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Introduction

Gauge theories of fundamental interactions have been the cornerstone of 
describing the physical world at the most basic level.

Gauge Invariance Fundamental Interations

• A central problem of quantum field theories continues to be the quest
to find its posible non perturbative solutions.

• Owing to the lack of Dirac matrix structure, Scalar QED provides an
attractive and simple laboratory to pursue this aim.

• In Scalar QED the transverse vertex consists of only one unknown
function to be fixed.



Gauge Covariance
Consequences

Relation between Green functions
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Gauge Covariance

Green functions in differents gauges:

As a consequence of the LKFTs we have the Multiplicative
Renormalizability of the charged fermión (or scalar) propagator.
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Landau-Khalatnikov-Fradkin Transformations
(LKFTs)



Schwinger-Dyson Equations (SDEs)
The SDEs are the fundamental equations of motion of any
Quantum Field Theory (QFT). They form an infinite set of
coupled integral equations that relate the n-point Green
function to the (n+1)-point Green function.
Unfortunately, being an infinite set of coupled equations,
they are intractable without some simplifying assumptions.
Typically, in the non-perturbative regime, SDEs are
truncated at the level of the two-point Green functions
(propagators). We must then use an ansatz for the full
three-point vertex.
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Three–Point Vertex

Criteria for any acceptable non-perturbative vertex:

• It must satisfy the WGTI.
• It must be free of kinematic singularities.
• It must have the same transformation properties as

the bare vertex, under C, P and T transformation.
• It should reduce to its perturbation theory Feynman  

expansion in the limit of weak coupling.
• It must ensure the MR and the LKFT of the charged

fermion (scalar) propagator for any covariant
gauge.



Works in QED
There exist a lot of literature addressing the problem
of how to construct a fermion-boson vertex satisfying
the WGTI and the LKF transformations, for instance
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D.C. Curtis, M.R. Pennington A. Kizilersu, M.R. Pennington
Phys. Rev. D44 (1991) 536-539                    Phys. Rev. D79 (2009) 125020
Z.H. Dong, H.J. Munczek, C.D. Roberts
Phys. Lett. B333 (1994) 536-544
A. Bashir, Y. Concha-Sanchez, R. Delbourgo
Phys. Rev. D76 (2007) 065009



Longitudinal and Transverse
Decomposition of the Vertex

Ward-Green-Takahashi identity

Where Γᆍ (ω,k) is the three point vertex, q=ω-k, and S(ω) is 
the fermion (or scalar) propagator. This identity allows us to 
decompose the vertex as a sum of 

Longitudinal and Transverse Parts

The longitudinal part satisfies the WGTI, by itself, and the transverse part which remains
completely undetermined, is naturally constrained

and

J.S. Ball, T.W. Chiu
Phys. Rev. D22 (1980) 2542



Longitudinal and Transverse Parts of the
Vertex in SQED

Moreover,

In order to satisfy the WGTI in a manner free of
kinematic singularities, we follow Ball and Chiu.
For SQED we have

where is the transverse basis vector. 



Multiplicative Renormalizability
In SQED, for the massless scalars, S(k) can be expressed

where F(k²,Λ²) is the wavefunction renormalization and Λ is the ultraviolet
cut-off used to regularize the divergent integrals involved. MR of the scalar
propagator requires the renormalized ோܨ be related to the unrenormalized
F through a multiplicative factor Z by

Where ߤ plays the role of an arbitrary renormalization scale. The MR 
restricts F(k²,Λ²) to be of the form



Multiplicative Renormalizability
Where the anomalous dimension ߚ is unknown at the non 
perturbative level.  Perturbation theory tells us that

which suggests

in

This power behavior of F(k²), with ߚ, is the solution of



Gap Equation
The SDE for the scalar propagator S(k) in SQED, in the quenched 
approximation, is 

where



Gap Equation
Mathematically, this is written as :

where ݁ is the electromagnetic coupling, ݍ = ߱ − ݇, and the
subscript ܯ indicates integration over the entire Minkowski
space. ∆ఓᆍ

଴ (߱) and ܵ଴(݇) are the bare photon and scalar
propagators. ܵ(݇) is the full scalar propagator. We neglect
the photon and the scalar bubble diagrams since they do
not contribute to leading logs terms in the one loop
calculation.



Gap Equation
Then

where

with q=ω-k.



Gap Equation
Then Wick rotate to Euclidean space the gap equation, we have

where
and the subscript E indicates
integration over the whole
Euclidean space.



Gap Equation
At this stage, it appears imposible to proceed because of the dependence
of ߬ on the angle between the incoming and outgoing momenta ߱ and k of
the scalar particle. We shall asume that the transverse vertex has no
dependence on this angle. Angular integration leads us to



MR Constraint on Tau

This equation imposes the following restriction on the transverse vertex

Recall that in the above equation, we have neglected the contributions of the photon
and the scalar bubble diagrams since they do not contribute to the one loop LLA.

Recall the prescription of MR on F(k²)



MR Constraint on Tau
Introducing the variable x, where

The resulting restricción can be rewritten as

with

Note that we have again kept only those terms which contribute to the LLA.



MR Constraint on Tau

which is a dimensionless function satisfying the property

with ߚ = (ξ − Then .ߨ/(3 we write that

Moreover, we have introduced the definition



MR Constraint on Tau
Taking x=p²/k², using the symmetry ߬ ,ଶ݌ ݇ଶ = ߬ ݇ଶ, ଶ݌ and Wick rotating 
back Minkowski space, the τ acquires the following form

where



MR Constraint on Tau
The exact form of the function W remains unknown. In order to
ensure MR, we choose the trivial solution W(x)=0 (for any
dimensionless ratio x of momenta):

The scalar structure has been first reported by
Curtis and Pennington. 

D.C. Curtis, M.R. Pennington
Phys. Rev. D44 (1991) 536-539



BCD Vertex
The scalar-photon vertex has already been calculated in one loop
perturbation theory by me et al.,using dimensional regularization, in
arbitrary gauge ξ and dimension d. For massless case, in d=4, we report

A. Bashir, Y. Concha-
Sanchez, R. Delbourgo
Phys. Rev. D76 (2007) 065009

where



Asymptotic Limit ૛࢑ ≫ ૛࢖

In order to compare the vertex ansatz, based upon
multiplicative renormalizability, against its one loop
perturbative form, it is convenient to take the asymptotic
limit k²>>p² of external momenta in τ஻஼஽, we have

Expectedly, it is independent of ଶݍ and hence we drop this
dependence from its argument. Note that this expression is
also independent of the covariant gauge parameter ξ. It is
unlike spinor QED where the leading asymptotic vertex is
proportional to ξ.



Asymptotic Limit ૛࢑ ≫ ૛࢖

For a numerical check, we define

where ݔ = ଶ/݇ଶ݌  and we have
suppressed the ଶݍ dependence
for notational simplification. Thus

We plot τ෤஻஼஽
௔௦௬௠(x) and ߬̃஻஼஽(ݔ)  as a function of ,ݔ the latter for

different values of the gauge parameter ξ and for a fixed value
of ଶݍ , chosen arbitrarily. In the asymptotic limit, all curves
converge to a single value, as expected.



Asymptotic Limit ૛࢑ ≫ ૛࢖

On the other hand, using the perturbative expression for (ଶ݇)ܨ

In our result for tau:

And taking the asymptotic limit ݇ଶ ≫ ଶ, we݌ have

Our results, are in agreement 
in the Feynman gauge (ξ=1).



Perturbative Constraints on (࢞)ࢃ
In order for them to be the same in an arbitrary gauge ξ, we must
seek a non-trivial W-function in tau:

Still satisfying restriction



Perturbative Constraints on (࢞)ࢃ

Then, perturbation theory demands the simplest choice for W

with

so that

In the Feynman gauge (ξ = 1) W=0. Introducing the variable 
x=k²/p² , we have



Non-Perturbative Tau 
This choice for W(x) in the vertex leads to

• It agrees with the perturbative limit at one-loop.
• It ensures the MR of the two point scalar propagator, in 

other words it guarantees the LKFT property of the 
scalar propagator.



Conclusions
• In massless quenched SQED, we have constructed a Non-

Perturbative Three-Point Vertex satisfying the WGTI. This
vertex involves a function W(x) whose integral restriction
guarantees the MR of the scalar propagator to all orders in
perturbation theory.

• The trivial choice W(x)=0 leads to a vertex that is in
agreement with one loop perturbation theory in Feynman
gauge.

• We propose an ansatz consistent with one-loop
perturbation theory in arbitrary covariant gauge.



Conclusions

• It reduces to its one loop perturbation theory
Feynman expansión in the limit of small coupling and
asymptotic values of momenta ݇ଶ ≫ .ଶ݌

• It has the same symmetry properties as the bare
vertex under charge conjugation, parity and time
reversal, which imply symmetry ݇ ↔ .݌

• It is free of any kinematic singularities when ݇ଶ → ,ଶ݌
i.e.,
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