・ロット 御マ トルマン・

Hadronic light-by-light contribution to the muon g-2.

Adolfo Guevara

Departamento de Física Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav)

in collaboration with Gabriel López Castro and Pablo Roig Phys. Rev. D89 (2014) 073016

XV Workshop on Particles and Fields, november 2015

Outline

Purpose

 a_{μ}

Contributions to a_{μ}

 $\gamma^* \gamma^* \pi^0$ ($F_{\pi \gamma \gamma}$) Form Factor

Results

Conclusions

Cinvestav

Purpose

 The main purpose of this work is to reduce the theoretical uncertainty in the computation of the a_{μ} , in which the main source of uncertainty comes from the hadronic contributions. This is why we decided to analyze the hadronic light-by-light contribution using $R\chi T$.

Conclusions

Magnetic moment $\overrightarrow{\mu}$

an

• Classically, the magnetic moment of a particle is defined as

$$\overrightarrow{\mu} = \frac{q}{2m}\overrightarrow{L}$$

- From Stern-Gerlach experiments we learned that particles have intrinsic angular momentum or spin.
- So that particles coupling to the photon, with $m \neq 0$ have an intrinsic magnetic moment

$$\overrightarrow{\mu} = g \frac{Q}{2m} \overrightarrow{s}$$

where $g_{\ell} = 2$ is LO prediction in QED with a classic EM field.

Cinvestav

an

Anomalous magnetic moment a_{ℓ}

 However, from hyperfine splitting of the ground state of hydrogen and deuterium in 1947, Nafe et al. measured¹

$$\delta \mu / \mu = 0.00126 \pm 0.00019$$

 Which came to be consistent with Schwinger's² prediction of a deviation from g = 2, defined as the anomalous magnetic moment a_{μ} .

$$a_{\ell} := rac{g_{\ell}-2}{2} = rac{lpha}{2\pi} + \mathcal{O}(lpha^2).$$

¹J. E. Nafe *e*t al., Phys.Rev. 71 (1947) ²J. S. Schwinger, Phys.Rev. 73 (1948)

an

Why $\ell = \mu$?

- Ever since, there has been more precise measurements and computations of the a_{ℓ} , making it feasible to search for physics Beyond Standard Model (BSM) in a_{ℓ} .
- On other hand, angular momentum conservation shows that in $\ell \rightarrow \gamma \ell$ processes, ℓ must flip its spin. Only for massive particles, spin flips are allowed \Rightarrow the amplitude must be proportional to the mass m_{ℓ} .
- Therefore, contributions Beyond Standard Model (BSM) to the a_{ℓ} , like chiral d=5 operator $\frac{g}{\Lambda} \bar{\psi} \sigma^{\mu\nu} F_{\mu\nu} \psi$ must be suppressed by a factor $\sim \frac{gm_{\ell}}{\Lambda^2}$.
- If current discrepancy is from BSM contribution to a_{μ} ,

 $\Lambda \approx \sqrt{g}$ 100 TeV

an

Why not $\ell = \tau$?

- Since transition probability is squared modulus of the amplitude, BSM effects will be easier to detect with $\ell=\mu$

$$\left(rac{m_{\mu}}{m_e}
ight)^2 \sim 4 imes 10^4$$

• Therefore, BSM effects should be larger on a_{τ} . Nevertheless, τ_{τ} is so small that experimental results³ are still compatible with $a_{\tau} = 0$.

³K. Ackerstaff *et al.*, [OPAL Collab.] Phys.Lett.B431(1998)
M. Acciarri *et al.*, [L3 Collab.] Phys.Lett.B434(1998)
W. Lohmann, Nucl.Phys.B144(2005)

• Even though measurements of a_e are 2250 times more precise⁴ a_μ is

$$rac{1}{2250}\left(rac{m_{\mu}}{m_{e}}
ight)^{2}\sim19$$

times more sensitive to BSM contributions.

 Therefore, it would be more plausible to find such a deviation in the a_μ.

Cinvestav

э

(日)、(四)、(日)、(日)、

⁴R.S. Van Dyck *et al.*, PRL59(1987); P.J. Mohr *et al.*, Rev.Mod.Phys.72(2000)

Contributions to a_{μ}

• The computation of a_{μ} can be splitted in different contributions, whose values can be found in PDG⁵

$$a_{\mu}=a_{\mu}^{QED}+a_{\mu}^{EW}+a_{\mu}^{Had}$$

• a^{QED} are all corrections⁶ that might come from QED

$$a_{\mu}^{\textit{QED}} = 116584718.95(0.08) imes 10^{-11} + \mathcal{O}\left(rac{lpha}{\pi}
ight)^6$$

• a_{μ}^{EW} are Electroweak contribution that are not a_{μ}^{QED} (W^{\pm}, Z, H) at two loops⁷. Three loops contribution is negligible ($\lesssim 0.4 \times 10^{-11}$).

$$a_{\mu}^{EW} = 153.6(1.0) imes 10^{-11}$$

⁷C. Gnendiger et al., Phys.Rev.D88 (2013)

▲日 > ▲圖 > ▲ 画 > ▲ 画 > →

Cinvestav

Hadronic contributions

• a_{μ}^{Had} can be separated into two contributions, the PDG values are the following.⁸

⁸K.A. Olive *et al.*, (Particle Data Group), Chin. Phys.C38(2014)
For HVP, M. Davier *et al.* Eur.Phys.J. C71 (2011)
For HLbL J. Prades *et al.* Advanced series on directions in HEP Vol20.

Hadronic contributions to a_{μ}

• All the contributions and their uncertainties are shown in the next table.

Contribution	$\times 10^{11}$	Uncertainty $ imes 10^{11}$
QED	116 584 718.95	0.08
EW	153.6	1.0
Had	7 028	(42) _{Vac. Pol.} (26) _{Light-by-Light}
Total	116 591 803	(1)(42)(26)
Exp	116 592 091	(54)(33)

- Clearly, the largest uncertainty comes from the hadronic contribution.
- With these values there is a discrepancy

$$a_{\mu}^{exp}-a_{\mu}^{SM}=288(63)(49) imes 10^{-11}~~\sim 3.5\sigma$$

э

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

Hadronic contribution a_{μ}

- The main uncertainty comes from these contributions⁹ $\sim 5 \times 10^{-10}$, in which¹⁰ HLbL uncertainty is $\sim 3 \times 10^{-10}$.
- The current experimental¹¹ error is 6.3×10^{-10} .
- Being that Fermilab & J-Parc are planning to lower¹² their error in their a_{μ} measurements to 1.6×10^{-10} , it becomes mandatory to reduce theoretical uncertainty.

⁹M. Davier et al., Eur.Phys.J.C71(2011) ¹⁰J. Prades *et al.*, Advanced series on directions in high energy physics 20 ¹¹G. W. Bennet *et al.*, [Muon g-2 Collab.], PRD73(2006)

• Our contribution to a_{μ} comes from diagram (a)

- Cancellation between loop diagrams (b) and (c) give¹³ a contribution $\sim 1/10$ smaller than that of (a).
- We use Resonance Chiral Theory¹⁴ (R χ T) to compute the pion transition form factor $F_{\pi\gamma^*\gamma^*}$.

¹³F. Jegerlehner & A. Nyffeler, Phys.Rep.477(2009) ¹⁴G. Ecker, J. Gasser A. Pich & E. De Rafael Nucl.Phys. B321(1989) P.D. Ruíz-Femenía et al., JHEP 0307 (2003) ・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

• Using R χT we find¹⁵

$$\begin{split} F_{\pi\gamma^*\gamma^*}(p^2,q^2,r^2) &= \frac{2r^2}{3F} \left[-\frac{N_C}{8\pi^2 r^2} + 4F_V^2 \frac{d_3(p^2+q^2)}{(M_V^2-p^2)(M_V^2-q^2)r^2} \\ &+ \frac{4F_V^2 d_{123}}{(M_V^2-p^2)(M_V^2-q^2)} + \frac{16F_V^2 P_3}{(M_V^2-p^2)(M_V^2-q^2)(M_P^2-r^2)} \\ &- \frac{2\sqrt{2}}{M_V^2-p^2} \left(\frac{F_V}{M_V} \frac{r^2 c_{1235} - p^2 c_{1256} + q^2 c_{125}}{r^2} + \frac{8P_2 F_V}{(M_P^2-r^2)} \right) + (q^2 \leftrightarrow p^2) \right] \end{split}$$

• p^2 , q^2 and r^2 are the γ 's and π squared momenta. P_2 and P_3 comes from couplings with pseudoscalar resonances. All parameters can be obtained¹⁶ from QCD asymptotic behavior for VVP Green functions.

¹⁵K. Kampf & J. Novotný, PRD84 (2011)

- P. Roig, AG & G. López Castro, PRD89 (2014)
- ¹⁶J. Sanz-Cillero and P. Roig, Phys.Rev.Lett. B733 (2014) → < ≡ > < ≡ >

Cinvestav

$F_{\pi\gamma\gamma}$ parameters

• BaBar¹⁷ showed a different behavior, therefore we¹⁸ decided to fit P_2 using these and Belle¹⁹ data.

$F_{\pi\gamma\gamma}$ parameters

- Determination of F_V adjusting BaBar²⁰ data of $au
 ightarrow
 u_{ au} 3\pi$ varies 5%, so we vary it 10% around the asymptotic value.
- There is a very good agreement with data due to the value of P_2 , from fit of $e^+e^- \rightarrow e^+e^-\pi^0$ data (previous slide), getting

$$P_2 = -(1.13 \pm 0.12) 10^{-3} \text{ GeV}$$

• And from $\pi(1300) \rightarrow \gamma \gamma$ and $\pi(1300) \rightarrow \rho \gamma$ decays, we get

$$P_3 = -(1.2 \pm 0.3)10^{-2} \text{ GeV}^2$$

• Thus, we get $a_{\mu}^{\pi^0 LbL} = 6.66 \pm 0.21 \times 10^{-10}$ which compares well with previous calculation 21 .

²⁰O. Shekhovtsova et al. PRD 88 (2013) ²¹K. Kampf y J. Novotný, PRD84 (2011), who have an error of F_{V}^{Kampf} $\sim 8.4\%$ (within $\pm 0.1F_V$) and do not use Belle data(2013).

And our off-shell result with other works

Purpose a_{μ} Contributions to a_{μ} $\gamma^*\gamma^*\pi^0$ $(F_{\pi\gamma\gamma})$ Form Factor **Results** Conclusions η y η'

• Including $\eta \neq \eta'$, parametrized consistently with $1/N_C$ small

$$diag(U) = \left(\frac{\pi^0 + C_q \eta + C_{q'} \eta'}{\sqrt{2}}, \frac{-\pi^0 + C_q \eta + C_{q'} \eta'}{\sqrt{2}}, -C_s \eta + C_{s'} \eta'\right)$$

• Therefore, the Form Factors change only by a factor.

$$F_{\eta^{(\prime)}\gamma\gamma}(p^2,q^2,r^2) = \left(\frac{5}{3}C_{q^{(\prime)}} \mp \frac{\sqrt{2}}{3}C_{s^{(\prime)}}\right)F_{\pi\gamma\gamma}(p^2,q^2,r^2)$$

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

$\eta \neq \eta'$

- So we get the following prediction 22 for η

 η y η'

• and 23 for η^\prime

Conclusions

• We get for η

$$a_{\mu}^{\eta LbL} = 2.04 \pm 0.44 imes 10^{-10}$$

• While for η'

$$a_{\mu}^{\eta' LbL} = 1.77 \pm 0.23 imes 10^{-10}$$

• Getting a total pseudoscalar exchange contribution of

$$a_{\mu}^{PLbL} = 10.47 \pm 0.54 imes 10^{-10}$$

• Adding contributions from K, π and heavy quarks loops, scalar and axial resonances²⁴, we get

$$a_{\mu}^{HLbL} = 11.8 \pm 2.0 imes 10^{-10}$$

 $^{24}\mathsf{F}.$ Jegerlehner and A. Nyffeler, Physics Reports 477(2009) \star \equiv \star \equiv \star

• Now we can compare our results with earlier results.

$a_{\mu}^{HLbL} \cdot 10^{10}$	Contribution
11.6 ± 4.0	F. Jegerlehner and A. Nyffeler Phys.Rep 477(2009)
10.5 ± 2.6	Prades, De Rafael and Vainshtein ²⁵
	Advanced series on directions in high energy physics. Vol. 20
11.8 ± 2.0	Our contribution

²⁵Prades *et al.* only include the *charm* loop in the heavy quark loop evaluation.

э

Proposal of new observable

• This led us to propose the measurement of $\frac{d}{ds_1}\sigma(e^+e^- \to \mu^+\mu^-\pi^0) \ @(1.02 \ \text{GeV})^2(\text{KLOE-2}) \text{ as a new}$ form of measuring $F_{\pi\gamma\gamma}$, being s_1 the dilepton $\mu^+\mu^-$ invariant mass.

Cinvestav

A D F A B F A B F A B F

Proposal of new observable

- This new observable would give complementary information about πTFF for using it directly in a_{μ}^{HLbL} calculation.
- Taking into account the factors for $\eta^{(\prime)}$, an analogous observable can be obtained for these particles too.
- With $d\sigma/ds_1$ information about P2, P3, $C_{q^{(\prime)}}$ and $C_{s^{(\prime)}}$ could be measured to improve even more the theoretical prediction of a_{μ}^{HLbL} .

Cinvestav

Conclusions

- We found a new contribution to a_{μ}^{HLbL} consistent with other theoretical models and with a larger precision.
- We have found that the pion pole approximation underestimates in about 14% the transition form factor in agreement with earlier results²⁶.
- We obtained the first prediction for $\sigma(e^+e^- \rightarrow \mu^+\mu^-\pi^0)$ to be measured at KLOE-2. For η and η' at Novosibirsk experiments.

²⁶F Jegerlehner y A. Nyffeler, Phys.Rep.477(2009) < □ > < ∂ > < ≥ > < ≥ > 3 Purpose a_{μ} Contributions to a_{μ}

Conclusions

Back up

Contributions to a_{μ} $\gamma^* \gamma^* \pi^0 (F_{\pi \gamma \gamma})$ Form Factor

Results

・ロト ・回ト ・ヨト ・ヨト

Conclusions

Cinvestav

æ

a_{μ} in different frameworks

$a_\mu^{\pi^0 L b L} \cdot 10^{10}$	Model and Reference
5.58 ± 0.05	Nambu-Jona-Lasinio extended (Bijnens et al. 1995)
5.56 ± 0.01	VMD (Hayakawa et al. 1995)
5.8 ± 1.0	Large N_C 2 vector meson π -pole (Knecht and Nyffeler 2002)
7.2 ± 1.2	π exchange (Jegerlehner and Nyffeler 2009)
$\textbf{6.54} \pm \textbf{0.25}$	Holographic QCD (Cappiello et al. 2011)
6.58 ± 0.12	A pseudoscalar and a vector meson (Kampf, Novotny 2011)
$\textbf{6.49} \pm \textbf{0.56}$	Rational aproximants (Masjuan and Vanderhaeghen 2012)
5.0 ± 0.4	Non-local Chiral Quark model (Dorokhov et al 2012)
5.75 ± 0.06	our result with real π
6.66 ± 0.21	Our result (2014)

Resonance Chiral Theory $R\chi T$

- The relevant degrees of freedom are²⁷ the octet of the lightest pseudoscalar (π , K, η and η').
- The expansion parameter in this theory is $1/N_c$, and in large N_c the $U(1)_A$ broken symmetry is restored, that is the reason for taking η' at the same level as the other resonances.

Cinvestav

• Thus, being $U(3)_V$ the underlying symmetry, the interaction terms between resonances, external currents and $\{\pi, K, \eta, \eta'\}$ are

$$\mathcal{L}^{V} = \frac{F_{V}}{2\sqrt{2}} \langle V_{\mu\nu} f_{+}^{\mu\nu} \rangle + i \frac{G_{V}}{\sqrt{2}} \langle V_{\mu\nu} u^{\mu} u^{\nu} \rangle$$
$$\mathcal{L}_{VJP} = \sum_{i}^{7} \frac{c_{i}}{M_{V}} \mathcal{O}_{VJP}^{i}; \qquad \mathcal{L}_{VVP} = \sum_{i}^{4} \frac{d_{i}}{M_{V}} \mathcal{O}_{VVP}^{i}$$

• These are examples of such operators²⁸

$$\mathcal{O}_{VJP}^{2} = \varepsilon_{\mu\nu\rho\sigma} \langle \{V^{\mu\alpha}, f_{+}^{\rho\sigma}\} \nabla_{\alpha} u^{\nu} \rangle$$
$$\mathcal{O}_{VVP}^{1} = \varepsilon_{\mu\nu\rho\sigma} \langle \{V^{\mu\nu}, V^{\rho\alpha}\} \nabla_{\alpha} u^{\sigma} \rangle$$

Cinvestav

э

メロト メロト メヨト メヨト

²⁸P.D. Ruíz-Femenía *et al.*, JHEP 0307 (2003)

- R χ T parameters can be found using short distance behavior of QCD, which predicts an asymptotic behavior of s^{-1} for this process.
- Thus, short distance relationships²⁹ ensure a convergent behavior

$$d_3 = -\frac{N_C M_V^2}{64\pi^2 F_V^2} + \frac{F^2}{8F_V^2} - \frac{4\sqrt{2}P_2}{F_V}; \qquad c_{125} = 0; \qquad d_{123} = \frac{1}{24};$$

$$F_V = \sqrt{3}F;$$
 $c_{125} = 0;$ $c_{1256} = -\frac{N_C M_V}{32\sqrt{2}\pi^2 F_V}$

Cinvestav

э

²⁹J. Sanz-Cillero and P. Roig, Phys.Rev.Lett.B733(2014)

Restored $U(1)_A$

• Within t'Hooft's large N_C , the anomaly term is suppressed by a factor $1/N_C$ with respecto to the rest of the QCD lagrangian

$$\frac{g^2}{8\pi^2}\frac{\theta}{N_C}\,TrF^{\mu\nu}\tilde{F}_{\mu\nu},$$

• Therefore in the limit $N_C \to \infty$ the $U(1)_A$ symmetry is restored.

Conclusions

Wess-Zumino-Witten

• A fundamental part of the analysis is the WZW term, wich is order p^4 in the chiral counting and describe intrinsic odd interactions ³⁰.

$$Z[U, I, r] = -\frac{iN_{C}}{240\pi^{2}} \int_{M^{5}} d^{5}x \varepsilon^{ijklm} \langle \Sigma_{i}^{L} \Sigma_{j}^{L} \Sigma_{k}^{L} \Sigma_{l}^{L} \Sigma_{m}^{L} \rangle$$

$$-\frac{iN_{C}}{48\pi^{2}} \int d^{4}x \varepsilon_{\mu\nu\rho\sigma} (W(U, I, r)^{\mu\nu\rho\sigma} - W(\mathbf{1}, I, r)^{\mu\nu\rho\sigma})$$

$$W(U, I, r)_{\mu\nu\rho\sigma} = \langle U\ell_{\mu}\ell_{\nu}\ell_{\rho}U^{\dagger}r_{\sigma} + \frac{1}{4}U\ell_{\mu}U^{\dagger}r_{\nu}U\ell_{\rho}U^{\dagger}r_{\sigma} + iU\partial_{\mu}\ell_{\nu}\ell_{\rho}U^{\dagger}r_{\sigma}$$

$$+ i\partial_{\mu}r_{\nu}U\ell_{\rho}U^{\dagger}r_{\sigma} - i\Sigma_{\mu}^{L}\ell_{\nu}U^{\dagger}r_{\rho}U\ell_{\sigma} + \Sigma_{\mu}^{L}U^{\dagger}\partial_{\nu}r_{\rho}U\ell_{\sigma}$$

$$- \Sigma_{\mu}^{L}\Sigma_{\nu}^{L}U^{\dagger}r_{\rho}U\ell_{\sigma} + \Sigma_{\mu}^{L}\ell_{\nu}\partial_{\rho}\ell_{\sigma} + \Sigma_{\mu}^{L}\partial_{\nu}\ell_{\rho}\ell_{\sigma} - i\Sigma_{\mu}^{L}\ell_{\nu}\ell_{\rho}\ell_{\sigma}$$

$$+ \frac{1}{2}\Sigma_{\mu}^{L}\ell_{\nu}\Sigma_{\rho}^{L}\ell_{\sigma} - i\Sigma_{\mu}^{L}\Sigma_{\nu}^{L}\Sigma_{\rho}^{L}\ell_{\sigma} - (L \leftrightarrow R)\rangle,$$

$$\Sigma_{\mu}^{L} = U^{\dagger}\partial_{\mu}U, \Sigma_{\mu}^{R} = U\partial_{\mu}U^{\dagger},$$
³⁰J. Wess and B. Zumino Phys.Lett.37B(1971)
E. Witten, Nucl. Phys. B223 (1983)

Contribución de resonancias a las LEC de χ PT a $\mathcal{O}(p^4)$

• El lagrangiano de interacción de las resonancias vectoriales es

$$\mathcal{L}(V) = \langle V_{\mu\nu}J^{\mu\nu} \rangle; \qquad J^{\mu\nu} = \frac{F_V}{2\sqrt{2}}f^{\mu\nu}_+ + i\frac{G_V}{2\sqrt{2}}[u^\mu, u^\nu]$$

• Con
$$f^{\mu}\nu_{\pm} = uF_{L}^{\mu\nu}u^{\dagger} \pm u^{\dagger}F_{R}^{\mu\nu}u$$
, donde

$$F_{R,L}^{\mu\nu} = \partial^{\mu}(r,\ell)^{\nu} - \partial^{\nu}(r,\ell)^{\mu} - i\left[(r,\ell)^{\mu},(r,\ell)^{\nu}\right]$$

Cinvestav

э

・ロト ・ 雪 ト ・ ヨ ト ・

• siendo $r \neq l$ las corrientes vectoriales y axiales externas, respectivamente.

• y
$$u^{\mu} = i \left[u^{\dagger} \left(\partial^{\mu} - ir^{\mu} \right) u - u \left(\partial^{\mu} - i\ell^{\mu} \right) u^{\dagger} \right] = i u^{\dagger} D_{\mu} U u^{\dagger}$$

• F_V y G_V son parámetros reales.

Purpose

A D F A B F A B F A B F

• Así, se encuentra que V debe cumplir una ecuación de constricción

$$\nabla^{\alpha}\nabla_{\rho}V^{\alpha\beta} - \nabla^{\beta}\nabla_{\rho}V^{\rho\alpha} + M_{V}^{2}V^{\alpha\beta} = -2J^{\alpha\beta}$$

• Donde $abla_{\mu}R = \partial_{\mu}R + [\Gamma_{\alpha}, R]$ y

$$\Gamma_{\alpha} = \frac{1}{2} [u^{\dagger} (\partial_{\alpha} - ir_{\alpha})u + u(\partial_{\alpha} - i\ell_{\alpha})u^{\dagger}].$$

Al sustituir V y a órden p^4 se tiene que

$$L_1^V = \frac{G_V^2}{8M_V^2}$$
 $L_2^V = 2L_1^V$ $L_3^V = -6L_1^V$

$$L_9^V = \frac{F_V G_V}{2M_V^2} \qquad L_{10}^V = -\frac{F_V^2}{4M_V^2}$$

• y de igual forma para las demás resonancias.

э