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DIS AT HERA: PARTON DISTRIBUTION FUNCTIONS

 
 
 
 

• observation: gluon g(x) and sea-quark s(x) 
parton distribution functions grow like 
powers for x→0 with x=Q2/2p･q ∈[0,1] 

• parton distribution functions f(x): probability 
to find a quark, gluon with proton 
momentum fraction x in proton 

• power like growth  
→integral over x does not convergent at x=0  
→ invalidates probability interpretation  
at some x, new QCD dynamics must set in

DIS & QCD

Electron-nucleus/-on scattering
I knowldege of scattering enery + nucleon mass

+ measure scattered electron control kinematics

Deep Inelastic Scattering - �tot for ��+nucleon/-us! X
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Photon virtuality
Q2 = �q2

Mass of system X
W = (p + q)2

= M2
N

+2p · q �Q2

Bjorken x =
Q2

2p · q

Resolution
� ⇠ 1

Q

Inelasticity y =
2p · q

2p · k

special cases:
elastic scattering W 2 = M2

N

x = 1
inelastic scattering: x < 1
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HERA collider (92-07): Deep Inelastic Scattering (DIS) of  
of electrons on protons

Electron-nucleus/-on scattering
I knowldege of scattering enery + nucleon mass

+ measure scattered electron control kinematics

Deep Inelastic Scattering - �tot for �

�+nucleon/-us! X
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Open Questions

The proton at high energies: saturation

theory considerations:

Geometric
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I e↵ective finite size 1/Q of
partons at finite Q2

I at some x ⌧ 1, partons
‘overlap’ = recominbation
e↵ects

I turning it around: system is
characterized by saturation
scale Q

s

I grows with energy Q
s

⇠ x��,
� > 0 & can reach in
principle perturbative values
Q
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> 1GeV
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THEORY PREDICTIONS FOR HIGH & SATURATED GLUON DENSITIES

 x =Q2/2p･q→0 limit corresponds to perturbative  
 high energy limit  2p･q→∞ for fixed resolution Q2 

• make use of factorisation of cross-sections in the  
high energy limit 

• allows to resum interaction of quarks & gluons with strong gluon field to all 
orders in the strong coupling→resummation of finite density effects 

• DIS X-sec. as convolution of “photon wave function” (process-dependent) and 
“color dipole factor”  
(universal, resums ln1/x) 

• physical picture: virtual photon  
splits into color dipole (quark-  
antiquark pair) which   
interacts with Lorentz contracted  
 target field  

Key measurements at an EIC

Searching for saturation e↵ects: Dihadron-decorrelation
Saturation ⌘ high gluon densities multiple scatterings
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with the free propagators
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For a straightforward formulation in momentum space, it is useful to include e↵ective
2-point (1 ! 1) vertices which correspond to the above introduced ⌧
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Current work virtual photon @ NLO

Search for saturation requires precision on both sides
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PROPAGATORS IN THE PRESENCE OF A STRONG BACKGROUND FIELD

with the free propagators
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the real gluon interacting with the quark at the same vertex) and therefore posesses, as
far as the pole structure is concerend, the same structure as the the first contribution.
Moreover, unlike the first contribution, the vertex which leads to emission of the real
gluon, can appear at any position. Note that, since we are dealing with a real final
state quark and gluon, the time ordering of the ‘quark Wilson line’ is not a↵ected by
the emission of the real gluon. Taking into account only the color generators due to the
interaction with the background field and the vertex Eq. (24) we have for the second
contribution, the following result,
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where we restricted ourselves to the case n = 3 with the generalization to arbitrary n
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into gn�. For the first contribution one has instead (with the incoming quark momentum
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The last two terms cancel now against the with q

⇢ contracted Eq. (25) while the first
term is only present due to the o↵-shellness of the initial gluon and is identical to the
case where a gluon is emitted from a quark without interaction with the background
field. Hence it is supposed to be canceled by some standard mechanism.

1.2 Momentum space

Generalizing [1] to d dimensions and masses we have for the propagators
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For a straightforward formulation in momentum space, it is useful to include e↵ective
2-point (1 ! 1) vertices which correspond to the above introduced ⌧
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ū(q, p) = ū(p)(2⇡)d�(d)(p� q) + ū(p)⌧
f

(p, q)S̃(0)

F

(q)

v̄(q, p) = v̄(p)(2⇡)d�(d)(p� q) + v̄(p)⌧
f

(�p,�q)S̃(0)

F

(�q)

u(q, p) = (2⇡)d�(d)(p� q)u(p) + S̃

(0)

F

(q)⌧
f

(q, p)u(p)

v(q, p) = (2⇡)d�(d)(p� q)v(p) + S̃

(0)

F

(�q)⌧
f

(�q,�p)v(p)

✏

(�)

µ

(q, p) = ✏

(�)

µ

(p)(2⇡)d�(d)(p� q) + ✏

(�)

⌫

(p)⌧
g

(p, q)G̃(0)

⌫µ

(q) (33)

For a straightforward formulation in momentum space, it is useful to include e↵ective
2-point (1 ! 1) vertices which correspond to the above introduced ⌧

f

and ⌧

g

. In
combination with conventional QCD Feynman rules (where we follow the conventions

1

I interpret the k
t

of [1] as k2

t

= �k2

with k2

Euclidean.

2

A complete derivation requires the LSZ-reduction formula

7

interaction with the background field:

strong background field resummed 
into path ordered exponentials 
(Wilson lines)

[Balitsky, Belitsky; NPB 629 (2002) 290], [Ayala, Jalilian-Marian, McLerran, 
Venugopalan, PRD 52 (1995) 2935-2943], …

use light-cone gauge, with k-=n-･k, (n-)2=0, n-~ target momentum



PHENOMENOLOGY: DIS AT HERA

• DIS cross-section as convolution of 
photon wave function and dipole 
density 

• color dipole follows non-linear 
JIMWLK or BK evolution equation in 
ln(1/x)  
 

• fixing initial conditions through fit 
allows description of combined 
HERA data, but also (dilute!) DGLAP 
describes data 

• saturation at the edge Qs~1-2GeV2
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Fit including heavy quarks

Current work virtual photon @ NLO

Search for saturation requires precision on both sides
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splitting recombination

6

[Albacete, Armesto, Milhano,Quiroga, Salgado,EPJ C71 (2011) 1705]



PHENOMENOLOGY IN COLLISIONS WITH HEAVY NUCLEI

 

Open Questions

Saturation: high densities in the fast nucleus

Expect those e↵ects to
be even more enhanced in
boosted nuclei:
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COLOR GLASS CONDENSATE (CGC)= 
BUZZWORD WHICH REFERS TO THE PHYSICS 
OF SATURATION AND IN PARTICULAR THE 

DEVELOPED THEORY

d-Au collisions at RHIC: depletion of 
away side peak in central collisions 
described by CGC 

many more studies at RHIC, LHC in 
pp, pA, AA collisions 

plethora of interesting phenomena, 
but also subject to large theory 
uncertainties due to uncontrolled re-
scatterings→ no ultimate proof 

7

instead of going to higher energies (expensive), 
possible to study large nuclei …. 



THE ELECTRON ION COLLIDER PROJECT

A COLLIDER TO SEARCH FOR A DEFINITE ANSWER: 

the world’s first eA collider: will allow to probe heavy nuclei at small x 
(using 16GeV electrons on 100GeV/u ions)

Brookhaven National Laboratory: 
supplement RHIC with Electron 
Recovery Linac (eRHIC)

Jefferson Lab: supplement CEBAF 
with hadron accelerator (MEIC)

2015: ENDORSED BY NUCLEAR SCIENCE ADVISORY COMMITTEE (NSAC) AS HIGHEST PRIORITY FOR 
NEW FACILITY CONSTRUCTION IN US NUCLEAR SCIENCE LONG RANGE PLAN 



AN EIC OBSERVABLE TO SEARCH FOR SATURATION EFFECTS:    
DI-HADRON DE-CORRELATION IN DIS

αs << 1αs ∼ 1 ΛQCD

know how to 
do physics here?
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k
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)

collinear factorization (dilute pQCD): gluon kT 
peaked at kT=0 - expect dihadrons back-to-back 
 
Saturation (CGC): gluon kT peaked at saturation 
scale - expect de-correlated di-hadrons

measure azimuthal angle of di-
hadron final state

Current work virtual photon @ NLO

Search for saturation requires precision on both sides
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, y=0.72=1 GeV2Q
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PRECISION EXPERIMENTS REQUIRE THEORY PRECISION
• current studies: LO accuracy + Sudakov resummation of soft logarithms  
 
expect also (large?) collinear logs  
+ scale setting uncertainties 

→ higher order correction can  
lead to large effects  
 
 
   [rad]φ∆
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[Zheng,Aschenauer, Lee, Xiao, PRD89 (2014)7, 074037]

evolution of dipole etc. densities  & higher 
correlators know up to NLO 
instabilities get addressed 
photon wave function: only inclusive  
 (on the level of correlation functions)

[Balitsky, Chirilli; PRD 88 (2013) 111501, PRD 77 (2008) 
014019]; [Kovner,Lublinsky, Mulian; PRD 89 (2014) 6, 061704]  

[Iancu, Madrigal, Mueller, Soyez, Triantafyllopoulos; PLB 744 
(2015) 293]  

[Balitsky, Chirilli; PRD 87 (2013) 1, 014013], [Beuf; PRD 85 
(2012) 034039]  



PRECISION EXPERIMENTS REQUIRE THEORY PRECISION
• current studies: LO accuracy + Sudakov resummation of soft logarithms  
 
expect also (large?) collinear logs  
+ scale setting uncertainties 

→ higher order correction can  
lead to large effects  
 
 
   [rad]φ∆
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[Zheng,Aschenauer, Lee, Xiao, PRD89 (2014)7, 074037]

our project: calculate                  (NEW: NLO from momentum space) 
A. tri-hadron production at LO (new observable!)  

expect more stringent tests of CGC through more complex final state 

B. di-hadron production at NLO (3 partons a subset!)  
reduce uncertainties + possibly identify overlap region between collinear 
factorisation and saturation physics



1 EXTRA HADRON CAN CAUSE A LOT OF WORK!

on X-sec. level: up to 16 Gamma matrices in a single Dirac trace  
→ 15! = 1307674368000 individual terms (not all non-zero though) 

 necessary to achieve (potential) cancelations of diagrams BEFORE 
evaluation 
 require automatization of calculation (= use of Computer algebra codes)

  

                                   =                            +                           +

di-hadrons at LO: paper & pencil calculation e.g.[Gelis, Jalilian-Marian,PRD67, 074019 (2003) ]

each line & each final state splits into 
two terms (free + interaction)  
→ real NLO: 16 diagrams (amp. level) 
→ virtual NLO: 32 diagrams (amp. level)



REDUCE # OF DIAGRAMS



CONFIGURATION SPACE: CUTS AT X-=0
• diagrams to configuration space → momentum delta function as integral at 

each vertex + four momentum integral at each internal internal line 
• Feynman propagator in configuration space  

• divide xi- integral                                            → each of our diagrams cut by a 
line separating positive & negative light-cone time 

• s-channel kinematics [k-=p1- +p2- + …, all positive] → only s-channel type cuts 
possible (~vertical cuts)

of [2]) they allow to construct all amplitudes of interest. The new diagramatic rule
reads

p q

= ⌧
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= ⌧

g
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(36)

1.3 Coordinate space - the quark case
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• recall:                                           i.e.  minus momentum flow  
not altered through interaction 

• recall: interaction placed at slice z-=0  
 
→ interaction must be always placed at a z-=0 cut of the diagram.  
Note: this applies equally to configuration and momentum space 

• evaluates already a large fraction of diagrams (~50%) to zero 
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d�2

p

(2⇡)d�1

e

�ip

�
x

+

+ip·x

2p�
· i · e�ip

+

x

�

p

+ � p

2

+m

2�i0

2p

�

=

Z

dp

�
d

d�2

p

(2⇡)d�1

e

�ipx

2p�
⇥

✓(p�)✓(x�)� ✓(�p

�)✓(�x

�)
⇤

p

+

=

p2+m

2

2p

�

= �(0,+)

F

(x) +�(0,�)

F

(x) , (39)

with

�(0,±)

F

(x) = ±
Z

dp

�
d

d�2

p

(2⇡)d�1

e

�ipx

2p�
✓(±p

�)✓(±x

�)

�

�

�

�

p

+

=

p2+m

2

p

�

(40)

From this result we obtain

S

(0)

F

(x) =

Z

dp

�
d

d�2

p

(2⇡)d�1

e

�ip·x

2p�



(p�+m)



✓(p�)✓(x�)

� ✓(�p

�)✓(�x

�)

�

+ n��
�(x�)

�

p

+

=

p2+m

2

p

�

= S

(0,+)

F

(x) + S

(0,�)

F

(x) + S

(0,⇤)
F

(x) (41)
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with the free propagators

S̃

(0)

F

(p) =
ip�+m

p

2 �m

2 + i0
G̃

(0)

µ⌫

(p) =
id

µ⌫

(p)

p

2 + i0
d

µ⌫

(p) = �g

µ⌫

+
n

�
µ

p

⌫

+ p

µ

n

�
⌫

n

� · p (29)

and the interaction terms1

p q

= 2⇡�(p� � q

�)n��
Z

d

d�2

ze

�iz·(p�q)

·
n

✓(p�)[V (z)� 1]� ✓(�p

�)[V †(z)� 1]
o

(30)

p q

= �2⇡�(p� � q

�)2p�
Z

d

d�2

ze

�iz·(p�q)

·
n

✓(p�)[U(z)� 1]� ✓(�p

�)[U †(z)� 1]
o

(31)

with Wilson lines in fundamental (V ) and adjoint (U) represenation which read

V (z) ⌘ V

ij

(z) ⌘ Pexp ig

Z 1

�1
dx

�
A

+,c(x�, z)tc

U(z) ⌘ U

ab(z) ⌘ Pexp ig

Z 1

�1
dx

�
A

+,c(x�, z)T c

A

+,a(z�, z) = ↵

a(z)�(z�) (32)

with �iT

c

ab

= f

acb and A

+,a(x�, z) = �g�(x�)⇢
a

(x)/@2. For a produced real particle
the following generalized spinors and polarization vectors can be used2

ū(q, p) = ū(p)(2⇡)d�(d)(p� q) + ū(p)⌧
f

(p, q)S̃(0)

F

(q)

v̄(q, p) = v̄(p)(2⇡)d�(d)(p� q) + v̄(p)⌧
f

(�p,�q)S̃(0)

F

(�q)

u(q, p) = (2⇡)d�(d)(p� q)u(p) + S̃

(0)

F

(q)⌧
f

(q, p)u(p)

v(q, p) = (2⇡)d�(d)(p� q)v(p) + S̃

(0)

F

(�q)⌧
f

(�q,�p)v(p)

✏

(�)

µ

(q, p) = ✏

(�)

µ

(p)(2⇡)d�(d)(p� q) + ✏

(�)

⌫

(p)⌧
g

(p, q)G̃(0)

⌫µ

(q) (33)

For a straightforward formulation in momentum space, it is useful to include e↵ective
2-point (1 ! 1) vertices which correspond to the above introduced ⌧

f

and ⌧

g

. In
combination with conventional QCD Feynman rules (where we follow the conventions

1

I interpret the k
t

of [1] as k2

t

= �k2

with k2

Euclidean.

2

A complete derivation requires the LSZ-reduction formula

7

CONFIGURATION SPACE CAN HELP

forbidden configurations: cannot 
be accommodated by vertical (s-
channel type) cut
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CAN WE DO BETTER? ….  MORE CONSTRAINTS
consider complete configuration space propagator (free + interacting part)

 

We arrive for the configuration space propagator at the following result

S
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Z
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d

p

(2⇡)d
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d

q

(2⇡)d
e
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Z

d

d
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(2⇡)d
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(2⇡)d
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F

(p)⌧
F

(p, q)S̃(0)

F

(q)

�

e

iqy

= S

(0)

F

(x� y)[✓(x�)✓(y�) + ✓(�x

�)✓(�y

�)]

+ ✓(x� > 0 > y

�)S(V,+)

F

(x, y) + ✓(y� > 0 > x

�)S(V

†
,�)

F

(x, y) (78)

Gluon propagator: The corresponding expression for the interacting gluon is

Eq. (61) = ✓(x� > 0 > y

�)
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·
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e
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(q))

·
Z
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�iz·(p�q)[U †(z)� 1]eipy (79)

where p

+ = p

2

+m

2

2p

� and q

+ = q

2

+m

2

2p

� is implied. Separating o↵ again the terms without
Wilson line, we find again p

µ = q

µ. With

d

µ↵

(p)d
↵⌫

(q) = g

µ⌫

� n

�
µ

p

⌫

p

� � q

µ

n

�
⌫

p

� + n

�
µ

n

�
⌫

p · q
(p�)2

(80)

we have with p

2 = 0

d

µ↵

(p)d
↵⌫

(p) = d

µ⌫

(p). (81)

We therefore find

Eq. (61) = ✓(x� > 0 > y

�)G(U,+)

µ⌫

(x, y) + ✓(y� > 0 > x

�)G(U

†
,�)

µ⌫

(x, y)

�G

(0,+)

µ⌫

(x� y)✓(x� > 0 > y

�)�G

(0,�)

µ⌫

(x� y)✓(y� > 0 > x

�) (82)

with

G

(U,+)

µ⌫

(x, y) =

Z 1

�1

dp�
(2p�)2

Z

d

d�2

p

(2⇡)d�1
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d

d�2

q

(2⇡)d�2

e

�ip·x
d

µ↵

(p)d
↵⌫

(q)eiqy

·
Z

d

d�2

ze

�iz·(p�q)

✓(p�)U(z) (83)

G

(U

†
,�)

µ⌫

(x, y) = �
Z 1

�1

dp�
(2p�)2

Z

d

d�2

p

(2⇡)d�1

Z

d

d�2

q

(2⇡)d�2

e

�ip·x
d

µ↵

(p)d
↵⌫

(q)eiqy

·
Z

d

d�2

ze

�iz·(p�q)

✓(�p

�)U †(z) (84)
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obtain free propagation for 
• x-,y-<0 (“before interaction”) 
• x-,y->0 (“after interaction”) 

propagator proportional to  
complete Wilson line V (fermion)  
or U (gluon) if we cross  
cut at light-cone time 0 

no direct translation to momentum space  
adding free propagation & interaction→ mixing of different mom. space 
diagrams 
but strong constraints on the structure of the full result 

16

z
− = 0

x y

z
− = 0

x y



 

regions applies also to this new representation. As a consequence we can simple read
of the Wilson line structure of each decomposition, without going into any detailed
calculation. In particular we find for the real corrections

p

�
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p

�
2

p

�
3

x

�
1

x

�
2

k

�

/ V

†(y)V (x)ta

p
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1

p

�
2

p

�
3

x

�
1

x

�
2

k

� / V

†(y)tbV (x)U ba(z)

p

�
1

p

�
2

p

�
3

x

�
1

x

�
2

k

� / t

a

V

†(y)V (x)

p

�
1

p

�
2

p

�
3

x

�
1

x

�
2

k

�

/ V

†(y)tbV (x)U ba(z).

(88)
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CONFIGURATION SPACE PREDICTS WHICH OPERATORS HAVE NON-ZERO COEFFICIENTS

momentum space: necessary coefficients from only 4 (instead of 16) diagrams  
(cancelation of all other contributions verified by explicit calculations)

17

virtual corrections: similar result,  
                               necessary coefficients from 8 (instead of 32) diagrams 



LOOP INTEGRALS



something slightly strange:
LOOP INTEGRALS ALSO FOR REAL CORRECTIONS
technical reason:  
• momentum space amplitudes obtained from field correlators during LSZ 

reduction procedure 
• integration over coordinates at vertices yields delta functions which 

evaluate momentum integrals trivially 
• here: coordinate dependence of background field → delta functions 

absent

intuitive picture:  
background field = t-channel gluons interacting 
with the target→ naturally provide a loop 
which is factorized & (partially) absorbed into 
the projectile in the high energy limit



for the rest of the talk: focus on real corrections/3 partons

a 1-loop and a 2-loop topology 

                   

                                               k1 and k2 are loop momenta  
                                               new complication: exponentials/Fourier factors 

conventional: e.g. k1
+ integration by taking residues, then transverse integrals  

                      particular for 2 loop case: complicated transverse integrals 

developed a new technique 
★ complete exponential factors to 4 d 
★ evaluate integral using “standard” momentum space techniques

p

k

q

l

−q − k

−k1

l − k1

p

k

q

l

k2

k2 − k1

−k1

l − k1

20



start with integral which contains 
delta functions 
transverse exponential factors 

introduce relative coordinate r=x-y 
represent delta function by integral  
introduce dummy integral over r+ 

➜ obtain 4 (d) dimensional integral 
next step:  

Schwinger-/α-parameters 
 complete square in exponent, Wick rotation, Gauss integration, etc. 
reconstruct delta function to evaluate (some) integrals over α-parameters  

to facilitate these steps for 2, 3 loops (virtual!): “developed” Mathematica package 
ARepCGC; implements necessary text-book methods  [V. Smirnov, Springer 2006]

A 1-LOOP EXPAMPLE:
 

There is apparently a certain overlapp between certain classes. It is important to note
that each diagram should be only calculated once; however any diagram not present in
the above classes is automatically zero and needs not to be evaluated. An even stronger
constraint can be obtained from Eq. (89) which states that it is su�cent to search for
the coe�cent of certain combinations of Wilson lines, summarized in Eq. (91). By
explicit calculation (through collecting residues in plus momenta) it can be shown that

⌧

g

�>�1

+ = 0 (97)

The only diagrams which need to evaluated for the triangle graph are therefore

.

(98)

To obtain the full result it is then necessary to drop all factors ‘�1’ in Eqs. (30), (31)
and to subtract the contribution without interaction – which in a calculation with
propagators Eq. (78) and Eq. (85) is always contained.

3 A list of generalized Feynman integrals

Integrations are performed in d = 4 + 2✏ dimensions. The pole prescription are for
quadratic (=standard Feynman) propagators is always taken as p2 ! p

2 + i✏ where ‘✏’
is unrelated to the ✏ pf dimensinal regularization. The momentum l is assumed to have
only longitudinal components,

l = l

+

n

� + l
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�
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2 = �Q

2

. (99)

3.1 The integral I
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There is apparently a certain overlapp between certain classes. It is important to note
that each diagram should be only calculated once; however any diagram not present in
the above classes is automatically zero and needs not to be evaluated. An even stronger
constraint can be obtained from Eq. (89) which states that it is su�cent to search for
the coe�cent of certain combinations of Wilson lines, summarized in Eq. (91). By
explicit calculation (through collecting residues in plus momenta) it can be shown that
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+ = 0 (97)

The only diagrams which need to evaluated for the triangle graph are therefore

.

(98)

To obtain the full result it is then necessary to drop all factors ‘�1’ in Eqs. (30), (31)
and to subtract the contribution without interaction – which in a calculation with
propagators Eq. (78) and Eq. (85) is always contained.

3 A list of generalized Feynman integrals

Integrations are performed in d = 4 + 2✏ dimensions. The pole prescription are for
quadratic (=standard Feynman) propagators is always taken as p2 ! p
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There is apparently a certain overlapp between certain classes. It is important to note
that each diagram should be only calculated once; however any diagram not present in
the above classes is automatically zero and needs not to be evaluated. An even stronger
constraint can be obtained from Eq. (89) which states that it is su�cent to search for
the coe�cent of certain combinations of Wilson lines, summarized in Eq. (91). By
explicit calculation (through collecting residues in plus momenta) it can be shown that

⌧
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�>�1

+ = 0 (97)

The only diagrams which need to evaluated for the triangle graph are therefore

.

(98)

To obtain the full result it is then necessary to drop all factors ‘�1’ in Eqs. (30), (31)
and to subtract the contribution without interaction – which in a calculation with
propagators Eq. (78) and Eq. (85) is always contained.

3 A list of generalized Feynman integrals

Integrations are performed in d = 4 + 2✏ dimensions. The pole prescription are for
quadratic (=standard Feynman) propagators is always taken as p2 ! p

2 + i✏ where ‘✏’
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INTEGRALS FOR REAL CORRECTIONS
• 1-loop: in terms of modified Bessel function 

• 2-loop: one remaining integration (at first) 

ξ, 𝞺1, 𝞺3max in terms of external momenta

 

There is apparently a certain overlapp between certain classes. It is important to note
that each diagram should be only calculated once; however any diagram not present in
the above classes is automatically zero and needs not to be evaluated. An even stronger
constraint can be obtained from Eq. (89) which states that it is su�cent to search for
the coe�cent of certain combinations of Wilson lines, summarized in Eq. (91). By
explicit calculation (through collecting residues in plus momenta) it can be shown that
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+ = 0 (97)

The only diagrams which need to evaluated for the triangle graph are therefore

.

(98)

To obtain the full result it is then necessary to drop all factors ‘�1’ in Eqs. (30), (31)
and to subtract the contribution without interaction – which in a calculation with
propagators Eq. (78) and Eq. (85) is always contained.

3 A list of generalized Feynman integrals

Integrations are performed in d = 4 + 2✏ dimensions. The pole prescription are for
quadratic (=standard Feynman) propagators is always taken as p2 ! p
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Taoking into account that 1 > ⇢

2

> 0 this leads to the constraint
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Finally, due to evaluating the delta functions, we have a Jacobian factor 1
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therefore obtain for Eq. (123) the following result
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where we also used that l
t

= 0 and ⇢

1

and ⇠ are given in Eq. (126).
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3.2.3 An attempt of an analytic solution of the last integral

The above integral over ⇢
3

can be evaluated numerically. As an alternative one might
also use the Mellin Barnes representation of the exponential function,

exp(�x) =

Z
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c�i1

ds

2⇡i
�(s)x�s (130)

with the contour of integration to the right of all singularities. This allows us to write
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and subsequently to evaluate the integral over ⇢
3

. With
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2-loop integral: evaluated into infinite sum over Bessel functions;  
numerics:  keeping integral might be most stable 
tensor integrals from differentiation w.r.t. external coordinates  
inclusive: obtain (unexpected) endpoint contributions
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FROM GAMMA MATRICES 
TO CROSS-SECTIONS



FORM EVALUATES DIRAC TRACES

• possible to express elements of 
Dirac trace to two general 
tensor integrals 

• Evaluation using FORM 
[Vermaseren, math-ph/0010025] 

• result lengthy, but in principle 
usable (~23 pages) 

• currently working on further 
simplification through reduction 
of tensor integrals  
(work in progress)

*************************************************************************************
**************RESULTS OF THE PROGRAM****************************************************
*************************************************************************************

   A1squared =
       + qminus * ( DENn(k)*dot(p,k)*IntR1(nminus,nminus,nminus,1,1,1,p)*
         IntR1c(muc1,muc1,nminus,1,1,1,p) + DENn(k)*dot(p,k)*IntR1(nminus,
         nminus,nminus,1,1,1,p)*IntR1c(muc2,muc2,nminus,1,1,1,p) - DENn(k)*
         dot(p,k)*IntR1(nminus,mu2,nminus,1,1,1,p)*IntR1c(nminus,mu2,nminus,1,
         1,1,p) - DENn(k)*dot(p,k)*IntR1(nminus,muc2,nminus,1,1,1,p)*IntR1c(
         nminus,muc2,nminus,1,1,1,p) - DENn(k)*dot(p,k)*IntR1(mu1,nminus,
         nminus,1,1,1,p)*IntR1c(mu1,nminus,nminus,1,1,1,p) + DENn(k)*dot(p,k)*
         IntR1(mu1,mu1,nminus,1,1,1,p)*IntR1c(nminus,nminus,nminus,1,1,1,p) + 
         DENn(k)*dot(p,k)*IntR1(mu2,mu2,nminus,1,1,1,p)*IntR1c(nminus,nminus,
         nminus,1,1,1,p) - DENn(k)*dot(p,k)*IntR1(muc1,nminus,nminus,1,1,1,p)*
         IntR1c(muc1,nminus,nminus,1,1,1,p) - IntR1(nminus,nminus,p,1,1,1,p)*
         IntR1c(muc1,muc1,nminus,1,1,1,p) + IntR1(nminus,nminus,p,1,1,1,p)*
         IntR1c(muc2,muc2,nminus,1,1,1,p) + IntR1(nminus,mu2,p,1,1,1,p)*
         IntR1c(nminus,mu2,nminus,1,1,1,p) - IntR1(nminus,muc2,p,1,1,1,p)*
         IntR1c(nminus,muc2,nminus,1,1,1,p) + IntR1(mu1,p,mu1,1,1,1,p)*IntR1c(
         nminus,nminus,nminus,1,1,1,p) - IntR1(mu1,nminus,p,1,1,1,p)*IntR1c(
         mu1,nminus,nminus,1,1,1,p) - IntR1(mu1,nminus,mu1,1,1,1,p)*IntR1c(p,
         nminus,nminus,1,1,1,p) + IntR1(mu1,mu1,p,1,1,1,p)*IntR1c(nminus,
         nminus,nminus,1,1,1,p) - IntR1(mu2,mu2,p,1,1,1,p)*IntR1c(nminus,
         nminus,nminus,1,1,1,p) - IntR1(mu3,p,mu3,1,1,1,p)*IntR1c(nminus,
         nminus,nminus,1,1,1,p) + IntR1(mu3,nminus,mu3,1,1,1,p)*IntR1c(p,
         nminus,nminus,1,1,1,p) + IntR1(muc1,nminus,p,1,1,1,p)*IntR1c(muc1,
         nminus,nminus,1,1,1,p) )

       + pminus*qminus * (  - DENn(k)*IntR1(k,nminus,nminus,1,1,1,p)*IntR1c(
         muc3,nminus,muc3,1,1,1,p) + DENn(k)*IntR1(k,nminus,mu3,1,1,1,p)*
         IntR1c(mu3,nminus,nminus,1,1,1,p) - DENn(k)*IntR1(k,mu3,mu3,1,1,1,p)*
         IntR1c(nminus,nminus,nminus,1,1,1,p) + DENn(k)*IntR1(k,muc3,nminus,1,
         1,1,p)*IntR1c(nminus,nminus,muc3,1,1,1,p) + DENn(k)*IntR1(nminus,k,
         nminus,1,1,1,p)*IntR1c(nminus,muc3,muc3,1,1,1,p) - DENn(k)*IntR1(
         nminus,k,mu3,1,1,1,p)*IntR1c(nminus,mu3,nminus,1,1,1,p) + DENn(k)*
         IntR1(nminus,nminus,k,1,1,1,p)*IntR1c(muc1,muc1,nminus,1,1,1,p) - 
         DENn(k)*IntR1(nminus,nminus,nminus,1,1,1,p)*IntR1c(k,muc3,muc3,1,1,1,
         p) + DENn(k)*IntR1(nminus,nminus,nminus,1,1,1,p)*IntR1c(muc2,muc2,k,1
         ,1,1,p) + DENn(k)*IntR1(nminus,nminus,nminus,1,1,1,p)*IntR1c(muc3,k,
         muc3,1,1,1,p) + DENn(k)*IntR1(nminus,nminus,mu3,1,1,1,p)*IntR1c(k,mu3
         ,nminus,1,1,1,p) - DENn(k)*IntR1(nminus,nminus,mu3,1,1,1,p)*IntR1c(
         mu3,k,nminus,1,1,1,p) - DENn(k)*IntR1(nminus,mu2,k,1,1,1,p)*IntR1c(
         nminus,mu2,nminus,1,1,1,p) + DENn(k)*IntR1(nminus,mu3,mu3,1,1,1,p)*
         IntR1c(nminus,k,nminus,1,1,1,p) - DENn(k)*IntR1(nminus,muc2,nminus,1,
         1,1,p)*IntR1c(nminus,muc2,k,1,1,1,p) - DENn(k)*IntR1(nminus,muc3,
         nminus,1,1,1,p)*IntR1c(nminus,k,muc3,1,1,1,p) - DENn(k)*IntR1(mu1,
         nminus,nminus,1,1,1,p)*IntR1c(mu1,nminus,k,1,1,1,p) + DENn(k)*IntR1(



• precision experiments (future EIC) require theory precision - we’re 
working on it 

• developed techniques (reduction, integrals) - might have been available 
before, but never been exploited in a systematic way for this kind of 
calculation 

• proof of concept for NLO momentum space calculation  
advantage: benefit from standard techniques for higher orders in QCD 
(important: soft- and collinear singularities, ….)  

• the results provides not only a (hopefully) important contribution to future 
EIC studies, but the developed techniques should also allow to evaluate 
NLO correction for saturation/CGC observables in e.g. pA at RHIC/LHC 

• A result of  few lines can explode, if extended to extra final state or next-
to-leading order - requires a systematic approach
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DIS & QCD

Electron-nucleus/-on scattering
I knowldege of scattering enery + nucleon mass

+ measure scattered electron control kinematics

Deep Inelastic Scattering - �tot for ��+nucleon/-us! X

e

� + p[A] ! e

� + X = �

⇤ + p ! X (up to QED corrections)

k

p X
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y =
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“inelasticity”
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�)2 “resolution”
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Bj

=
Q

2
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Parton model: fraction of nucleon

momentum carried by struck quark

unpolarized + neutral charge current

hadronic tensor � proton structure functions F
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Martin Hentschinski RIKEN/BNL Lunch Time Talk

Photon virtuality
Q2 = �q2

Mass of system X
W = (p + q)2

= M2
N

+2p · q �Q2

Bjorken x =
Q2

2p · q

Resolution
� ⇠ 1

Q

Inelasticity y =
2p · q

2p · k

special cases:
elastic scattering W 2 = M2

N

x = 1
inelastic scattering: x < 1

Martin Hentschinski (ICN-UNAM) The glue that binds us all August 19, 2015 13 / 96
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PDF’S, COLLINEAR FACTORISATION AND ALL THAT

• collinear factorisation = factorisation in the limit of infinite virtuality Q:  
 
proton structure functions = convolution of  

parton distribution functions (pdfs):  
= probability to find parton (quark, 
gluon) which carries the fraction x of 
the proton momentum (non-
perturbative→ from fits to data) 

and coefficents  
C2q =1 + αs C2q

(1)+ …, C2g = αs C2g
(1)+ 

… (calculated in  perturbation theory)  

exact theory statement up to terms suppressed by 1/Q! 

• essential for pQCD predictions and pQCD success story in ɣ*p, pp, ….

28

Collinear factorization: factorization for Q2 ! 1
X very precise theoretical formulation

factorization into (perturbative) coe�cients & (non-perturbative) pdfs

X perturbative corrections known up to NNLO

Ambiguities remain:

I pdfs a theory definition:

factorization into bare (= divergent)
coe�cients & pdfs

! cancelation introduces
(factorization) scheme & scale
dependence

F2(x, Q

2) =
X

k=q,g

Ĉ2,k ⌦ f̂

k

F2(x, Q

2) =
X

k,q,g

C2,k ⌦ f

k

Martin Hentschinski (ICN-UNAM) DIS 2015: DGLAP without pdfs April 29, 2015 2 / 28



THE PROTON AT SMALL X: THE HERA LEGACY

HERA@DESY (1992-2007): at the first 
time DIS on a proton at a Collider  
→ access to small x region [large c.o.m. 
energy at fixed resolution Q] 

important HERA result:  

proton at small x dominated by gluons 
and seaquarks (qqbar pairs from gluon) 

powerlike rise of gluon distribution at 
small x 

BUT: rise cannot continue forever 
(probability distribution!)
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conventional pQCD 
(make use of know 

techniques)

inclusion of finite 
masses  

(charm mass!)

intuition: interaction 
at t=0 with Lorentz 
contracted target

momentum space well explored complication, but 
doable

lose intuitive picture 
at first -> large # of 

cancelations

configuration space poorly explored very difficult many diagrams 
automatically zero 

our approach:  
work in momentum space, but exploit relation to configuration space to 
set a large fraction of all diagrams to zero

MOMENTUM VS. CONFIGURATION SPACE 
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Determine Fourier transform of “background field vertex” for propagator 

                                                        and final state 

Find light-cone time constraints                               and                                   
reason: conservation of light-cone momentum at vertex 𝞽 

important consequence: interaction for each diagram only allowed along 
a certain time-slice =cut of diagrams 
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example: 3 partons (real NLO): 
interaction term 𝞽 only allowed if 
the regarding line is “cut”

examples of excluded 
configurations
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THE LC-TIME SLICE X-=0: ‘CUTS’ THROUGH DIAGRAMS



THE LC-TIME SLICE X-=0: ‘CUTS’ THROUGH DIAGRAMS
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applies also to virtual diagrams: organized into ‘cut’ configurations 

Note: different cuts can contain the same diagram



EVALUATING THE LORENTZ- AND DIRAC STRUCTURE

A. Dirac trace through 2 most general structures, closely related to 
loop integraexpressls

  

There is apparently a certain overlapp between certain classes. It is important to note
that each diagram should be only calculated once; however any diagram not present in
the above classes is automatically zero and needs not to be evaluated. An even stronger
constraint can be obtained from Eq. (89) which states that it is su�cent to search for
the coe�cent of certain combinations of Wilson lines, summarized in Eq. (91). By
explicit calculation (through collecting residues in plus momenta) it can be shown that

⌧

g

�>�1

+ = 0 (97)

The only diagrams which need to evaluated for the triangle graph are therefore

.

(98)

To obtain the full result it is then necessary to drop all factors ‘�1’ in Eqs. (30), (31)
and to subtract the contribution without interaction – which in a calculation with
propagators Eq. (78) and Eq. (85) is always contained.

3 A list of generalized Feynman integrals

Integrations are performed in d = 4 + 2✏ dimensions. The pole prescription are for
quadratic (=standard Feynman) propagators is always taken as p2 ! p

2 + i✏ where ‘✏’
is unrelated to the ✏ pf dimensinal regularization. The momentum l is assumed to have
only longitudinal components,

l = l

+

n

� + l

�
n

�
l

2 = �Q

2

. (99)

3.1 The integral I
R
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where one has either p

1

= p + k, p

2

= q or p

1

= q + k, p

2

= p and we have l

t

= 0.
Also note that I include factors of 2⇡ for each delta-function and switched the sign in
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this integral belongs to A
2

or A
4

.
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The last manipulation allows us to consider one integral where only the external kine-
matics di↵ers. We therefore consider
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where the above two cases correspond to p

1

, p

2

, p
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= (p, q, k) and p
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= (q, pk)
i.e. by interchange of the momenta of quark and anti-quark. For the following analysis
we complete again the exponential factors to 4 dimensions and consider afterwards
integrals in d = 4 + 2✏ dimensions. Using the parametrizations r

1

= (x � y) and
r

3

= (z � x) to write y = x� r

1

and z = r
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� x we arrive at

I

µ

1

µ

2

µ

3

µ

4

R

2

(p
1

, p

2

, p

3

) = 2⇡�(l� �
3

X

i

p

�
i

)

e

ix

t

·(l
t

�
P

3

i

p

t,i

)

Z

dr

+

1

dr

+

2

Z

dr

�
1

dr

�
2

�(r�
1

)�(r�
2

)eir1·(p2�l)

e

�ir

3

·p
3

=

Z

d

4

k

1

(2⇡)4

Z

d

4

k

3

(2⇡)4
k

µ

1

1

(l � k

1

)µ2(k
1

� k

3

)µ3

k

µ

4

3

[k2
1

�m

2][(l � k

1

)2 �m

2][(k
1

� k

3

)2 �m

2][k2
3

]
e

ir

1

·k
1

e

ir

2

·k
3

.

(118)

31


