is there bottonium counterpart of the X(3872) ... let's name it X_b ?

SEARCH FOR THE EXOTIC BOTTONIUM X_b

Assume X_b exists:

- $X_b \rightarrow Y(1S)\pi^+\pi^-$.
- $R = R_{X_b/Y(2S)} \approx 6.5\% (= R_{X/\psi(2S)})$ $\Rightarrow X_b \text{ expected } > 5\sigma.$
- Narrow resonance $\Gamma < 1.2$ MeV.
- Close to the BB or BB* thresholds (10.562-10.604 GeV).

SEARCH FOR THE EXOTIC BOTTONIUM X_b

Assume X_b exists:

- $X_b \rightarrow Y(1S)\pi^+\pi^-$.
- $R = R_{X_b/Y(2S)} \approx 6.5\% (= R_{X/\psi(2S)})$ $\Rightarrow X_b \text{ expected} > 5\sigma.$
- Narrow resonance $\Gamma < 1.2$ MeV.
- Close to the BB or BB* thresholds (10.562-10.604 GeV).
- Y trigger, optimize Y(2S) signal.

SEARCH FOR THE EXOTIC BOTTONIUM X_b

Candidates / 6 MeV 0009 0008

2000

2 MeV 2000

2000

1000

CMS

s = 8 TeV

 $L = 20.7 \text{ fb}^{-1}$

Candidates /

10%

8%

6%

9.8

10

N = 7100±150

σ_{Fit} = (3.5±0.1) MeV

Background

Y(2S)

9.95

10

6.56%

10.2

Y(2S)

Y(3S)

10.4

10.6

CMS barrel √s = 8 TeV

 $L = 20.7 \text{ fb}^{-1}$ p₊ > 13.5 GeV ly| < 1.2

10.8 $M_{Y(1S)\pi^{+}\pi^{-}}$ [GeV]

CMS barrel

√s = 8 TeV

 $L = 20.7 \text{ fb}^{-1}$

p_ > 13.5 GeV

10.1

t 1σ Expected

± 2σ Expected

Observed

Median expected

10.9

M_X [GeV]

11

lyl < 1.2

10.05

Assume X_b exists:

- $X_b \rightarrow Y(1S)\pi^+\pi^-$.
- $R = R_{X_b/Y(2S)} \approx 6.5\% (= R_{X/\psi(2S)})$ \Rightarrow X_b expected > 5 σ .
- Narrow resonance $\Gamma < 1.2$ MeV.
- Close to the $B\overline{B}$ or $B\overline{B}^*$ thresholds (10.562-10.604 GeV).
- Y trigger, optimize Y(2S) signal.
- Fit every 10 MeV, width fixed to MC.

10⁻⁴

√s = 8 TeV

BOTTONIUM

49

CPV IN Bs

50

arXiv:1507.07527v1 [hep-ex] 27 Jul 2015

Central & forward

Thursday, November 5, 15