Spin one matter fields

M. Napsuciale, S. Rodriguez, R.Ferro-Hernandez, S. Gomez-Avila

Universidad de Guanajuato
Mexican Workshop on Particles and Fields

November 2015

M. Napsuciale, S. Rodriguez, R.Ferro-Hei Spine one fields(slide 1) November 2015 1/26



Spin one matter fields

M. Napsuciale, S. Rodriguez, R.Ferro-Hernandez, S. Gomez-Avila

Universidad de Guanajuato
Mexican Workshop on Particles and Fields

November 2015

M. Napsuciale, S. Rodriguez, R.Ferro-Hei Spine one fields(slide 2) November 2015 2 /26



Outline of the Talk

@ Motivations

M. Napsuciale, S. Rodriguez, R.Ferro-Hei Spine one fields(slide 3) November 2015 3/26



Outline of the Talk

@ Motivations

@© The HLG and Poincaré.

M. Napsuciale, S. Rodriguez, R.Ferro-Hei Spine one fields(slide 3) November 2015 3/26



Outline of the Talk

@ Motivations

@© The HLG and Poincaré.

© Spin 1 algebra and equations of motion in momentum
space.

M. Napsuciale, S. Rodriguez, R.Ferro-Hei Spine one fields(slide 3)

November 2015 3/26



Outline of the Talk

@ Motivations

@© The HLG and Poincaré.

© Spin 1 algebra and equations of motion in momentum
space.

@ Dynamics and constrictions

M. Napsuciale, S. Rodriguez, R.Ferro-Hei Spine one fields(slide 3)

November 2015 3/26



Outline of the Talk

@ Motivations

@© The HLG and Poincaré.

© Spin 1 algebra and equations of motion in momentum
space.

@ Dynamics and constrictions

@ Quantum Field Theory

M. Napsuciale, S. Rodriguez, R.Ferro-Hei Spine one fields(slide 3) November 2015 3/26



Outline of the Talk

@ Motivations

@© The HLG and Poincaré.

© Spin 1 algebra and equations of motion in momentum
space.

@ Dynamics and constrictions
@ Quantum Field Theory

@ Conclusions and remarks

M. Napsuciale, S. Rodriguez, R.Ferro-Hei Spine one fields(slide 3) November 2015 3/26



We may need to look in other direction to extend the SM
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Fields transform under th HLG

@ They can be used in effective theories of compound systems (R, PT,
hadron physics).

@ They can give alternative routes to study dark matter.
@ Possible extensions to the standard model.
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Fields transform under th HLG

The Poincaré algebra has two algebraic invariants

1
C2 — PMPM C4 = WNWH with WN = EgpoTpMUTPp

One particle state satisfy
GlV) = m?[¥)  G|V) = —m?j(j + 1)|V)

where we call m the mass and j the spin of V.

The quantum fields, the basic elements of a QFT allow us to calculate
expectation values, are built from operators that create or destroy this
states

Vi = [ dr [ (0)al (1) + e P (1) a(r)

the field coefficients w, transform in the representations of the Lorentz
group.
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HLG and parity

The HLG is an homomorphism of SU (2) ® SU (2) . Thus the
representations can be labeled by two angular momenta (ja,jg).

But, under parity (ja,Jjg) — Us,Ja)-
To have a state with well defined parity we must extend our space to

(Ua,Jjg) ® (B Ja) -

Then to describe high spin matter fields we choose j, = j and jg = 0.
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Covariant basis

It was proven by S. Gomez and M. Napsuciale! that the parity based
covariant basis for a general(j,0) & (0, j)contains:

@ Two Lorentz scalars.

e Six operators transforming in (1,0) & (0, 1) forming a second rank
antysimmetric tensor.

A pair of symmetric traceless matrices SH1H2:Hj

A series of matrix tensor operators, wich transform in the
representation (2,0) @ (0,2),(3,0) ® (0,3),...(2/,0) @ (0, 2j).

110.1103/PhysRevD.88.096012
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The (% O) &) (O, %)equation of motion in momentum space:

Dirac Equation

As an example let us take j = % Now take the projection over parity
eigenstates
MNu(0) = +u (o)

Now we can apply a boost to this equation to obtain
(B(P)NB™ (p) + 1) u(p) = 0

it turns out to be that

B(p)NB (p) = 1P

then we recover the Dirac equation

(+#py & m) u (p) = 0

in principle we can apply the same procedure for different spins.
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The (1,0) @ (0, 1)equation of motion in momentum space

We can get the equation of motion by boosting the rest-frame
parity-projection, but now the fields transform in the representation
(1,0) & (0, 1)of the LG. This will give us

(P52 1) w(p) =0 A0 (p) = 0 (p),

where SH¥ is a traceless tensor of rank 2 and

1 /5™
A=l (P;Pvig,
2 m

is the projector.
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We have to be careful when the system is out of shell.

To get the projector out of the mass shell we replace m? by p?

! (5:#””;]1)1#(13) T4 (p),

2

and to have a local theory we project over the Poincaré orbit p?> = m?so we

obtain: )
5 (8" Pupy F 0" Pupy) ¥ (p) = Fm*p (p),

and if we define a new operator £#” = 1 (S*  n*¥) we obtain:

(Z’“’pupy + m2) u(p) =0.
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The S tensor have some interesting properties

SHY fulfills some Jordan algebra, which is analogous to the Clifford algebra
of the ~*in Dirac theory:

4 1
{5"”, SoP } =3 (77“0‘77”6 + o — S )

1 (s y i)
6 b

the tensor CHOVP gatisfies CHovB = —ComvB — conbv = crovB — CvBuo
and the Bianchi identity.
The commutator is, on the other hand:

[5#”7 5@45] = (nua MYB 4 n’ MHB 4 771/6 Mo 77“'8 Mva) ]

It is clear from here that S2 (p) = S”VSO‘BpMprapg = p*, analogous to
Y~y ppy = p? for Dirac.
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We choose the parity basis for S

To study the dynamics of our equations we need to write the S#¥ in some
specific basis, for simplicity and clarity we choose the parity basis:

w_ o (1 0 oi (0 —J
s _”_(o —/> s _<J’ —/>’
ci_ (" H{J I} 0

- 0 —ni —{J,F} )

where J' = %e,-jijk are the conventional spin one matrices.

November 2015
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The Lagrangian of the theory

As we have seen previously the momentum space equation of motion is
(z'wjpupl/ - m2) u(p) =0,

in configuration space this would read
(Z*8,0, + m2) V(x) =0,

from here It turns out that we can get this equation of motion from

L =09,V ¥ — m*by.
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Using the explicit representation

To use the representation of the S it is convenient to write W as

v=(¢) e=(x 1)

where the canonical momentum are

my= ool - (a1))

5(80¢a)
and 5e )
—_ "= __Z 9ty
Ta (5(8063) 2 (aI§J>a7
form here it is clear that we have the restrictions:
1 . 1
pa=Ta+ 5 (06)  pl=l+3 (Jaig),.
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The new Hamiltonian with constraints

Now, following Dirac, the time evolution of the system is given by H*

defined as
H* = /d3XH + )\apa + )\sz

The Hamilton equations that are modified with this change of Hamiltonian
are:

SH
8055: = 5 = >\a
Ta
SH* 1., . 3 -
_ OHY L iy _ 3 (g0t sig) + m2et
Oo7a = 55 = 501 (), ~ (910561 4) + miel,

November 2015

M. Napsuciale, S. Rodriguez, R.Ferro-Hei Spine one fields(slide 17)



Secondary constraints

In our particular case we define the Possion brackets as

(4080 = [ [PRHT IR,

It is very easy to prove that
{02 (%), 76 (¥)} = 0ap0° (x —y)  {& (%), 75 (¥)} = ab0° (x —y)

The constraints that we obtained before must be satisfied at any time this

implies that
Bopll) = {pg), H*} =0
This will produce secondary constraints in our theory

(1)

a

1 .
W = 01 (m )P = 5 (00T o)+ el .

there are not any other secondary constraints.
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Poisson Brackets

Accordingly to Dirac we must calculate the matrix of Poisson brackets

00 0 -1
- 230y 00 -1 0
Aab (Xa y) - {fa (X)')fb (y)} =m0 (X y) 0 1 0 0
10 0 O
which has an inverse (this implies that the constraints are second class):
0 0 01
1 0 0 10
-1 T3y
Aab (y,Z) I m25 (y Z) 0 -1 0 0
-1 0 00

To go from classical to quantum mechanics we perform the transformation
{A,B}p — ih[A, B] where

(ABlp = (4B} - [ F2dy (A L@} AL (2y) (5 (1), A).
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Commutation relations for the theory

The Possion brackets for the fields and their respective momentum are

J-v)
om?2 53(X_Y)>

{02 (x), 75 (¥)}p = [1 -

ab

(&0 W = L st )
{&&%%WBDZWAMJMszo

and in a spinorial language If we calculate

2
wamxawbzlﬂ“—éw,@ﬂ 2 (x—y),
ab

then to go to the quantum theory we only must include a i. and equate
this to the commutator.
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Fourier Expansion

The first step of canonical quantization is to expand the fields as a Fourier
series:

Za p)ur(p)e ™ + d; (p)us(p)e™]

know we calculate all the physical quantities by imposing the usual
commutation relations to the coefficients

& (P). <l (P)] = Grsdon [ (p) . ] (P)] = 31

now we can calculate the conjugated momenta which turns out to be

_ oL 0
= — =Y "9,V
Sd 3\Ud,o da( 1% )a
B oL B - o
Sd = gs (0uVv), X8
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Commutation relations

Using the on shell projector we get the following result for the equal time
commutation relations

[Sa (x1), Wb (x2)le0,—0 = —’Z p“ /\ (P) s The (eipi(xi_xé) - eipi(X{_Xé))

now changing p — —p in the second term and using the algebra of the S
tensor we get

ip,-(xl"—xé') SU 4 ij500
[sa (x1), W (x2)]0, 0 = =i ) e (ZOO + wp;pj

% 4m?
P

making use again of the algebra we get finally

N~ (g0, (4-p)° S ePCi7)
[cd(X1),\Ilb(><2)]xfz=o:_’zp:<z T o %

[<a (1), Wb (x2)lg0, 0 = —7 (ZOO - (J;);SO()) 8% (x1 = x2)
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Energy-momentum and charge of the field

The energy momentum tensor and current are obtained as usual
T = 0, U0,V + W9, U — nlt (0, UE™ 0¥ — m* V)
J* = iq ((0,V)SF*W — WS (9, W))

By substituting the Fourier expansion in this expression we have proved that

P, = Z[C ) + d (p)d(P)lpu
Q=9 (4 (p)di(p) — ¢ (P)ci(P))

which is the expected result form a well behaved theory. It is important to
remark that some factors are only reduced using the algebra of the S tensor.
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2-point Green Function

The two point Green Function il £(x — y)ap is the time ordered vacuum
expectation value of the fields at different spacetime points.

FE(x = y)ab = (0| T {$a(x)db(y)} 10)

for our fields we have we have

. > o 57N (P)ab S e VR
’rF(X - }/)ab = 1p ip,(xi_xi)
ZP 2prA (p)ab ChE Yo > Xo
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2-point Green Function

After going to the complex plane we get that the propagator obtained from
quantum field theory is :

: i (S (k) +m? — (p? — m?)) e k=) d*k
Telx=y) = / 2m? (k> — m? + ig)

N (500 — 1) 54 (x—y)
2m?

the last term is a contact term. Accordingly to Weinberg the correct
Feynman rules are obtained by eliminating this term. Then

: i [ (S(K)+m?— (p? = m?)) e k) gtk
Telx=y) = / 2m? (k2 — m? + ig)
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Conclusions and remarks

© © 600 © © ©

The dirac formalism can be interpreted as a projection on to parity
eigenstates in (j,0) & (0, )

We have generalized this to j = 1 based on the parity based covariant
basis construction.

The formalism yields a constraint dynamics, all constraints being
second class.

We performed the canonical quantization following Dirac’s guidelines.
The algebra of the S tensor is fundamental for the calculations in QFT.
The commutator of the fields gives a non conventional result that
comes from the constraints of the theory.

The propagator involves not only the on shell polarization sum, but

also involves terms proportional to p> — m?.

Possible extensions and applications ongoing...
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