The CONNIE experiment

co**.vn***i*e

Alexis A. Aguilar-Arevalo ICN-UNAM

for the CONNIE collaboration

VX Mexican Workshop on Particles and Fields Mazatlán, Sinaloa, México, 2 – 6 November, 2015

Motivation

- Coherent Neutrino–Nucleus Elastic Scattering (CNNES):
 - for neutrino energies below 50 MeV
 - SM prediction but never measured!
 - new tool for neutrino experiments (very short baseline oscillation experiments – low energy)
 - MeV-neutrino physics has great relevance for energy transport in supernovae
 - monitor nuclear reactors through their emitted neutrinos
 - CNNES of solar+atm neutrinos forms an irreducible background to future direct dark matter searches → "neutrino floor".
- Unique features of high resistivity CCDs designed by Berkeley Laboratories:
 - very low energy threshold detectors: 5.5 eV ($\sigma_{\text{RMS}} \sim 1.5~\text{e}^{\text{-}}$)
 - large mass compared to regular CCDs
 - "3D" information: event reconstruction
 - used in the Dark Energy Survey (DES) experiment and Dark Matter in CCDs (DAMIC) experiment

Coherent v-N Elastic Scattering

CNNES is a neutral-current interaction. A neutrino of any flavor scatters off a nucleus (eg. Si) transferring some energy in the form of a nuclear recoil.

f(q) is the nuclear form factor at momentum transfer qFor $E_{\nu} < 50$ MeV the momentum transfer (q^2) is small $q^2R^2 < 1$ (R = the radius of the nucleus) $|f(q)| \approx 1$ within an uncertainty of a few percent.

Coherent v-N Elastic Scattering

CNNES is a neutral-current interaction. A neutrino of any flavor scatters off a nucleus (eg. Si) transferring some energy in the form of a nuclear recoil.

$$\sigma_{\rm T}(E_{\bar{\nu_e}}) = \frac{G_F^2}{4\pi} [Z(4\sin^2\theta_W - 1) + N]^2 E_{\bar{\nu_e}}^2$$

\$\approx 4.22 \times 10^{-45} N^2 E_{\bar{\nu_e}}^2\$

Alexis A. Aguilar-Arevalo, ICN-UNAM XV Mexican Workshop on Particles and Fields Mazatlán, Sin. México 2-6 Nov 2015 **4**

Charge Coupled Device

Scientific CCDs developed by LBNL microsystems LAB

- pixel size of 15 μ m X 15 μ m
- thicker than most CCDs (250 675 μm)
 - up to 5.2 gr/CCD
 - diffusion \rightarrow 3D reconstruction \rightarrow rejection of surface events
- CCDs cooled to 140 K to achieve readout noise RMS < 2 e⁻
- Energy threshold of ~0.05 keVee

Charge Coupled Device

The scattering of the v with a Si nucleus leads to ionization

Charge carriers are drifted along z direction and collected at CCD gates

Charge diffuses in x-y plane as it drifts towards the gates

We fit the radial spread of the cluster to estimate its position in z within the CCD bulk

CCD readout - Noise

- Added to each pixel by the output amplifier during the charge readout.
- Gaussian distribution with σ_{RMS} that depends on the pixel readout time.
- Pixel time = 30 μ s $\Rightarrow \sigma_{\text{RMS}} = 1.5e$ $\equiv 5.5 \text{ eV}$ of ionization energy

Particle identification CCD

CCDs calibration with X-rays

Diffusion from data

Diffusion can be modeled with a symmetric Gaussian distribution with lateral spread from 0 to 0.55 pixels.

Angra Nuclear Power Plant

Alexis A. Aguilar-Arevalo, ICN-UNAM XV Mexican Workshop on Particles and Fields Mazatlán, Sin. México 2-6 Nov 2015 11

Angra Nuclear Power Plant, Flux

Angra-2 is a 3.95 GW_{th} Pressurized Water Reactor (PWR) Emits ~8.7 × 10²⁰ $\overline{\nu}_{e}$ s⁻¹ (2.23 × 10²⁰ $\overline{\nu}_{e}$ s⁻¹GW_{th}⁻¹⁾ At 30 m the flux is ~7.8 × 10²⁰ $\overline{\nu}_{e}$ cm⁻² s⁻¹.

Dominant processes	(E release)	fis.frac.	\overline{v}_{e} /proc	\overline{v}_{e} /fis
²³⁵ U fission	202 MeV	0.56	6.14	3.43
²³⁸ U fission	205 MeV	0.08	7.08	0.56
²³⁹ Pu fission	210 MeV	0.30	5.58	1.67
²⁴¹ Pu fission	212 MeV	0.06	6.42	0.38
n-capture on ²³⁸ U	202 MeV	0.60	2.00	1.20

<E rel> = 205.24 MeV/fis

Tot: 7.24

Expected event rate for the Angra reactor

Energy spectra for expected events in silicon detectors

Total number of events as a function of the threshold energy for different quenching factors

Forecast

- Assuming:
 - a 52 g detector array (10 CCDs with 650 μm)
 - Energy threshold of ~28 eV, signal in 28 300 eV window.
 - the background at sea level using passive shield can be reduced to ~600 events/keV/day/kg, i.e. 8.5 events/day
 - the rate of expected false positive is 3.18 events/day
- Expected running time for different CL for a detector's mass of 52 g

CL [%]	T (days)	
80	12	
90	28	
95	45	
98	70	
99	150	

PRD91 (2015) 7, 072001

• We need 150 days of running for a 3σ detection

CONNIE collaboration

Timeline

- First visit in 2011
- Seriously making a plan in 2013
- Installed a prototype in 2014
 - → Detector Shipping August-September 2014
 - Detector installation and first data October-November 2014 (10 grams)
 - Initial operations supported by experts (from USA and Mexico)
 - → Continuous operation now supported by local team (Brazil)
 - → Full shield assembly completed July-August 2015
 - → August-September 2015 more than a full month with reactor ON
 - September-October 2015 full month of full reactor OFF
- Upgrade to 100 g mass detector (CONNIE100)

The detector

The detector

During the installation (Oct-Nov/2014)

15 cm lead

CCDs in the copper box

Copper Box

Polyethylene inside (at the bottom) Dewar (holds vacuum)

Inner polyethylene (half moons)

The detector – First light

Phase I: Partial shield (30 cm polyethylene and 5 cm lead)

4 CCDs installed and taking data for background studies since Dec/2014

The detector – Full shield

Phase II: Full shield (installed July-August 2015)

Original design

Alexis A. Aguilar-Arevalo, ICN-UNAM XV Mexican Workshop on Particles and Fields Mazatlán, Sin. México 2-6 Nov 2015 20

The detector – Taking data

The detector – Images

No shield

Phase I

Phase II

Summary

- CCDs can be used as particle detectors with good resolution and very low electronic noise
- Capability to detect nuclear recoils (DAMIC, CONNIE)
- Can be used to detect coherent neutrino-nucleus interaction with reactor anti-neutrinos
- CONNIE now operating at Angra II nuclear power plant
- Run with/without shield and with power plant on/off in 2015 (paper coming out this year with first results).
- Current setup is not expected to see coherent scattering, but will measure background and is demonstrating operations at Angra.
- Plan for an upgrade to 100g of active mass in 2016.

Thank you!

BACKUPS

CCD pixel

CCD readout

Capacitance of the system is set by the sens node: $C = 0.05 \text{ pF} \Rightarrow 3\mu\text{V/e}$

Diffusion from data

Using the muon track in the CCD

Recorded track: CCD top view

• CCD side view

Tiffenberg

"neutrino floor" for direct DM searches

Alexis A. Aguilar-Arevalo, ICN-UNAM XV Mexican Workshop on Particles and Fields Mazatlán, Sin. México 2-6 Nov 2015 **30**