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Outline

Bounds extracted from the observation of astrophyiscal
objects

Bounds extracted from the no-observation of
astrophyiscal objects
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We live in a cavern...

The writing of god (by Jorge Luis Borges)
The story is narrated by a Mayan priest named Tzinacan, who is tortured by Pedro de
Alvarado (who burned the pyramid Qaholom where the protagonist was a magician) and
incarcerated, with a jaguar in the adjacent cell. Tzinacan searches for a divine script that will
provide him omnipotence, and he hopes to see it in the patterns of the animal’s fur.
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Motivation

Gµν = 8πGTµν
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Self-gravitating system made of fermions

The equation of state for a free gas of fermions
at zero temperature can be directly computed
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Dark compact objects

Solve the TOV equations for such EOS:

Normalized variables M ′ =Mm2
f/m

3
p,r′ = rm2

f/mp,p′ = p/m4
f and ρ′ = ρ/m4

f .

The equations
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DM as motivation

The most convincent and direct evidence of the existence for dark matter at the galactic
scale comes from the rotational curve velocity, namely the graph of circular velocities of stars
and gas as a function of their distance from the galactic center.
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DM as motivation

Furthremore, at galactic scales:

Weak modulation of strong lensing around individual massive elliptical galaxies. This
provides evidence for substructure on scales of ∼ 106M⊙

Weak gravitational lensing of distant galaxies by foreground structure

The velocity dispersions of dwarf spheroidal galaxies which imply mass–to–light ratios
larger than those observed in our “local” neighborhood.

The velocity dispersions of spiral galaxy satellites which suggest the existence of dark
halos around spiral galaxies, similar to our own, extending at galactocentric radii
& 200 kpc, i.e. well behind the optical disc. This applies in particular to the Milky
Way, where both dwarf galaxy satellites and globular clusters probe the outer
rotation curve.
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DM as motivation (WMAP)
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Planck mision results [Planck results XVI. Arxiv 1303.5076]
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DM as motivation

Starting from a cosmological model with a fixed number of

parameters, the best-fit parameters are determined from the

peak of the N-dimensional likelihood surface.

From the combined analysis of Planck + WMAP:

Ωbh
2
= 0.02206± 0.00028 ,ΩMh2 = 0.1174± 0.0030

Including BAO

Ωbh
2
= 0.02220± 0.00025 ΩMh2 = 0.1161± 0.0028

Conclusive evidence in favor of the existence of dark matter
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The big problem

What is Dark Matter?
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Remember the selfgravitating fermions...

Suppose it is a fermion with no self interaction to Very light DM candidate

[Domcke and Urbano, JCAP 1501 (2015) 01, 002]
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Galactic halo as an ensemble of DM mini-MACHOS
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X. Hernandez, T. Matos, R. A. Sussman and Y. Verbin,
“Scalar field mini-MACHOs: A new explanation for galactic dark matter,” Phys. Rev. D 70, 043537 (2004)

Clumpy neutralino dark matter Mneutralino star ∼ 10−7M⊙. J. Ren, X. Li, H. Shen,
Commun.Theor.Phys. 49 (2008) 212-216

Axions may form such scalar field mini-MACHOS. Maxion star < 10−15M⊙ J.
Barranco, A. Bernal, Phys. Rev. D 83 (2011) 043525
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Formation of dark matter clumps:

Neutralino clumps: At the phase transition from a quark-gluon

plasma to a hadron gas, the spectrum of density perturbations

may develop peaks and dips produced by the growth of

hadronic bubbles. → Kinematically decoupled CDM falls into

the gravitational potential wells provided from those peaks

leading the formation of dark matter clumps with masses

< 10
−10M⊙. [Schmid PRD 59 (1999) 043517]

Axion minicluster:The evolution of the axion field at the QCD

transition epoch may produce gravitationally bound

miniclusters of axions Such minicluster, due to collisional

2a → 2a process, it may relax to a selfgravitating system. [Kolb

and Tkachev PRL 71 (1993) 3051-3054]
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Limits from femtolensing

The maximum mass for a compact star
made of fermionic dark matter

M = 1.6M ′
max

(

GeV

mf

)2

M⊙

New constraints on primordial black holes
abundance from femtolensing of
gamma-ray bursts exclude the range
10−17M⊙ − 10−13M⊙ [A. Barnacka, J.F.
Glicenstein, R. Moderski Phys.Rev. D 86

(2012) 043001]

This imply a limit for the fermionic dark
matter:

mf > 1.11× 105TeV!!!
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Self-gravitating system made of axions

Axion was originally proposed to solve strong CP problem

There is a remnant γ − a interaction

L =
1

2
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4
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4
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Axion properties
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At late times in the evolution of the universe, the energy density potential is:
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Axion star
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Axion star
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[J. Barranco, A. Bernal, PRD83, 043525 (2011)]
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Axion star

0 2e+11 4e+11 6e+11

ρ(0)[Kg/m
3
]

2e-21

4e-21

6e-21

8e-21

M
 [

So
la

r 
m

as
se

s]

0 3e+10 6e+10 9e+10

ρ(0)[Kg/m
3
]

0

1e-15

2e-15

3e-15

4e-15

5e-15

Axion mass (eV) ρ(0)
(

Kg/m3
)

Mass (M⊙) R99 (meters)

ma = 10−5 2.1× 1010 5.0× 10−15 119.40

ma = 10−3 6.8× 1010 7.4× 10−21 0.89

[J. Barranco, A. Carrillo-Monteverde,D. Delepine PRD87,(2013) 103011]
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Possibleγ signal?

It is possible axion transform to photons in presence of an external magnetic field!

Strong magnetic fields → NS > 108 Gauss.

∼ 109 NS in the galaxy

Does axion stars collision with Neutron Stars produce a visible effect?

Start with

Laγγ =
cα

fPQπ
a ~E · ~B

Obtain “modified” Gauss law:

∂ ~E =
−cα
fPQπ

~∂ · (a ~B)

Energy dissipated in the magnetized conducting media, with averange σ electric
conductivity (Ohm’s law)

W =

∫

ABS
σE2

ad
3x = 4c2 × 1054erg/s

σ

1026/s
× M

10−4M⊙

B2

(108G)2

YES! there could be a signal
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can the dark matter halo be a ensemble of axion stars?

The number of collisions per pc3 per second will be

Rc = nAS(r)× ρNS(r)× S × v ,

nAS is the number of AS per pc3 and ρNS is the probability to find a Neutron Star at that
point,

ρNS(r) = Arα−1/λαe−r/λ .
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Other interesting problems

The origin of supermassive black holes (SMBH)) at the
center of the galaxies is an open question.

Most of the numerical and semi-analitycal methods show
a lack in time and amount of matter to build SMBH at
early times (z ∼ 3)

The argument that it is a BH is done because there is not
viable alternatives...
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Boson stars with self-interaction

M. Colpi, S. L. Shapiro and I. Wasserman, Phys. Rev. Lett. 57 (1986) 2485.
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Boson stars with self-interaction
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Boson stars with self-interaction
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Can a BS mimic SgrA∗?

3.32× 10−4 ≃ Cmin ≤ CBS ≤ Cmax ≃ 0.158 Cmin =
MSgr A∗

RS2

≃ 1

3015
.
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Can a BS mimic SgrA∗?
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Evidence of SMBH

MBH = 4.3× 10
6M⊙
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Evidence of SMBH

MBH = 4.3× 10
6M⊙

MBH ∼ 10
9M⊙
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SFDM as a viable model for DM

Another approach: The Scalar Field Dark Matter model

(SFDM)

The Dark Matter is modeled by a scalar field with a ultra-light

associated particle. (m ∼ 10
−23eV)

At cosmological scales it behaves as cold dark matter
T. Matos, L.A. Urena-Lopez, Class. Quant. Grav. 17 L75 (2000),

V. Sahni and L.M. Wang, Phys. Rev D 62, 103517 (2000).

At galactic scales, it does not have its problems: neither a

cuspy profile, nor a over-density of satellite galaxies.

A. Bernal, T. Matos, D. Nuñez, Rev. Mex. A.A. 44, 149 (2008)

T. Matos, L.A. Urena-Lopez, Phys. Rev. D 63, 063506 (2001)
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Scalar field in a Schwarzschild background

Starting with the Klein-Gordon eqyation

(�− µ2)φ = 0

with

� := (1/
√
−g) ∂µ(

√
−ggµν∂ν)

ds2 = −N(r)dt2 +
dr2
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+ r2dΩ2 , N(r) := 1− 2M/r ,

and

φ(t, r, θ, ϕ) =
1

r

∑

ℓ,m

ψℓm(t, r)Y ℓm(θ, ϕ) ,
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∂r
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∂

∂r
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]
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r2
+
2M

r3
+µ2 .
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Scalar field in a Schwarzschild background

We look for stationary solutions:

ψℓm(t, r) = eiωℓmtuℓm(r) ,

[

−N(r)
∂

∂r

(

N(r)
∂

∂r

)

+N(r) Uℓ(µ,M ; r)

]

u(r) = ω2u(r) , 2M < r < ∞ .

By a change in the coordinates to the Regge-Wheeler coordinates
r∗ := r + 2M ln(r/2M − 1), the above equation has the Schrödinger eq. form:

[

− ∂2

∂r∗2
+ Veff(r

∗)

]

u(r∗) = ω2u(r∗) , −∞ < r∗ < ∞,

with an effective potential Veff(r
∗):

Veff(r
∗) := N(r) Uℓ(µ,M ; r) , r = r(r∗).
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The effective potential:
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Quasi-resonant modes:
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[Barranco et al. Phys.Rev. D84 (2011) 083008]
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More important!
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Schwarzschild black holes can wear scalar wigs

[Barranco et al. Phys.Rev.Lett. 109 (2012) 081102]
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Scalar wigs!
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The black hole bomb

If the BH is rotating, a bosonic field impinging on a rotating black hole can be amplified
through superradiant scattering.

The scattered wave will then be reflected back and forth between the mass term and
the black hole becoming amplified on each reflection.

The growth of the field is asserted to be exponential and unstable. A black hole bomb

[Press and Teukolsky Nature 238, 211-212 (28 July 1972)]
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What about vectorial fields?

The Kerr metric in Boyer-Lindquist coordinates

ds2Kerr = −
(

1− 2Mr

Σ

)

dt2 +
Σ

∆
dr2 − 4rM2

Σ
ã sin2 ϑdϕdt

+ Σdϑ2 +

[

(r2 +M2ã2) sin2 ϑ+
2rM3

Σ
ã2 sin4 ϑ

]

dϕ2 ,

where Σ = r2 +M2ã2 cos2 ϑ, ∆ = (r − r+)(r − r−), r± = M(1±
√
1− ã2) and M and

J =M2ã are the mass and the angular momentum of the BH, respectively.
The Proca equation

∇σF
σρ − µ2Aρ = 0 ,(1)

where Aµ is the vector potential, Fµν = ∂µAν − ∂νAµ and mv = µ~ is the mass of the
vector field.
The problem: This equation is not separable in the Kerr background.
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The strongest limit on photon mass

Nevertheless, Pani et al. [Phys.Rev.Lett. 109 (2012) 131102] solved the Proca equation and
found:

MωI ∼ γSℓ (ãm− 2r+µ) (Mµ)4ℓ+5+2S ,
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It is shown that current supermassive black hole spin estimates provide the tightest upper
limits on the mass of the photon (mv < 4x10−20 eV.
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Conclusions

If DM is a fermion with no interaction: either

it is too light in order to fit the rotational curves of galaxies

or it is too heavy in order to evade the microlensing limits

Axion stars may be an important component of dark matter

with some possible observational consequences

Black holes do not eat everything: They may have wigs, and to

avoid the destruction of SMBH, the photon mass should be

less than 10
−20 eV.
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