Ionization Efficiency Studies for Nuclear Recoils in Silicon

Marco A. Reyes

Department of Physics, U. of Guanajuato Antonella Collaboration

XV MWPF 2015

Abstract

The Damic Collaboration has set up an experimental array of Charge-Coupled Devices (CCDs) in a nickel mine, and has developed all analysis tools to discern any known trace of conventional matter from what a DM particle could produce when crossing the CCDs. In order to calibrate the signals from these CCDs, scientists in the Antonella Collaboration have designed experiments to quantify neutron-silicon interactions, assuming that neutrons can mimic DM interactions in the CCDs. Here we present preliminary results from the analysis of data obtained in these experiments, in particular, the measurement of ionization efficiencies in Silicon and a plastic scintillator.

CCD operation

Ionization efficiency studies

- Damic CCD's measure ionization energy
- Nuclear recoil energy from DM-Si interaction Ionization efficiency in Si

AND Ionization efficiency in plastic scintillator

Antonella Collaboration

• Prove Lindhard's model (1963) Exp: 1990

Antonella experiment

Target may be SiDet or a scintillator

PMT's characterization

To characterize the signal in a PMT, the experimental setup consisted of two scintillator bars, with a PMT at each end of the bars

Scintillator EJ200

Experimental setup at FTB facility

ADC distributions

The ADC distributions may be calculated using a continuous approach, or a discrete approach

$$P(0) = \frac{N_{\text{ped}}}{N_{\text{trig}}} = e^{-\mu} \qquad \frac{P(2)}{P(1)} = \frac{\mu}{2}$$
Gaussians
SER₀(x) = $\frac{1}{\sqrt{2\pi\sigma_0}} \frac{1 - p_{\text{E}}}{g_N} e^{-(1/2)(\frac{x - x^0 - x^0}{\sigma_0})^2}, x > 0$
 $g_N = \frac{1}{2} \left(1 - \text{erf} \left(-\frac{x_0}{\sqrt{2\sigma_0}} \right) \right)$
X_P, X₀, σ₀
X_P, X₀, σ₀
X₁, σ₁
 $M(x) = \sum_{n=2}^{N_{\text{ss}}} \frac{P(n; \mu)}{\sqrt{2n\pi\sigma_1}} e^{-(1/2n) \left(\frac{x - nx_1 - x_p}{\sigma_1} \right)^2}$
NIMA 451 (2000) 623
R.Dossi et al.
Methods for precise PE counting with PMTs (LEDs)
X_n = nX₁,
 $\sigma_n^2 = n\sigma_1^2 = \left(x_0^2 + \sigma_0^2 + \frac{x_0 \sigma_0}{\sqrt{2\pi g_N}} \exp\left(-\frac{1}{2} \left(\frac{x_0}{\sigma_0} \right)^2 \right) \right) - x_1^2$
8

ADC distributions

Charge distributions with two paper masks: one tiny hole of 0.035 mm in radius, and two small holes of 1.19 mm radius

TDC distributions

$$f(t) = \frac{P_{i}}{\tau_{s} - \tau_{f}} \{ \exp[-(t - t_{0})/\tau_{s}] - \exp[-(t - t_{0})/\tau_{f}] \} + \frac{P_{2}}{\tau_{3} - \tau_{f}} \{ \exp[-(t - t_{0})/\tau_{3}] - \exp[-(t - t_{0})/\tau_{f}] \}$$

Histogrs: TDC for selected ADC bar

Lines: normalized TDC prediction

Antonella at UND

We used an X-ray detector which is a Silicon Drift Diode, 29mg mass

Ionization efficiency

Program:

- 1. Measure neutron energy by time-of-flight (1)
- 2. Detect a scattered neutrons in a neutron detector
- 3. Measure charge produced by ionization
- 4. Calculate the nuclear recoil energy with kinematics (2)

$$Ion_{\rm Eff} = \frac{E_{\rm ionization}}{E_{\rm NR}}$$

Callibration: Fe source

Systematic uncertainty dominated by the X-ray detector linear response

Scientific run

- Took data for 10 day
- ~ 10⁶ gamma+neutron hits in silicon detector
- Trigger rate ~ 170 Hz (of which ~ 4 Hz real particles hitting the silicon detector)
- 1.5 ×10⁸ triggers, mostly noise from the silicon detector
- 1.8 ×10⁵ events, after requesting hit in a Bar (PMT in coincidence)
- 5.1 ×10³ events, after timing and no-saturation cuts (reject gamma prompt)

Antonella data

Eionization vs time-of-flight for Bar 6 10 Eionization [kev] gamma prompt hitting a bar high energy deposited in SiDet + environmental bkg on a bar 9 ÷ 6 5 following beam bunch 3 -400 -200 200 400 600 800 1000 1200 1400 time-of-flight [ns] neutrons arrival interval

Antonella data

E_{recoil} vs. E_{ionization} for All Bars

Preliminary results

Ionization efficiency vs Nuclear Recoil energy

Conclusions

Scintillator+PMT response was studied

Antonella's results: best measurement on Si IE up to date

Ongoing analysis on scintillator IE

N-Si collisions

Monochromatic neutrons neutron detector Silicon A = 28neutron θ E_n $E \sim 0$ E_{NR} $E_{NR} = E_n \ \frac{2}{\left(A+1\right)^2} \left[A + \sin^2 \theta - \cos \theta \sqrt{A^2 - \sin^2 \theta} \right]$ measured in a silicon detector Scattering angle - θ $Ion_{Eff} = \frac{E_{ionization}}{E_{NR}}$ calibrated with electron recoils - A Atomic mass $-E_n$ Neutron energy calculated from kinematics Energy of Nuclear recoil - E_{NR}

Backup slides

Antonella DAQ

Antonella DAQ

