PROBING GLUON SATURATION THROUGH DI-HADRON AND TRI-HADRON CORRELATIONS AT A FUTURE ELECTRON ION COLLIDER

MARTIN HENTSCHINSKI martin.hentschinski@gmail.com

IN COLLABORATION WITH
A. AYALA, J. JALILIAN-MARIAN, M.E. TEJEDA YEOMANS,

XV MEXICAN WORKSHOP ON PARTICLES AND FIELDS
(02.-06. NOV. 2015)

DIS AT HERA: PARTON DISTRIBUTION FUNCTIONS

HERA collider (92-07): Deep Inelastic Scattering (DIS) of of electrons on protons

Photon virtuality $Q^{2}=-q^{2}$

- observation: gluon $g(x)$ and sea-quark $s(x)$ parton distribution functions grow like powers for $x \rightarrow 0$ with $x=Q^{2 / 2 p} \cdot q \in[0,1]$
- parton distribution functions $f(x)$: probability to find a quark, gluon with proton momentum fraction x in proton
- power like growth
\rightarrow integral over x does not convergent at $\mathrm{x}=0$
\rightarrow invalidates probability interpretation

The proton at high energies: saturation

theory considerations:

- effective finite size $1 / Q$ of partons at finite Q^{2}
- at some $x \ll 1$, partons 'overlap' $=$ recominbation effects
- turning it around: system is characterized by saturation scale Q_{s}
- grows with energy $Q_{s} \sim x^{-\Delta}$, $\Delta>0 \&$ can reach in principle perturbative values $Q_{s}>1 \mathrm{GeV}$

THEORY PREDICTIONS FOR HIGH \& SATURATED GLUON DENSITIES

$x=Q^{2} / 2 p \cdot q \rightarrow 0$ limit corresponds to perturbative high energy limit $2 p \cdot q \rightarrow \infty$ for fixed resolution Q^{2}

- make use of factorisation of cross-sections in the high energy limit

- allows to resum interaction of quarks \& gluons with strong gluon field to all orders in the strong coupling \rightarrow resummation of finite density effects
- DIS X-sec. as convolution of "photon wave function" (process-dependent) and "color dipole factor" (universal, resums $\ln 1 / x$)

$$
\sigma_{L, T}^{\gamma^{*} A}\left(x, Q^{2}\right)=2 \sum_{f} \int d^{2} \boldsymbol{b} d^{2} \boldsymbol{r} \int_{0}^{1} d z\left|\psi_{L, T}^{(f)}\left(r, z ; Q^{2}\right)\right|^{2} \mathcal{N}(x, \boldsymbol{r}, \boldsymbol{b})
$$

- physical picture: virtual photon splits into color dipole (quarkantiquark pair) which interacts with Lorentz contracted target field

$$
A^{+, a}\left(z^{-}, \boldsymbol{z}\right)=\alpha^{a}(\boldsymbol{z}) \delta\left(z^{-}\right)
$$

$x \rightarrow 0$: a single interaction with a strong \& Lorentz contracted gluon field

PROPAGATORS IN THE PRESENCE OF A STRONG BACKGROUND FIELD

use light-cone gauge, with $k^{-}=n^{-} \cdot \mathrm{k},\left(\mathrm{n}^{-}\right)^{2}=0, \mathrm{n}^{-} \sim$ target momentum

$$
\tilde{S}_{F}^{(0)}(p)=\frac{i \not p+m}{p^{2}-m^{2}+i 0} \quad \tilde{G}_{\mu \nu}^{(0)}(p)=\frac{i d_{\mu \nu}(p)}{p^{2}+i 0}
$$

$$
d_{\mu \nu}(p)=-g_{\mu \nu}+\frac{n_{\mu}^{-} p_{\nu}+p_{\mu} n_{\nu}^{-}}{n^{-} \cdot p}
$$

[Balitsky, Belitsky; NPB 629 (2002) 290], [Ayala, Jalilian-Marian, McLerran, Venugopalan, PRD 52 (1995) 2935-2943], ...
interaction with the background field:

	$=2 \pi \delta\left(p^{-}-q^{-}\right) \not \chi^{-} \int d^{d-2} \boldsymbol{z} e^{-i \boldsymbol{z} \cdot(\boldsymbol{p}-\boldsymbol{q})}$
	$\left\{\theta\left(p^{-}\right)[V(\boldsymbol{z})-1]-\theta\left(-p^{-}\right)\left[V^{\dagger}(\boldsymbol{z})-1\right]\right\}$
$\stackrel{p}{+\infty 00 \times 00}$	$=-2 \pi \delta\left(p^{-}-q^{-}\right) 2 p^{-} \int d^{d-2} \boldsymbol{z} e^{-i \boldsymbol{z} \cdot(\boldsymbol{p}-\boldsymbol{q})}$
	$\left\{\theta\left(p^{-}\right)[U(\boldsymbol{z})-1]-\theta\left(-p^{-}\right)\left[U^{\dagger}(\boldsymbol{z})-1\right]\right\}$

$$
\begin{aligned}
& V(\boldsymbol{z}) \equiv V_{i j}(\boldsymbol{z}) \equiv \mathrm{P} \exp i g \int_{-\infty}^{\infty} d x^{-} A^{+, c}\left(x^{-}, \boldsymbol{z}\right) t^{c} \\
& U(\boldsymbol{z}) \equiv U^{a b}(\boldsymbol{z}) \equiv \mathrm{P} \exp i g \int_{-\infty}^{\infty} d x^{-} A^{+, c}\left(x^{-}, \boldsymbol{z}\right) T^{c}
\end{aligned}
$$

strong background field resummed into path ordered exponentials (Wilson lines)

PHENOMENOLOGY: DIS AT HERA

$$
\sigma_{L, T}^{\gamma^{*} A}\left(x, Q^{2}\right)=2 \sum_{f} \int d^{2} \boldsymbol{b} d^{2} \boldsymbol{r} \int_{0}^{1} d z\left|\psi_{L, T}^{(f)}\left(r, z ; Q^{2}\right)\right|^{2} \mathcal{N}(x, \boldsymbol{r}, \boldsymbol{b})
$$

- DIS cross-section as convolution of photon wave function and dipole density
- color dipole follows non-linear JIMWLK or BK evolution equation in $\ln (1 / x)$

- fixing initial conditions through fit allows description of combined HERA data, but also (dilute!) DGLAP describes data
- saturation at the edge $\mathrm{Q}_{\mathrm{s}} \sim 1-2 \mathrm{GeV}^{2}$

[Albacete, Armesto, Milhano, Quiroga, Salgado,EPJ C71 (2011) 1705]

PHENOMENOLOGY IN COLLISIONS WITH HEAVY NUCLEI

instead of going to higher energies (expensive), possible to study large nuclei \qquad

Expect those effects to be even more enhanced in boosted nuclei:

d-Au collisions at RHIC: depletion of away side peak in central collisions described by CGC
many more studies at RHIC, LHC in pp, pA, AA collisions
plethora of interesting phenomena, but also subject to large theory uncertainties due to uncontrolled re-
 scatterings \rightarrow no ultimate proof

THE ELECTRON ION COLLIDER PROJECT

the world's first eA collider: will allow to probe heavy nuclei at small x (using 16 GeV electrons on $100 \mathrm{GeV} / \mathrm{u}$ ions)

Brookhaven National Laboratory:
supplement RHIC with Electron
Recovery Linac (eRHIC)

Jefferson Lab: supplement CEBAF with hadron accelerator (MEIC)

AN EIC OBSERVABLE TO SEARCH FOR SATURATION EFFECTS: DI-HADRON DE-CORRELATION IN DIS

Saturation (CGC): gluon kT peaked at saturation scale - expect de-correlated di-hadrons

PRECISION EXPERIMENTS REQUIRE THEORY PRECISION

- current studies: LO accuracy + Sudakov resummation of soft logarithms expect also (large?) collinear logs
+ scale setting uncertainties
\rightarrow higher order correction can lead to large effects

[Zheng,Aschenauer, Lee, Xiao, PRD89 (2014)7, 074037]
Vevolution of dipole etc. densities \& higher correlators know up to NLO
[Balitsky, Chirilli; PRD 88 (2013) 111501, PRD 77 (2008) 014019]; [Kovner,Lublinsky, Mulian; PRD 89 (2014) 6, 061704]
[lancu, Madrigal, Mueller, Soyez, Triantafyllopoulos; PLB 744 (2015) 293]

Øinstabilities get addressed
Dphoton wave function: only inclusive
[Balitsky, Chirilli; PRD 87 (2013) 1, 014013], [Beuf; PRD 85 (on the level of correlation functions) (2012) 034039]

PRECISION EXPERIMENTS REQUIRE THEORY PRECISION

- current studies: LO accuracy + Sudakov resummation of soft logarithms expect also (large?) collinear logs
+ scale setting uncertainties
\rightarrow higher order correction can lead to large effects
our project: calculate

[Zheng,Aschenauer, Lee, Xiao, PRD89 (2014)7, 074037]
(NEW: NLO from momentum space)
A. tri-hadron production at LO (new observable!) expect more stringent tests of CGC through more complex final state
B. di-hadron production at NLO (3 partons a subset!) reduce uncertainties + possibly identify overlap region between collinear factorisation and saturation physics

1 EXTRA HADRON CAN CAUSE A LOT OF WORK!

di-hadrons at LO: paper \& pencil calculation e.g.[Gelis, Jalilian-Marian,PRD67, 074019 (2003)]

each line \& each final state splits into two terms (free + interaction)
\rightarrow real NLO: 16 diagrams (amp. level)
\rightarrow virtual NLO: 32 diagrams (amp. level)
on X-sec. level: up to 16 Gamma matrices in a single Dirac trace
$\rightarrow 15$! $=1307674368000$ individual terms (not all non-zero though)
necessary to achieve (potential) cancelations of diagrams BEFORE evaluation

1) require automatization of calculation (= use of Computer algebra codes)

REDUCE \# OF DIAGRAMS

CONFIGURATION SPACE: CUTS AT $X=0$

- diagrams to configuration space \rightarrow momentum delta function as integral at each vertex + four momentum integral at each internal internal line
- Feynman propagator in configuration space

$$
\begin{aligned}
\Delta_{F}^{(0)}(x) & =\int \frac{d^{d} p}{(2 \pi)^{d}} \frac{i \cdot e^{-i p \cdot x}}{p^{2}-m^{2}+i 0}=\int \frac{d p^{+}}{(2 \pi)} \int \frac{d p^{-} d^{d-2} \boldsymbol{p}}{(2 \pi)^{d-1}} \frac{e^{-i p^{-} x^{+}+i p \cdot \boldsymbol{x}}}{2 p^{-}} \cdot \frac{i \cdot e^{-i p^{+} x^{-}}}{p^{+}-\frac{p^{2}+m^{2}-i 0}{2 p^{-}}} \\
& =\int \frac{d p^{-} d^{d-2} \boldsymbol{p}}{(2 \pi)^{d-1}} \frac{e^{-i p x}}{2 p^{-}}\left[\theta\left(p^{-}\right) \theta\left(x^{-}\right)-\theta\left(-p^{-}\right) \theta\left(-x^{-}\right)\right]_{p^{+}=\frac{p^{2}+m^{2}}{2 p^{-}}}
\end{aligned}
$$

- divide x_{i}^{-}integral $\int_{-\infty}^{\infty} d x_{i}^{-} \rightarrow \int_{-\infty}^{0} d x_{i}^{-}+\int_{0}^{\infty} d x_{i}^{-} \rightarrow$ each of our diagrams cut by a line separating positive \& negative light-cone time
- s-channel kinematics $\left[k^{-}=p_{1}^{-}+p_{2}+\ldots\right.$, all positive $] \rightarrow$ only s-channel type cuts possible (~vertical cuts)

CONFIGURATION SPACE CAN HELP

- recall:

i.e. minus momentum flow not altered through interaction
- recall: interaction placed at slice $z^{-}=0$

$$
A^{+, a}\left(z^{-}, \boldsymbol{z}\right)=\alpha^{a}(\boldsymbol{z}) \delta\left(z^{-}\right)
$$

\rightarrow interaction must be always placed at a $z^{-}=0$ cut of the diagram.
Note: this applies equally to configuration and momentum space

- evaluates already a large fraction of diagrams ($\sim 50 \%$) to zero
 forbidden configurations: cannot be accommodated by vertical (schannel type) cut

CAN WE DO BETTER? MORE CONSTRAINTS

consider complete configuration space propagator (free + interacting part)

$$
S_{F}(x, y)=\int \frac{d^{d} p}{(2 \pi)^{d}} \frac{d^{d} q}{(2 \pi)^{d}} e^{-i p x}\left[\tilde{S}_{F}^{(0)}(p)(2 \pi)^{d} \delta^{(d)}(p-q)+\tilde{S}_{F}^{(0)}(p) \tau_{F}(p, q) \tilde{S}_{F}^{(0)}(q)\right] e^{i q y}
$$

obtain free propagation for

- $x, y<0$ ("before interaction")
- $x, y>0$ ("after interaction")
propagator proportional to complete Wilson line V (fermion)
or U (gluon) if we cross
cut at light-cone time 0

cut light-cone
* no direct translation to momentum space adding free propagation \& interaction \rightarrow mixing of different mom. space diagrams
but strong constraints on the structure of the full result

CONFIGURATION SPACE PREDICTS WHICH OPERATORS HAVE NON-ZERO COEFFICIENTS

momentum space: necessary coefficients from only 4 (instead of 16) diagrams
(cancelation of all other contributions verified by explicit calculations)

virtual corrections: similar result, necessary coefficients from 8 (instead of 32) diagrams

LOOP INTEGRALS

LOOP INTEGRALS ALSO FOR REAL CORRECTIONS

technical reason:

- momentum space amplitudes obtained from field correlators during LSZ reduction procedure
- integration over coordinates at vertices yields delta functions which evaluate momentum integrals trivially
- here: coordinate dependence of background field \rightarrow delta functions absent

intuitive picture:
background field = t-channel gluons interacting with the target \rightarrow naturally provide a loop which is factorized \& (partially) absorbed into the projectile in the high energy limit
for the rest of the talk: focus on real corrections/3 partons
a 1-loop and a 2-loop topology

k_{1} and k_{2} are loop momenta
new complication: exponentials/Fourier factors
conventional: e.g. $\mathrm{k}_{1}{ }^{+}$integration by taking residues, then transverse integrals particular for 2 loop case: complicated transverse integrals
developed a new technique
\star complete exponential factors to 4 d
* evaluate integral using "standard" momentum space techniques

A 1-LOOP EXPAMPLE:

$$
I\left(p_{1}, p_{2}\right)=\int \frac{d^{d} k_{1}}{i \pi^{d / 2}} \frac{1}{\left[k_{1}^{2}\right]\left[\left(l-k_{1}\right)^{2}\right]} e^{i x_{t}\left(\cdot k_{1, t}-p_{1, t}\right)} e^{-i y_{t} \cdot\left(k_{1, t}+p_{2, t}\right)}(2 \pi)^{2} \delta\left(p_{1}^{-}-k_{1}^{-}\right) \delta\left(l^{-}-k_{1}^{-}-p_{2}^{-}\right)
$$

start with integral which contains

* delta functions
transverse exponential factors

$$
I\left(p_{1}, p_{2}\right)=2 \pi \delta\left(l^{-}-p_{1}^{-}-p_{2}^{-}\right) e^{-i y_{t} \cdot\left(p_{1, t}+p_{2}, t\right)} \int d r^{+} \int d r^{-} \delta\left(r^{+}\right) \int \frac{d^{d} k_{1}}{i \pi^{d / 2}} \frac{1}{\left[k_{1}^{2}\right]\left[\left(l-k_{1}\right)^{2}\right]} e^{i r \cdot k_{1}}
$$

introduce relative coordinate $r=x-y$

- represent delta function by integral
* introduce dummy integral over r^{+}
\rightarrow obtain 4 (d) dimensional integral next step:

Schwinger-/ α-parameters

$$
\left(\frac{i}{k^{2}-m^{2}+i 0}\right)^{\lambda}=\frac{1}{\Gamma(\lambda)} \int_{0}^{\infty} d \alpha \alpha^{\lambda-1} e^{i \alpha\left(k^{2}-m^{2}+i 0\right)}
$$

complete square in exponent, Wick rotation, Gauss integration, etc.
Breconstruct delta function to evaluate (some) integrals over $\boldsymbol{\alpha}$-parameters
to facilitate these steps for 2, 3 loops (virtual!): "developed" Mathematica package ARepCGC; implements necessary text-book methods [V. Smirnov, Springer 2006]

INTEGRALS FOR REAL CORRECTIONS

- 1-loop: in terms of modified Bessel function

$$
I\left(p_{1}, p_{2}\right)=8 \pi^{2} \delta\left(l^{-}-p_{1}^{-}-p_{2}^{-}\right) \frac{e^{-i x_{t} \cdot p_{1, t}}}{l^{-}} e^{-i y_{t} \cdot p_{2, t}} K_{0}\left(\sqrt{\alpha(1-\alpha) Q^{2}(\boldsymbol{x}-\boldsymbol{y})^{2}}\right), \quad \alpha=p_{1}^{-} / l^{-}
$$

- 2-loop: one remaining integration (at first)

$$
\begin{aligned}
& \int \frac{d^{4} k_{1}}{(2 \pi)^{4}} \int \frac{d^{4} k_{3}}{(2 \pi)^{4}} \frac{(2 \pi)^{3} \delta\left(k_{1}^{-}-k_{3}^{-}-p_{1}^{-}\right) \delta\left(l^{-}-k_{1}^{-}-p_{2}^{-}\right) \delta\left(k_{3}^{-}-p_{3}^{-}\right)}{\left[k_{1}^{2}\right]\left[\left(l-k_{1}\right)^{2}\right]\left[\left(k_{1}-k_{3}\right)^{2}\right]\left[k_{3}^{2}\right]} \\
& \quad e^{i x_{t} \cdot\left(k_{1, t}-k_{3, t}-p_{1, t}\right)} e^{i y_{t} \cdot\left(l_{t}-k_{1, t}-p_{2, t}\right)} e^{i z_{t} \cdot\left(k_{3, t}-p_{3, t}\right)} \\
& \propto e^{-i x_{t} \cdot p_{1, t}} e^{-i y_{t} \cdot p_{2, t}} e^{-i z_{t} \cdot p_{3, t}} \int_{0}^{\rho_{3}^{\max }} \frac{d \rho_{3}}{\rho_{3}} K_{0}\left[\sqrt{\frac{\rho_{1}\left(1-\rho_{1}\right) Q^{2}\left((\boldsymbol{x}-\boldsymbol{y})^{2}+\rho_{3}(\boldsymbol{x}(1-\xi)-\boldsymbol{y}+\xi)^{2}\right)}{\rho_{3}}}\right]
\end{aligned}
$$

$\xi, \rho_{1}, \rho_{3}{ }^{\text {max }}$ in terms of external momenta
2-loop integral: evaluated into infinite sum over Bessel functions; numerics: keeping integral might be most stable tensor integrals from differentiation w.r.t. external coordinates inclusive: obtain (unexpected) endpoint contributions

FROM GAMMA MATRICES TO CROSS-SECTIONS

FORM EVALUATES DIRAC TRACES

- possible to express elements of Dirac trace to two general tensor integrals
- Evaluation using FORM
[Vermaseren, math-ph/0010025]
- result lengthy, but in principle usable (~ 23 pages)
- currently working on further simplification through reduction of tensor integrals (work in progress)

A1squared =

+ qminus * (DENn(k)*dot(p,k)*IntR1(nminus,nminus,nminus, 1,1,1,p)* IntR1c(muc1,muc1,nminus, $1,1,1, \mathrm{p})+\operatorname{DENn}(\mathrm{k})^{*} \operatorname{dot}(\mathrm{p}, \mathrm{k})^{*} \operatorname{IntR1}$ (nminus, nminus, nminus, $1,1,1, \mathrm{p})^{*}$ IntR1c(muc2,muc2, nminus, $\left.1,1,1, \mathrm{p}\right)-\operatorname{DENn}(\mathrm{k})^{*}$ $\operatorname{dot}(\mathrm{p}, \mathrm{k})^{*} \operatorname{IntR} 1$ (nminus,mu2, nminus, $\left.1,1,1, \mathrm{p}\right)^{*} \ln$ RR1c(nminus, mu2, nminus, 1 , $1,1, p)-\operatorname{DENn}(\mathrm{k})^{*} \operatorname{dot}(\mathrm{p}, \mathrm{k})^{*} \operatorname{IntR} 1$ (nminus,muc2,nminus, $\left.1,1,1, \mathrm{p}\right)^{*} \operatorname{IntR1c}($ nminus,muc2,nminus, $1,1,1, p)-\operatorname{DENn}(k)^{*} \operatorname{dot}(p, k)^{*} \operatorname{IntR} 1$ (mu1,nminus, nminus, $1,1,1, \mathrm{p})^{\star} \operatorname{IntR1c}($ mu1, nminus,nminus, $, 1,1,1, \mathrm{p})+\operatorname{DENn}(\mathrm{k})^{*} \operatorname{dot}(\mathrm{p}, \mathrm{k})^{*}$ IntR1(mu1,mu1, nminus, $1,1,1, p)^{*}$ IntR1c(nminus, nminus, nminus, $\left.1,1,1, \mathrm{p}\right)+$ DENn(k) ${ }^{*}$ dot $(\mathrm{p}, \mathrm{k})^{*} \operatorname{lntR1}(\mathrm{mu} 2, \mathrm{mu} 2, \mathrm{nminus}, 1,1,1, \mathrm{p})^{*} \operatorname{IntR1c}(\mathrm{nminus}, \mathrm{nminus}$, nminus, $1,1,1, \mathrm{p})-\operatorname{DENn}(\mathrm{k})^{*} \operatorname{dot}(\mathrm{p}, \mathrm{k})^{*} \operatorname{IntR} 1$ (muc1,nminus, nminus, $\left.1,1,1, \mathrm{p}\right)^{\star}$ IntR1c(muc1,nminus, nminus, $1,1,1, \mathrm{p})-\operatorname{IntR1} 1$ (nminus, nminus, $\mathrm{p}, 1,1,1, \mathrm{p})^{*}$ IntR1c(muc1,muc1, nminus, $1,1,1, \mathrm{p})+\operatorname{IntR1}$ (nminus, nminus, $\mathrm{p}, 1,1,1, \mathrm{p})^{*}$ IntR1c(muc2,muc2,nminus, 1, 1,1,p) $+\operatorname{IntR1}($ nminus, mu2,, , 1, 1,1, p)* IntR1c(nminus,mu2,nminus, 1, 1,1,p) - IntR1(nminus,muc2, p, 1,1,1,p)* $\operatorname{IntR1c}($ nminus, muc2,nminus, $1,1,1, p)+\operatorname{IntR} 1$ (mu1,p,mu1, $1,1,1, \mathrm{p})^{*} \mid \operatorname{lntR1c}($ nminus, nminus, nminus, $1,1,1, p$) - IntR1(mu1, nminus,, , $1,1,1, p$) ${ }^{*} \operatorname{IntR1c}($ mu1,nminus, nminus, $1,1,1, \mathrm{p}$) - IntR1(mu1, nminus, mu1, $1,1,1, \mathrm{p}$) ${ }^{*} \operatorname{lntR} 1 \mathrm{c}(\mathrm{p}$, nminus, nminus, $1,1,1, p$) $+\operatorname{IntR} 1$ (mu1, mu1, p, 1, 1, 1,p) ${ }^{*} \operatorname{IntR} 1 \mathrm{c}($ nminus, nminus, nminus, $1,1,1, p$) - IntR1 (mu2,mu2, p, 1, 1,1,p)*IntR1c(nminus, nminus, nminus, $1,1,1, p$) $-\operatorname{IntR1}(\mathrm{mu} 3, \mathrm{p}, \mathrm{mu} 3,1,1,1, \mathrm{p})^{*} \operatorname{IntR1} 1 \mathrm{c}$ (nminus, nminus, nminus, $1,1,1, p)+\operatorname{IntR} 1\left(\right.$ mu3, nminus,mu3,1,1,1,p)${ }^{*} \operatorname{IntR1c}(p$,
 nminus,nminus, $1,1,1, \mathrm{p}$))
+ pminus*qminus * (- DENn(k)*IntR1(k,nminus,nminus, $1,1,1, p)^{*} \operatorname{IntR1c}($ muc3,nminus,muc3,1,1,1,p) $+\operatorname{DENn}(\mathrm{k})^{*} \operatorname{lntR1}(\mathrm{k}, \mathrm{nminus}, m u 3,1,1,1, \mathrm{p})^{*}$ IntR1c(mu3,nminus,nminus, 1, 1, 1,p) - DENn(k)*IntR1(k,mu3,mu3, 1, 1, 1,p)* IntR1c(nminus, nminus, nminus, $1,1,1, p)+$ DENn(k)*IntR1 (k,muc3,nminus, 1 , $1,1, p)^{*} \operatorname{lntR1c}\left(\right.$ nminus,nminus,muc3,1,1,1,p) $+\operatorname{DENn}(\mathrm{k})^{*} \operatorname{lntR1}$ (nminus, k , nminus, $1,1,1, \mathrm{p})^{*}$ IntR1c(nminus,muc3,muc3,1,1,1,p) - DENn(k)*IntR1(nminus,k,mu3,1,1,1,p)*IntR1c(nminus,mu3,nminus, $1,1,1, \mathrm{p})+\operatorname{DENn}(\mathrm{k})^{*}$ IntR1 (nminus, nminus, $\mathrm{k}, 1,1,1, \mathrm{p}$) ${ }^{*} \operatorname{IntR} 1 \mathrm{c}($ muc1, muc1, , minus, $1,1,1, \mathrm{p}$) DENn(k)*IntR1 (nminus, nminus, nminus, $1,1,1, p)^{*} \operatorname{IntR1c}(k$, muc3, muc $3,1,1,1$, p) $+\operatorname{DENn}(\mathrm{k})^{*} \operatorname{IntR} 1$ (nminus, nminus, nminus, $\left.1,1,1, \mathrm{p}\right)^{*} \operatorname{lntR1c}($ muc2, muc2,k,1 $, 1,1, p)+\operatorname{DENn}(\mathrm{k})^{*} \operatorname{IntR1}$ (nminus,nminus,nminus, $\left.1,1,1, \mathrm{p}\right)^{*} \operatorname{lntR1c}($ muc3, k, muc3, $1,1,1, p$) $+\operatorname{DENn}(k)^{*} \operatorname{IntR} 1$ (nminus,nminus, mu3, $\left.1,1,1, p\right)^{*} \operatorname{IntR1c}(\mathrm{k}$, mu3 ,nminus, $1,1,1, \mathrm{p}$) - DENn(k)*IntR1 (nminus, nminus, mu3, $1,1,1, \mathrm{p})^{\star} \operatorname{IntR} 1 \mathrm{c}($ mu3,k,nminus, $1,1,1, \mathrm{p})-\operatorname{DENn}(\mathrm{k})^{*} \operatorname{lntR1}$ (nminus,mu2,k, 1,1,1,p)${ }^{*} \operatorname{lntR1c}($ nminus,mu2,nminus, $1,1,1, p)+\operatorname{DENn}(\mathrm{k})^{*} \operatorname{lntR} 1$ (nminus,mu3,mu3,1,1,1,p)* IntR1c(nminus,k,nminus, $1,1,1, p$) - DENn(k)*IntR1 (nminus,muc2, nminus, 1 , $1,1, \mathrm{p})^{*} \operatorname{lntR1c}($ nminus, muc2, $, 1,1,1, \mathrm{p})$ - DENn(k) ${ }^{*} \operatorname{lntR1} 1$ (nminus, muc3, nminus, $1,1,1, \mathrm{p})^{*} \operatorname{lntR1c}\left(\mathrm{nminus}, \mathrm{k}\right.$, muc3,1,1,1,p) $-\operatorname{DENn}(\mathrm{k})^{*} \operatorname{lntR1}$ (mu1, nminus,nminus, $1,1,1, \mathrm{p})^{*} \operatorname{lntR1c}($ mu1,nminus, $, 1,1,1, \mathrm{p})+\operatorname{DENn}(\mathrm{k})^{*} \operatorname{lntR1}($
- precision experiments (future EIC) require theory precision - we're working on it
- developed techniques (reduction, integrals) - might have been available before, but never been exploited in a systematic way for this kind of calculation
- proof of concept for NLO momentum space calculation advantage: benefit from standard techniques for higher orders in QCD (important: soft- and collinear singularities,)
- the results provides not only a (hopefully) important contribution to future EIC studies, but the developed techniques should also allow to evaluate NLO correction for saturation/CGC observables in e.g. pA at RHIC/LHC
- A result of few lines can explode, if extended to extra final state or next-to-leading order - requires a systematic approach

DANKESCHÖN!

Electron-nucleus/-on scattering

- knowldege of scattering enery + nucleon mass + measure scattered electron \longrightarrow control kinematics

PDF'S, COLLINEAR FACTORISATION AND ALL THAT

- collinear factorisation $=$ factorisation in the limit of infinite virtuality Q :
proton structure functions $=$ convolution of
parton distribution functions (pdfs):

$$
F_{2}\left(x, Q^{2}\right)=\sum_{k=q, g} \hat{C}_{2, k} \otimes \hat{f}_{k}
$$

= probability to find parton (quark, gluon) which carries the fraction x of the proton momentum (nonperturbative \rightarrow from fits to data)
and coefficents
$C_{2 q}=1+\boldsymbol{\alpha}_{\mathrm{s}} \mathrm{C}_{2 q}{ }^{(1)}+\ldots, \mathrm{C}_{2 g}=\boldsymbol{\alpha}_{\mathrm{s}} \mathrm{C}_{2 g}{ }^{(1)}+$
... (calculated in perturbation theory)

exact theory statement up to terms suppressed by $1 / \mathrm{Q}$!

- essential for $p Q C D$ predictions and $p Q C D$ success story in $\gamma^{*} p, p p, \ldots$

THE PROTON AT SMALL X: THE HERA LEGACY

HERA@DESY (1992-2007): at the first time DIS on a proton at a Collider \rightarrow access to small x region [large c.o.m. energy at fixed resolution Q]
important HERA result:
proton at small x dominated by gluons and seaquarks (qqbar pairs from gluon)
powerlike rise of gluon distribution at small x

BUT: rise cannot continue forever (probability distribution!)

H1 and ZEUS

DONEC QUIS NUNC

Expect those effects to be even more enhanced in boosted nuclei:

MOMENTUM VS. CONFIGURATION SPACE

	conventional pQCD (make use of know techniques)	inclusion of finite (charm mass!)	intuition: interaction at $\mathrm{t}=0$ with Lorentz contracted target
momentum space	well explored	complication, but doable	lose intuitive picture at first -> large \# of cancelations
configuration space	poorly explored	very difficult	many diagrams

our approach:
work in momentum space, but exploit relation to configuration space to set a large fraction of all diagrams to zero

THE LC-TIME SLICE $X^{-}=0:{ }^{\prime}$ CUTS' THROUGH DIAGRAMS

Determine Fourier transform of "background field vertex" for propagator
$\int \frac{d^{4} q}{(2 \pi)^{4}} \frac{d^{4} q}{(2 \pi)^{4}} e^{-i p \cdot x} \tilde{\Delta}_{F}(p) \tau(p, q) \tilde{\Delta}_{F}(q) e^{i q \cdot y}$ and final state $\int \frac{d^{4} q}{(2 \pi)^{4}} \tau(p, q) \tilde{\Delta}_{F}(q) e^{i q \cdot y}$
Find light-cone time constraints $y^{-}>0>x^{-}$for $p^{-}>0$ and $x^{-}>0>y^{-}$for $p^{-}<0$ reason: conservation of light-cone momentum at vertex $\bar{\tau}$
important consequence: interaction for each diagram only allowed along a certain time-slice =cut of diagrams

example: 3 partons (real NLO): interaction term τ only allowed if the regarding line is "cut"
examples of excluded configurations

THE LC-TIME SLICE X=0: 'CUTS' THROUGH DIAGRAMS

applies also to virtual diagrams: organized into 'cut' configurations

Note: different cuts can contain the same diagram

EVALUATING THE LORENTZ- AND DIRAC STRUCTURE

A. Dirac trace through 2 most general structures, closely related to loop integraexpressls

$$
\begin{array}{r}
I_{1}^{\mu_{1} \mu_{2} \mu_{3}}\left(p_{1}, p_{2}\right)=\int \frac{d^{d} k_{1}}{i \pi^{d / 2}} \frac{k_{1}^{\mu_{1}}\left(l-k_{1}\right)^{\mu_{2}} p_{1}^{\mu_{3}}}{\left[k_{1}^{2}\right]\left[\left(l-k_{1}\right)^{2}\right]\left[p_{1}^{2}\right]} e^{i x_{t} \cdot\left(k_{1, t}-p_{1, t}\right)} e^{i y_{t} \cdot\left(-k 1, t-p_{2, t}\right)} \\
(2 \pi)^{2} \delta\left(p_{1}^{-}-k_{1}^{-}\right) \delta\left(l^{-}-k_{1}^{-}-p_{2}^{-}\right)
\end{array}
$$

$$
\begin{aligned}
& I_{R_{2}}^{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}\left(p_{1}, p_{2}, p_{3}\right)= \\
& \qquad \int \frac{d^{4} k_{1}}{(2 \pi)^{4}} \int \frac{d^{4} k_{3}}{(2 \pi)^{\overline{4}}} \frac{k_{1}^{\mu_{1}}\left(l-k_{1}\right)^{\mu_{2}}\left(k_{1}-k_{3}\right)^{\mu_{3}} k_{3}^{\mu_{4}}}{\left[k_{1}^{2}-m^{2}\right]\left[\left(l-k_{1}\right)^{2}-m^{2}\right]\left[\left(k_{1}-k_{3}\right)^{2}-m^{2}\right]\left[k_{3}^{2}\right]} \\
& e^{i x_{t} \cdot\left(k_{1, t}-k_{3, t}-p_{1, t}\right)} e^{i y_{t} \cdot\left(l_{t}-k_{1, t}-p_{2, t}\right)} e^{i z_{t} \cdot\left(k_{3, t}-p_{3, t}\right)} \\
& \quad(2 \pi)^{3} \delta\left(k_{1}^{-}-k_{3}^{-}-p_{1}^{-}\right) \delta\left(l^{-}-k_{1}^{-}-p_{2}^{-}\right) \delta\left(k_{3}^{-}-p_{3}^{-}\right)
\end{aligned}
$$

