Recent results from the ATLAS Experiment

Luis R. Flores Castillo The Chinese University of Hong Kong

XV Mexican Workshop on Particles and Fields

2-6 November 2015. Mazatlán, Sinaloa, México

A brief look at ATLAS

Recent Run I results

- Data taking
- Selected recent results
 - From SM to Exotics (SM, Top, Higgs, SUSY, Exotics)

Run II

- Upgrades and Performance
- First results with 13 TeV data
 - From SM to preparation for Exotic searches

The ATLAS detector at LHC

- ATLAS is a multi-purpose detector at CERN's LHC
- 38 countries, ~ 178 institutions, ~ 3000 physicists

The ATLAS Detector in Run I

Multi-level trigger system selects interesting events from O(20 MHz) Stored events for physics analysis ~ 400 Hz

ATLAS Distributed Computing System

- Manages world-wide data processing, MC production, user analysis jobs
- O(150k) computing cores

Maximum: 159,549 , Minimum: 0.00 , Average: 128,295 , Current: 43,369

XV Mexican Workshop on Particles and Fields

ATLAS Run I data (2009 – early 2013)

XV Mexican Workshop on Particles and Fields

Pileup

Higher luminosity brings a higher *pile-up.*

i.e. number of interactions per bunch crossing

Average pile-up:

```
<µ> : 9 in 2011
21 in 2012
```


STANDARD MODEL

Luis R Flores Castillo

XV Mexican Workshop on Particles and Fields

November 3, 2011

SM production cross sections

- Tests of the SM at higher energy, probing new physics
- Backgrounds for searches and precision measurements (W/Z+jets, ttbar, di-bosons)

Luis R Flores Castillo

TOP QUARK STUDIES

Luis R Flores Castillo

XV Mexican Workshop on Particles and Fields

November 3, 2011

Top quark mass

- Precise measurements is a critical input to EW fits
- Measured in ttbar \rightarrow lepton +jets (fully reconstructed) or di-lepton, 7 TeV (~5 fb⁻¹)
 - Single lepton: **3D fit** (m_{top}^{reco} , m_{W}^{reco} (hadronically decaying W) and R_{bq}^{reco})
 - R_{ba}^{reco} : ratio of transverse momentum of *b*-tagged jet to average transverse momentum of the two jets of the hadronic W boson decay
 - 3D reduces systematic uncertainty wrt previous method (2D)

Di-lepton : **1D fit** (m_{lb}^{reco})

Single top production

s-channel : 1 isolated lepton (e / μ), two b-tagged jets, missing E_T

h

d

arXiv:1509.05276

...

Top production with W or Z (ttV)

s = 8

1

noZ 1-2b

Fit results on 15 signal and 5 control regions

~ 1 -

_____ F

ATLAS Ns = 8 TeV, 2	20.3 fb ⁻¹ C	R∔	2LOS	50- -	2LSS ²	°⊨ 3		4L]
Top VV	Charge mi Fake lepto	sID + ins +		40		6 	4	
Z	ttW			30		2		
	···••···· _{··}	•		20-				•
				10-		4		
noZ Z 1-2b 2b	Z ZZ 2b	Z no 0b 1-:	oZ noZ Z 2b 1-2b 2b	0	ee eμ μμ 2b+ 2b+ 2b+	0 Z Z Z I 1b 2b+ 2b+ 2	noZ DF DF 2b+ 0b 1b	DF SF SF 2b+ 1b 2b+
Зј Зј	4j	3j 4	ij 5j+ 5j+			4j+ 3j 4j+ 2	2-3j	
3j 3j	4j	3j 4	ij 5j+ 5j+		<i>tī</i> W sig	^{4j+ 3j} 4j+ 2	tīZ sign	ificance
3j 3j	4j	3j 4	ij 5j+ 5j+ Channe	el	<i>tīW</i> sig Expected	^{4j+ 3j} 4j+ 2 inificance Observed	<i>tī</i> Z sign Expected	ificance Observed
3j 3j	4j	3j 4	j 5j+ 5j+ Channe 2ℓOS	el	tīW sig Expected	4j+ 3j 4j+ 2 inificance Observed 0.1	ttZ sign Expected 1.4	ificance Observed 1.1
3j 3j	4j	3j 4	j 5j+ 5j+ Channe 2ℓOS 2ℓSS	el	tīW sig Expected 0.4 2.8	4j+ 3j 4j+ 2 inificance Observed 0.1 5.0	<i>tī</i> Z sign Expected 1.4 -	ificance Observed 1.1
3j 3j	4j	3j 4	Channe 2ℓOS 2ℓSS 3ℓ	el	<i>tīW</i> sig Expected 0.4 2.8 1.4	4_{j+} 3_{j} 4_{j+} 3_{j+} 4_{j+} 3_{j+} 4_{j+} 3_{j+} $3_$	ttZ sign Expected 1.4 - 3.7	ificance Observed 1.1 - 3.3
3j 3j	4j	3j 4	Channe 2ℓOS 2ℓSS 3ℓ 4ℓ	e1	<i>tīW</i> sig Expected 0.4 2.8 1.4 -	4_{j+} 3_{j} 4_{j+} 3_{j+} 4_{j+} 3_{j+} $3_$	<i>tī</i> Z sign Expected 1.4 - 3.7 2.0	ificance Observed 1.1 - 3.3 2.4

$$\sigma_{t\bar{t}W} = 369^{+86}_{-79}(stat) \pm 44(syst) \text{ fb}$$

$$\sigma_{t\bar{t}Z} = 176^{+52}_{-48}(stat) \pm 24(syst) \text{ fb}$$

Simultaneous fit to all four channels to extract the cross sections

Searching for new physics with the top

arXiv:1509.00294

FCNC forbidden at tree level, suppressed at higher orders Enhanced rate in BSM models (B ~ 10^{-5} - 10^{-3}) qg \rightarrow t \rightarrow bW (W in leptonic decay)

u, c

Upper limits on the coupling constants divided by the scale of new physics:

$$\kappa_{u(c)gt}/\Lambda < 5.8 (13) \times 10^{-3} \text{ TeV}^{-1}$$

$$B(t \rightarrow u(c)g) < 4 (17) \times 10^{-5}$$

$$\sigma_{qg \to t} \times B(t \to bW) < 2.9 (3.4) \text{ pb} \text{ expected(observed)}$$

Luis R Flores Castillo

HIGGS BOSON STUDIES

Luis R Flores Castillo

XV Mexican Workshop on Particles and Fields

November 3, 2011

SM Higgs boson at the LHC

Higgs measurements and searches in ATLAS

 $H \rightarrow \mu^{+}\mu^{-}$

130 135 140

\s=7 TeV 4.5 fb

s=8 TeV 20.3 fb

145 150

m_u [GeV]

Б

120

125

130

135

140

 $H \rightarrow ZZ^* \rightarrow 4I$: Golden channel

 $H \rightarrow WW^* \rightarrow 4I$: Good statistics, low resolution: Observed (expected) significance : 6.1 (5.8) σ

$H \rightarrow \tau^+ \tau^-$: Best fermionic channel Observed(expected) significance: 4.5 (3.4) σ

 $H \rightarrow \mu^+ \mu^-$: Clean signal

B(H→ μ⁺μ⁻) < 21.9 10⁻⁵

(m_H=125 GeV)

- Observed CL

---- Expected CL

ATLAS

 $\pm 2\sigma$

50

40 = + 1o

30

20

10

0 120 125

95% CL limit on $\mu_{_{\rm S}}$

145

150

m_H [GeV]

Fiducial and differential cross sections

Model independent measurement of cross section from 8 TeV data using $H \rightarrow ZZ^*$ and $H \rightarrow \gamma\gamma$

- Observed xs higher than theory
- For all inclusive and exclusive jet multiplicities, data is higher
 - Least agreement is on ≥1 or =1 bins (p-value 0.1% and 3.6%)
- Need more data to confirm
 - Results are statistically dominated

PRL 115 (2015) 091801

Luis R Flores Castillo

XV Mexican Workshop on Particles and Fields

November 3, 2011

20

Higgs boson couplings

Most generic case: Allowing new

$$\kappa_i \equiv g_i / g_i^{SM}, \quad \lambda_{ij} \equiv \kappa_i / \kappa_j, \quad \kappa_{ij} \equiv \kappa_i \cdot \kappa_j / \kappa_H$$

Assuming only SM contribution to the total width and no invisible or undetected H boson decays (simplest case)

- Global fit to all data & decay channels
- Measured fermion & vector coupling-strength scale factors in agreement with SM

 $\kappa_v = 1.09 \pm 0.07$ $\kappa_{F} = 1.11 \pm 0.16$

particles in loops, no assumption on total width

November 3, 2011

Luis R Flores Castillo

XV Mexican Workshop on Particles and Fields

arXiv:1506.05669

Spin and Parity

Using $H \rightarrow ZZ^* \rightarrow 4I$, $H \rightarrow WW^* \rightarrow e_{V\mu V}$, $H \rightarrow \gamma \gamma$

- Spin-0: CP-even BSM (0⁺_h), CP-odd pseudo-scalar (0⁻)
- Spin-2: Universal couplings and $\kappa_q/\kappa_q = 0$ and 2
- Exclusion determined from q: likehood ratio to distinguish between two spin hypotheses

J^P	Model	Choice of tensor couplings				
		$\kappa_{\rm SM}$	κ_{HVV}	κ_{AVV}	lpha	
0^{+}	Standard Model Higgs boson	1	0	0	0	
0_{h}^{+}	BSM spin-0 CP-even	0	1	0	0	
0-	BSM spin-0 CP-odd	0	0	1	$\pi/2$	

Values of sp	in-2 quark and gluon couplings	$p_{\rm T}^X$ selections (GeV)		
$\kappa_q = \kappa_g$	Universal couplings	_	_	
$\kappa_q = 0$	Low light-quark fraction	< 300	< 125	
$\kappa_q = 2\kappa_g$	Low gluon fraction	< 300	< 125	

SM is favored; alternative models excluded > 99.9%CL_S

Spin and Parity

Combined fit to $H \rightarrow ZZ^*$ and $H \rightarrow WW^*$ final states

Constraint the Spin-0 coupling ratios

 $\mathcal{L}_0^V =$

Coupling ratio	Best-fit value	$95\%~{ m CL~Excl}$	usion Regions
Combined	Observed	Expected	Observed
$\tilde{\kappa}_{HVV}/\kappa_{\rm SM}$	-0.48	$(-\infty, -0.55] \bigcup [4.80, \infty)$	$(-\infty, -0.73] \bigcup [0.63, \infty)$
$(\tilde{\kappa}_{AVV}/\kappa_{\rm SM})\cdot \tan \alpha$	-0.68	$(-\infty, -2.33] \bigcup [2.30, \infty)$	$(-\infty, -2.18] \bigcup [0.83, \infty)$

BSM to SM tensor couplings are compatible with the SM expectation

Luis R Flores Castillo

L for spin-0 particle interaction with W or Z boson

Rare processes

Higgs boson production in association with a top-quark pair

- Direct measurement of top quark-Higgs coupling
- ttH (H \rightarrow bb / multilepton H(\rightarrow ZZ, WW, $\tau\tau$))

Luis R Flores Castillo

XV Mexican Workshop on Particles and Fields

Searching for new physics with the Higgs boson

Invisible Higgs decay (VBF) arXiv:1508.07869

Z

000000000

bkg.

VH(W/Z \rightarrow hadronic, H \rightarrow invisible)

EPJC (2015) 75:337 m_H=125 GeV B(H→invisible) < 78% (86%) obs (exp) H→aa→µµττ (PRD 92 2015 052002) NMSSM : H decays to lightest pseudoscalar higgs

$H^{\pm} \rightarrow W^{\pm}Z \rightarrow qqII$ (PRL 114 231801 (2015)) Charged Higgs boson appears in many SM extension models : 2HDM, Higgs Triplet model

Luis R Flores Castillo

XV Mexican Workshop on Particles and Fields

SUSY

Luis R Flores Castillo

Mass limits

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: July 2015

	Model	e, μ, τ, γ	′ Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	∫ <i>L dt</i> [fb	¹] Mass limit	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	Reference
Inclusive Searches	$\begin{array}{l} \text{MSUGRA/CMSSM}\\ \bar{q}\bar{q}, \bar{q} \rightarrow q\bar{k}_{0}^{0} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q\bar{k}_{1} \\ (\text{compressed})\\ \bar{q}\bar{q}, \bar{q} \rightarrow q\bar{k}_{1} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q\bar{s}_{1} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q\bar{q}\bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q\bar{q}\bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q\bar{q}\bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q\bar{q}\bar{k}_{1}^{(1)} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q\bar{s}\bar{k}_{1}^{(1)} \\ \bar{s}\bar{s}, \bar{s} \rightarrow q\bar{s}\bar{s}\bar{s}\bar{s} \\ \bar{s}\bar{s}, \bar{s} \rightarrow q\bar{s}\bar{s}\bar{s} \\ \bar{s}\bar{s}\bar{s}, \bar{s}\bar{s}\bar{s}\bar{s} \\ \bar{s}\bar{s}\bar{s}\bar{s}\bar{s} \\ \bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s} \\ \bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s} \\ \bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s} \\ \bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s} \\ \bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s} \\ \bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s} \\ \bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s} \\ \bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s} \\ \bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s}\bar{s}$	$\begin{array}{c} 0\text{-3}\ e,\mu/1\text{-2}\ \tau \\ 0\\ \text{mono-jet}\\ 2\ e,\mu\ (\text{off},Z)\\ 0\\ 0\text{-1}\ e,\mu\\ 2\ e,\mu\\ 1\text{-2}\ r+0\text{-1}\ k\\ 2\ \gamma\\ \gamma\\ \gamma\\ 2\ e,\mu\ (Z)\\ 0 \end{array}$	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 2-6 jets 0-3 jets ℓ 0-2 jets 2 jets 2 jets 2 jets 2 jets 2 jets	 b Yes Yes 	20.3 20.3 20.3 20.3 20 20 20.3 20.3 20.3	\$\bar{q}\$ \$\bar{s}\$ \$\bar	1.33 TeV 1.26 TeV 1.32 TeV 1.6 1.29 TeV 1.3 TeV 1.25 TeV V	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1507.05525 1405.7875 1507.05525 1503.03290 1405.7875 1507.05525 1501.03555 1407.0603 1507.05493 1507.05493 1507.05493 1507.05493 1503.03290 1502.01518
3 rd gen. <u>ẽ med.</u>	$\begin{array}{l} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\chi}_{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\chi}_{1} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{\chi}_{1}^{+} \end{array}$	0 0 0-1 <i>e</i> , µ 0-1 <i>e</i> , µ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ğ ğ ğ ğ	1.25 TeV 1.1 TeV 1.34 TeV 1.3 TeV	m($\tilde{\chi}_1^0$)<400 GeV m($\tilde{\chi}_1^0$)<350 GeV m($\tilde{\chi}_1^0$)<400 GeV m($\tilde{\chi}_1^0$)<300 GeV	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{split} & \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \to b \tilde{X}_1^0 \\ & \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \to i \tilde{X}_1^+ \\ & \tilde{i}_1 \tilde{t}_1, \tilde{t}_1 \to b \tilde{X}_1^+ \\ & \tilde{i}_1 \tilde{t}_1, \tilde{t}_1 \to b \tilde{X}_1^0 \\ & \tilde{i}_1 \tilde{t}_1, \tilde{t}_1 \to c \tilde{t}_1^0 \\ & \tilde{i}_1 \tilde{t}_1 \text{ curval GMSB}) \\ & \tilde{i}_2 \tilde{t}_2, \tilde{t}_2 \to \tilde{t}_1 + Z \end{split} $	0 2 e, μ (SS) 1-2 e, μ 0-2 e, μ 2 e, μ (Z) 3 e, μ (Z)	2 <i>b</i> 0-3 <i>b</i> 1-2 <i>b</i> 0-2 jets/1-2 mono-jet/ <i>c</i> -t 1 <i>b</i> 1 <i>b</i>	Yes Yes Yes Yes ag Yes Yes Yes	20.1 20.3 4.7/20.3 20.3 20.3 20.3 20.3 20.3	μ̃i 100-620 GeV bi 275-440 GeV 7i 110-167 GeV 230-460 GeV 210-700 GeV 7i 90-191 GeV 210-700 GeV 7i 90-240 GeV 210-700 GeV 7i 90-240 GeV 20-600 GeV 7i 290-600 GeV 290-600 GeV		$\begin{split} & \mathfrak{m}(\tilde{k}_{1}^{0}) < 90 \text{ GeV} \\ & \mathfrak{m}(\tilde{k}_{1}^{0}) = 2\mathfrak{m}(\tilde{k}_{1}^{0}) \\ & \mathfrak{m}(\tilde{k}_{1}^{0}) = 2\mathfrak{m}(\tilde{k}_{1}^{0}), \mathfrak{m}(\tilde{k}_{1}^{0}) = 55 \text{ GeV} \\ & \mathfrak{m}(\tilde{k}_{1}^{0}) = 1 \text{ GeV} \\ & \mathfrak{m}(\tilde{\ell}_{1}^{0}) - \mathfrak{m}(\tilde{k}_{1}^{0}) < 85 \text{ GeV} \\ & \mathfrak{m}(\tilde{k}_{1}^{0}) > 150 \text{ GeV} \\ & \mathfrak{m}(\tilde{k}_{1}^{0}) < 2200 \text{ GeV} \end{split}$	1308.2631 1404.2500 1209.2102,1407.0583 1506.08616 1407.0608 1403.5222 1403.5222
EW direct	$ \begin{array}{l} \tilde{t}_{1,\mathbf{k}}\tilde{\ell}_{1,\mathbf{k}}, \tilde{\ell} \rightarrow \ell\tilde{\chi}_{1}^{0} \\ \tilde{x}_{1}^{*}\tilde{\chi}_{1}, \tilde{\chi}_{1}^{*} \rightarrow \tilde{\ell}_{V}(\tilde{r}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}, \tilde{\chi}_{1}^{*} \rightarrow \tilde{\ell}_{V}(\tilde{r}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{*} \rightarrow \ell_{V}\tilde{\ell}_{L}(\tilde{r}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{0} \rightarrow W_{1}^{0}\tilde{\ell}_{L}\tilde{\chi}_{1}^{0} \\ \rightarrow W_{1}^{0}\tilde{\ell}_{L}\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{0} \rightarrow W_{1}^{0}\tilde{\ell}_{L}\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{0} \rightarrow W_{1}^{0}\tilde{\ell}_{L}\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{*}\tilde{\chi}_{2}^{*} \rightarrow \tilde{\ell}_{L}\tilde{\ell} \\ GGM (wino NLSP) weak processing (1) \\ \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ -3 \ e, \mu \\ 2 \ -3 \ e, \mu \\ 4 \ e, \mu \\ 4 \ e, \mu \\ d. \qquad 1 \ e, \mu + \gamma \end{array}$	0 0 0-2 jets 0-2 b 0 -	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\begin{array}{l} m(\tilde{\chi}_{1}^{0}){=}0 \; GeV \\ m(\tilde{\chi}_{1}^{0}){=}0 \; GeV, \; m(\tilde{\chi},\tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{-}){+}m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{0}){=}0 \; GeV, \; m(\tilde{\chi},\tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{-}){+}m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{-}){=}m(\tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{1}^{0}){=}0.5(m(\tilde{\chi}_{1}^{-}){+}m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{+}){=}m(\tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{1}^{0}){=}0, \; \text{sleptons decoupled} \\ m(\tilde{\chi}_{2}^{-}){=}m(\tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{1}^{0}){=}0, \; m(\tilde{\chi}_{2}^{0}){=}m(\tilde{\chi}_{2}^{0}), \\ m(\tilde{\chi}_{2}^{0}){=}m(\tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{1}^{0}){=}0, \; m(\tilde{\chi}_{2}^{0}){=}m(\tilde{\chi}_{2}^{0})) \\ ecz^{2} \; t \; mm \end{array}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493
Long-lived particles	$\begin{array}{l} \text{Direct}~\tilde{\chi}_1^+\tilde{\chi}_1^-\text{ prod., long-lived}\\ \text{Direct}~\tilde{\chi}_1^+\tilde{\chi}_1^-\text{ prod., long-lived}\\ \text{Stable, stopped § R-hadron}\\ \text{GMSB, stable $\vec{\pi}, \tilde{\chi}_1^0 \rightarrow \!$	$ \begin{split} \tilde{\chi}_1^\pm & \text{Disapp. trk} \\ \tilde{\chi}_1^\pm & \text{dE/dx trk} \\ & 0 \\ & \text{trk} \\ \tau(e,\mu) & 1\text{-}2\mu \\ & 2\gamma \\ & \text{displ. } ee/e\mu/\mu \\ & \text{displ. vtx + je} \end{split} $	1 jet - 1-5 jets - - - μμ - ts -	Yes Yes - - Yes - -	20.3 18.4 27.9 19.1 19.1 20.3 20.3 20.3	$\begin{split} \tilde{\chi}_1^{\pm} & 270 \text{ GeV} \\ \tilde{\chi}_1^{\pm} & 482 \text{ GeV} \\ \tilde{s} & 832 \text{ GeV} \\ \tilde{s} & 537 \text{ GeV} \\ \tilde{\chi}_1^{0} & 435 \text{ GeV} \\ \tilde{\chi}_1^{0} & 1. \\ \tilde{\chi}_1^{0} & 1. \end{split}$	1.27 TeV 0 TeV 0 TeV	$\begin{split} & m(\tilde{\chi}_1^*) \cdot m(\tilde{\chi}_1^0) \sim 160 \; MeV, \; \tau(\tilde{\chi}_1^*) = 0.2 \; ns \\ & m(\tilde{\chi}_1^*) \cdot m(\tilde{\chi}_1^0) - 160 \; MeV, \; \tau(\tilde{\chi}_1^*) < 15 \; ns \\ & m(\tilde{\chi}_1^0) = 100 \; GeV, \; 10 \; \mus < \tau(\tilde{g}) < 1000 \; s \\ & 10 < tan\beta < 50 \\ & 2 < \tau(\tilde{\chi}_1^0) < 3 \; ns, \; SPS8 \; model \\ & 7 < c\tau(\tilde{\chi}_1^0) < 40 \; mm, \; m(\tilde{g}) = 1.3 \; TeV \\ & 6 \; < c\tau(\tilde{\chi}_1^0) < 480 \; mm, \; m(\tilde{g}) = 1.1 \; TeV \end{split}$	1310.3675 1506.05332 1310.6584 1411.6795 1409.5542 1504.05162 1504.05162
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_r + X, \tilde{v}_\tau \rightarrow e\mu/e\tau/\mu\\ Bilinear \ RPV \ CMSSM \\ \tilde{X}_1^+\tilde{X}_1, \tilde{X}_1^+ \rightarrow W \tilde{X}_1^0, \tilde{X}_1^0 \rightarrow e\tilde{v}_\mu, e\mu\\ \tilde{X}_1^+\tilde{X}_1, \tilde{X}_1^+ \rightarrow W \tilde{X}_1^0, \tilde{X}_1^0 \rightarrow e\tilde{v}_\mu, eq\\ \tilde{g}_{\tilde{S}}, \tilde{g} \rightarrow qq\\ \tilde{g}_{\tilde{S}}, \tilde{g} \rightarrow qq\\ \tilde{g}_{\tilde{S}}, \tilde{g} \rightarrow \tilde{g}_{\tilde{S}}, \tilde{I}_1, \tilde{I}_1 \rightarrow bs\\ \tilde{I}_1\tilde{I}_1, \tilde{I}_1 \rightarrow bs\\ \tilde{I}_1\tilde{I}_1, \tilde{I}_1 \rightarrow b\ell \end{array} $	$ \begin{array}{c c} \tau & e\mu, e\tau, \mu\tau \\ & 2 \ e, \mu \ (\text{SS}) \\ \tilde{\gamma}_e & 4 \ e, \mu \\ \tilde{\gamma}_\tau & 3 \ e, \mu + \tau \\ & 0 \\ & 2 \ e, \mu \ (\text{SS}) \\ & 0 \\ & 2 \ e, \mu \end{array} $	- 0-3 b 	Yes Yes Yes - Yes b - -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	\$\vec{r}\$, \$\vec{q}\$, \$\vec{x}\$, \$\vec{q}\$, \$\vec{x}\$, \$\vec{r}\$, \$\vec{x}\$, \$\vec{r}\$, \$\vec{x}\$, \$\vec{r}\$, \$\vec{x}\$, \$\vec{r}\$, \$\vec{x}\$, \$\vec{r}\$, \$\vec{r}\$, \$\vec{r}\$,	1.: 1.35 TeV ieV V / 0 TeV	$\begin{array}{ll} \textbf{7 TeV} & \mathcal{X}_{11}^{\prime}=0.11, \ \mathcal{X}_{132/133/233}=0.07 \\ & \textbf{m}(\vec{q})=\textbf{m}(\vec{g}), \ c\tau_{LSP}<\textbf{1} \ \textbf{mm} \\ & \textbf{m}(\vec{k}^0)>0.2 \ \textbf{xm}(\vec{k}^1), \ \mathcal{A}_{121}\neq 0 \\ & \textbf{m}(\vec{k}^0)>0.2 \ \textbf{xm}(\vec{k}^1), \ \mathcal{A}_{133}\neq 0 \\ & \textbf{BR}(h)=\textbf{BR}(h)=\textbf{BR}(c)=0\% \\ & \textbf{m}(\vec{k}^0)=600 \ \textbf{GeV} \\ & \textbf{BR}(\vec{l}_1\rightarrow bc/\mu)>20\% \end{array}$	1503.04430 1404.2500 1405.5086 1405.5086 1502.05686 1502.05686 1404.250 ATLAS-CONF-2015-026 ATLAS-CONF-2015-026
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	č 490 GeV		$m(\bar{\chi}_1^0)$ <200 GeV	1501.01325
					1	-1	1	Mass scale [TeV]	-

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

No significant evidence of a SUSY signal at Run 1

	-		<u> </u>	
		oroo	COOtu	
.uiu			Cabli	

ATLAS Preliminary

 $\sqrt{s} = 7, 8 \text{ TeV}$

2-lepton + jets + MET

- Two same-flavor opposite-charge leptons, jets and MET
- Dilepton mass compatible with Z
- Compatible with SUSY decays with Z bosons in the final state

EXOTICS

Luis R Flores Castillo

XV Mexican Workshop on Particles and Fields

Heavy boson searches (decays to WW, WZ, ZZ)

ATLAS-CONF-2015-045

- All leptonic, semileptonic and hadronic final states considered
- No excess observed and limit set for the models:
 - Extended Gauge Model with a heavy W'
 - Randall-Sundrum model with a heavy spin-2 graviton

Largest deviation ~2 TeV with p_0 value of $3.4\sigma~(2.5\sigma)$ obs (exp) in JJ

@ 95% CL., m_W < 1.81 TeV

RS model exclusion limit: @ 95% CL., $m_{G^*} < 810$ (790) GeV obs (exp)

Best sensitivity from lvqq

XV Mexican Workshop on Particles and Fields

Scalar leptoquarks search

- Leptoquarks (LQ):
 - Color-triplet bosons with fractional electric charge and non-zero values of both baryon and lepton number
 - Expected to decay directly to lepton–quark pairs
- First and second generation LQs (LQ1 and LQ2) are searched in 2e+2jets and 2µ+2jets,
- Third generation (LQ3) in $bv_{\tau}bv_{\tau}$, $tv_{\tau}tv_{\tau}$
 - Similar to SUSY searches

```
Excluded range at 95% CL.

m_{LQ1} < 1050 \text{ GeV}

m_{LQ2} < 1000 \text{ GeV}

b-channel m_{LQ3} < 640 (625) GeV expected (observed)

t-channel

200 (210) < m_{LQ3} < 685 (640) GeV expected (observed)
```


Exotics summary

ATLAS Exotics Searches* - 95% CL Exclusion

Status: July 2015

	Model	<i>ℓ</i> ,γ	Jets	E ^{miss} T	∫£ dt[fb	⁻¹] Limit	Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\ell\ell$ ADD QBH $\rightarrow \ell q$ ADD QBH ADD BH high Σ_{trk} ADD BH high Σ_{pr} ADD BH high Σ_{pr} ADD BH high multijet RS1 $G_{KK} \rightarrow \ell\ell$ RS1 $G_{KK} \rightarrow \ell\ell$ Bulk RS $G_{KK} \rightarrow ZZ \rightarrow qq\ell\ell$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qq\ell\nu$ Bulk RS $g_{KK} \rightarrow t\bar{t}$ 2UED / RPP	$\begin{array}{c} - \\ 2e, \mu \\ 1 e, \mu \\ - \\ 2\mu (SS) \\ \ge 1 e, \mu \\ - \\ 2\varphi, \\ 2\varphi, \\ 2\varphi, \\ 2\varphi, \\ 1 e, \mu \\ - \\ 1 e, \mu \\ 2 e, \mu (SS) \end{array}$	$\geq 1j$ - 1j 2j - 2j 2j/1J 2j/1J 4b $\geq 1b, \geq 1Jb, \geq 1$	Yes - - - - Yes j Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	Mp 5.25 TeV n = 2 Ms 4.7 TeV n = 3 HLZ Mth 5.2 TeV n = 6 Mth 5.2 TeV n = 6 Mth 5.2 TeV n = 6 Mth 5.8 TeV n = 6 Mth 5.8 TeV n = 6, Mp = 3 TeV, non-rot BH Mth 5.8 TeV n = 6, Mp = 3 TeV, non-rot BH Mth 5.8 TeV n = 6, Mp = 3 TeV, non-rot BH Mth 5.8 TeV n = 6, Mp = 3 TeV, non-rot BH Mth 5.8 TeV n = 6, Mp = 3 TeV, non-rot BH Mth 5.8 TeV n = 6, Mp = 3 TeV, non-rot BH Mth 5.8 TeV n = 6, Mp = 10, K/Mp_H = 0.1 GKK mass 760 GeV k/Mp_H = 1.0 W' mass 760 GeV k/Mp_H = 1.0 KK mass 500-720 GeV k/Mp_H = 1.0 KK mass 960 GeV BR = 0.925	1502.01518 1407.2410 1311.2006 1407.1376 1308.4075 1405.4254 1503.08988 1405.4123 1504.05511 1409.6190 1503.04677 1506.00285 1505.07018 1504.04605
Gauge bosons	$\begin{array}{l} \mathrm{SSM}\; Z' \to \ell\ell \\ \mathrm{SSM}\; Z' \to \tau\tau \\ \mathrm{SSM}\; W' \to \ell\nu \\ \mathrm{EGM}\; W' \to WZ \to \ell\nu\; \ell'\ell' \\ \mathrm{EGM}\; W' \to WZ \to qq\ell\ell \\ \mathrm{EGM}\; W' \to WZ \to qqqq \\ \mathrm{HVT}\; W' \to WH \to \ell\nu bb \\ \mathrm{LRSM}\; W'_R \to t\bar{b} \\ \mathrm{LRSM}\; W'_R \to t\bar{b} \end{array}$	2 e, μ 2 τ 1 e, μ 3 e, μ 2 e, μ - 1 e, μ 1 e, μ 0 e, μ	- - 2 j/1 J 2 J 2 b 2 b, 0-1 j ≥ 1 b, 1 J	- Yes Yes - Yes Yes -	20.3 19.5 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	Z' mass 2.9 TeV Z' mass 2.02 TeV W' mass 3.24 TeV W' mass 1.52 TeV W' mass 1.52 TeV W' mass 1.59 TeV W' mass 1.3-1,5 TeV W' mass 1.47 TeV W' mass 1.92 TeV W' mass 1.76 TeV	1405.4123 1502.07177 1407.7494 1408.4456 1409.6190 1506.00962 1503.08089 1410.4103 1408.0886
C	Cl qqqq Cl qqll Cl uutt	_ 2 e, μ 2 e, μ (SS)	2 j _ ≥ 1 b, ≥ 1	_ j Yes	17.3 20.3 20.3	A 12.0 TeV $\eta_{LL} = -1$ A 21.6 TeV $\eta_{LL} = -1$ A 4.3 TeV $ C_{LL} = 1$	1504.00357 1407.2410 1504.04605
MD	EFT D5 operator (Dirac) EFT D9 operator (Dirac)	0 e, μ 0 e, μ	≥1j 1J,≤1j	Yes Yes	20.3 20.3	M. 974 GeV at 90% CL for m(χ) < 100 GeV M. 2.4 TeV at 90% CL for m(χ) < 100 GeV	1502.01518 1309.4017
٢Ø	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e,μ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	– – Yes	20.3 20.3 20.3	LQ mass 1.05 TeV $\beta = 1$ LQ mass 1.0 TeV $\beta = 1$ LQ mass 640 GeV $\beta = 0$	Preliminary Preliminary Preliminary
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ YY \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ T_{5/3} \rightarrow Wt \end{array} $	1 e,μ 1 e,μ 1 e,μ 2/≥3 e,μ 1 e,μ	$\begin{array}{l} \geq 2 \ b, \geq 3 \\ \geq 1 \ b, \geq 3 \\ \geq 2 \ b, \geq 3 \\ \geq 2/ \geq 1 \ b \\ \geq 1 \ b, \geq 5 \end{array}$	j Yes j Yes j Yes _ j Yes	20.3 20.3 20.3 20.3 20.3	T mass 855 GeV T in (T,B) doublet Y mass 770 GeV Y in (B,Y) doublet B mass 735 GeV isospin singlet B mass 755 GeV B in (B,Y) doublet T _{5/3} mass 840 GeV B in (B,Y) doublet	1505.04306 1505.04306 1505.04306 1409.5500 1503.05425
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$ Excited lepton $\nu^* \rightarrow \ell W, \nu Z$	1 γ 1 or 2 e, μ 2 e, μ, 1 γ 3 e, μ, τ	1 j 2 j 1 b, 2 j or 1 – –	_ j Yes _ _	20.3 20.3 4.7 13.0 20.3	q* mass 3.5 TeV only u* and d*, A = m(q*) a* mass 4.09 TeV only u* and d*, A = m(q*) b* mass 870 GeV left-handed coupling t* mass 2.2 TeV A = 1.6 TeV	1309.3230 1407.1376 1301.1583 1308.1364 1411.2921
Other	LSTC $a_T \rightarrow W\gamma$ LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles $\sqrt{s} = 7 \text{ TeV}$	$1 e, \mu, 1 \gamma 2 e, \mu 2 e, \mu (SS) 3 e, \mu, \tau 1 e, \mu - - - - - - - - - -$	- 2 j - 1 b -	Yes Yes 	20.3 20.3 20.3 20.3 20.3 20.3 7.0	ar mass 960 GeV N ^g mass 2.0 TeV $H^{\pm\pm}$ mass 551 GeV $H^{\pm\pm}$ mass 400 GeV spin-1 invisible particle mass 657 GeV multi-charged particle mass 785 GeV monopole mass 1.34 TeV 10 ⁻¹ 1	1407.8150 1506.06020 1412.0237 1411.2921 1410.5404 1504.04188 Preliminary

*Only a selection of the available mass limits on new states or phenomena is shown.

ATLAS Preliminary

 $\int \mathcal{L} dt = (4.7 - 20.3) \text{ fb}^{-1}$

 $\sqrt{s} = 7, 8 \text{ TeV}$

ATLAS UPGRADES FOR RUN II

Luis R Flores Castillo

XV Mexican Workshop on Particles and Fields

Insertable B-Layer

- One major addition: the Insertable B-Layer (IBL)
 - New innermost tracking detector, 3.3 cm from the beam
 - Required a new smaller beampipe to fit
 - Significantly improves tracking performance

- Already fully operational
- Improved impact parameter resolution
- Expect ~4x improvement in light-flavor rejection

Infrastructure

- New beampipe
- Improvements to magnet and cryo system

Detector consolidation

- Muon chamber completion and repairs
- Improved readout for 100 kHz L1 rate
- Repair of various systems, new pixel services, new lumi detectors, new MBTS

Software and reconstruction

- New analysis model, event data model, production workflow
- Improved tracking code, grid software, monitoring.

Trigger upgrades and commissioning

- LHC beams collide currently in ATLAS every 25 ns (40 MHz)
- Data can be written out only up to ~ 3 GB/s (~ 1k events/s)
- Trigger system and architecture updated to cope with data rate
- Trigger turn-on curves well understood

 New topological L1 trigger, new central trigger processor, Tile-muon coincidence, restructured high-level trigger, Fast TracK trigger (FTK), Improved L1 Calo.

INITIAL RUN II RESULTS

Luis R Flores Castillo

XV Mexican Workshop on Particles and Fields

Dataset used for summer 2015

- 195 pb⁻¹ recorded (inlcuding 25ns + 50ns bunch spacing)
- Average Pileup around 20 interactions/crossing
 - Special low pileup sample also collected (μ < 0.05, 15 nb⁻¹)
- Early mini-scan (± 6σ) in June to determine Luminosity scale
 - Current preliminary uncertainty δL/L: ±9%

"Only" 200 pb⁻¹?

- Re-commission detector and establish performance
- Measure high cross-section SM processes
- Search for high-mass final states exploiting parton luminosities at $\sqrt{s} = 13 \text{ TeV}$

Run 1 limits surpassed after few fb⁻¹ of luminosity collected at Run 2.

Inelastic pp Cross-Section

- Using low-pileup data set ($\mu < 0.05$)
- Analysis w/ new MBTS scintillators (2.1 < |η| < 3.9)
- Result dominated by luminosity uncertainty

ATLAS-CONF-2015-038

Inelastic pp event properties

- Triggered by MBTS ($\epsilon > 99\%$) in low-pileup data
- Unfolded distributions
- Uncertainties from tracking efficiency, unfolding
- Adequate modeling from Pythia and EPOS
- Validates pileup modeling for early analysis

W/Z Cross-Section

Number of
eventsBackground
eventsW->ev463,06311%W->μv487,09013%Z->ee34,9550.7%Z->μμ44,8990.7%

- Isolated e or µ
 - p_T > 25 GeV
- W bosons
 - $E_T^{miss} > 25 \text{ GeV}, m_T > 50 \text{ GeV}$
- Z bosons
 - Opp. charge, 66 < m(II) < 116 GeV</p>

W/Z Cross-Section

ATLAS-CONF-2015-039

Luis R Flores Castillo

XV Mexican Workshop on Particles and Fields

valence quark asymmetry at 13 TeV

44

ATLAS-CONF-2015-041

Z+jets

- Inclusive Z event selection
- Particle-level fiducial cross-sections
 Jet p_T > 30 GeV, |y| < 2.5
- Backgrounds from top, diboson
- Syst. dominated by Lumi, Jets

ATLAS-CONF-2015-033

Top Cross-Section

- Dilepton selection
 - Isolated e & µ, p_T > 25 GeV
 - One or 2 b-jets
- Extract b-tag yield and cross-section simultaneously
- Syst. dominated by Luminosity

$$N_1 = L\sigma_{t\bar{t}} \epsilon_{e\mu} 2\epsilon_b (1 - C_b \epsilon_b) + N_1^{bkg}$$
$$N_2 = L\sigma_{t\bar{t}} \epsilon_{e\mu} C_b \epsilon_b^2 + N_2^{bkg}$$

 ϵ_{b} = 52.7 ± 2.6 (stat) ± 0.6 (syst) % MC expectation: 54.3 %

Event counts	N_1	N_2
Data	319	167
Wt single top	29.0 ± 3.8	5.6 ± 2.0
Dibosons	1.1 ± 0.2	0.0 ± 0.0
$Z(\to \tau \tau \to e\mu)$ +jets	1.3 ± 0.7	0.1 ± 0.1
Misidentified leptons	6.0 ± 3.9	2.8 ± 2.9
Total background	37.3 ± 5.5	8.5 ± 3.5

Top Cross-Section

Luis R Flores Castillo

XV Mexican Workshop on Particles and Fields

November 3, 2011

Resonant Di-jet Search

- Resonance search
- Jet trigger, dijet selection
 - |y₁-y₂| < 1.2,
 reduces QCD dijets
 - m_{jj} > 1.2 TeV
- Data-driven background fits
 - $f(z) = p_1 (1-z)^{p_2} z^{p_3 + p_4 \log(z)}$
 - $-z = m_{jj} / \sqrt{s}$
- 'Bumphunter' to find most significant local excess
- Uncertainty dominated by jet energy scale

No significant excess found

Event: 531676916 2015-08-22 04:20:10 CEST

> m_{jj} = 5.2 TeV Jet p⊤: 2.5, 2.4, 0.<u>3 Te</u>V

Non-resonant Di-jet Candidate

Run: 276731 Event: 876578955 2015-08-22 07:43:18

m_{jj} = 6.9 TeV Jet p⊤: 1.3, 1.2 TeV

Di-jet Search Results

Sensitive to strong gravity models

Compare to quantum BH production at threshold (ADD scenario, n = 6, $M_D = M_{th}$)

Threshold mass limit (QBH): m_{Th} > 6.8 TeV @ 95% CL

Run1 limit: $m_{Th} > 5.7 \text{ TeV}$

Luis R Flores Castillo

XV Mexican Workshop on Particles and Fields

Preparations for Higher Luminosity

m_{γγ} [GeV]

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Summer2015-13TeV

2015 data, so far

- 3.62 fb⁻¹ recorded 2015 (mainly 25ns bunch spacing)
- Full sample processed and available for analysis
- Many analyses under way
- Expected for Run II (until 2018) : ~ 100 fb-1

Outlook

- Rich set of recent results from Run I
 - SM and Higgs boson properties measured
 - Extensive NP searches
 - No new physics observed yet
- ATLAS is working well at 13TeV
 - Upgraded components have been commissioned
 - Performance already close to (or exceeding) Run1
- Initial measurements and searches with early data
 - SM processes from inclusive pp to ttbar cross-section
 - Many measurements limited by luminosity uncertainty
 - First competitive searches at 13TeV
 - Nothing found yet, but a lot of data in the pipeline already

BACKUP SLIDES

Run II has started; Run II is on

• We'll soon be crossing the "few fb⁻¹ at 13 TeV" mark

	Peak lumi E34 cm ⁻² s ⁻¹	Days proton physics	Approx. int lumi [fb ⁻¹]
2015	~0.5	65	3
2016	1.2	160	30
2017	1.5	160	36
2018	1.5	160	36

Paris Sphicas

Constraints to the pMSSM

- MSSM has over 100 parameters to describe sparticles and masses
- Phenomenological MSSM, (pMSSM) ~ 19 parameters under the assumptions that:
 - R-parity conserved- LSP is stable, the neutralino and sparticles are produced in pairs
 - Minimal flavor violation with no new source of CP violation
 - Degenerate 1st and 2nd generation squarks and sleptons
- Re-interpret 22 ATLAS Run 1 results in pMSSM

range	S:							
Parameter	Min value	Max value	Note					
$m_{\tilde{L}_1}(=m_{\tilde{L}_2})$	$90{ m GeV}$	$4\mathrm{TeV}$	Left-handed slepton (first two gens.) mass					
$m_{\tilde{e}_1}(=m_{\tilde{e}_2})$	$90{ m GeV}$	$4\mathrm{TeV}$	Right-handed slepton (first two gens.) mass					
$m_{\tilde{L}_3}$	$90{ m GeV}$	$4\mathrm{TeV}$	Left-handed stau doublet mass					
$m_{\tilde{e}_3}$	$90{ m GeV}$	$4\mathrm{TeV}$	Right-handed stau mass					
$m_{\tilde{Q}_1}(=m_{\tilde{Q}_2})$	$200{\rm GeV}$	$4\mathrm{TeV}$	Left-handed squark (first two gens.) mass					
$m_{\tilde{u}_1}(=m_{\tilde{u}_2})$	$200{\rm GeV}$	$4 \mathrm{TeV}$	Right-handed up-type squark (first two gens.) mass					
$m_{\tilde{d}_1}(=m_{\tilde{d}_2})$	$200{\rm GeV}$	$4\mathrm{TeV}$	Right-handed down-type squark (first two gens.) mass					
$m_{\tilde{Q}_3}$	$100{\rm GeV}$	$4\mathrm{TeV}$	Left-handed squark (third gen.) mass					
$m_{\tilde{u}_3}$	$100{\rm GeV}$	$4\mathrm{TeV}$	Right-handed top squark mass					
$m_{\tilde{d}_3}$	$100{\rm GeV}$	$4\mathrm{TeV}$	Right-handed bottom squark mass					
$ M_1 $	$0{ m GeV}$	$4 \mathrm{TeV}$	Bino mass parameter					
$ M_2 $	$70{ m GeV}$	$4\mathrm{TeV}$	Wino mass parameter					
$ \mu $	$80{ m GeV}$	$4\mathrm{TeV}$	Bilinear Higgs mass parameter					
M_3	$200{\rm GeV}$	$4\mathrm{TeV}$	Gluino mass parameter					
$ A_t $	$0{ m GeV}$	$8\mathrm{TeV}$	Trilinear top coupling					
$ A_b $	$0{ m GeV}$	$4\mathrm{TeV}$	Trilinear bottom coupling					
$ A_{\tau} $	$0{ m GeV}$	$4\mathrm{TeV}$	Trilinear τ lepton coupling					
M_A	$100{\rm GeV}$	$4\mathrm{TeV}$	Pseudoscalar Higgs boson mass					
$\tan\beta$	1	60	Ratio of the Higgs vacuum expectation values					

Constraints: considerations of precision EW and flavour results, dark matter relic density, and other ollider measurements

Parameter	Minimum value	Maximum value
$\Delta \rho$	-0.0005	0.0017
$\Delta(g-2)_{\mu}$	-17.7×10^{-10}	43.8×10^{-10}
${\rm BR}(b\to s\gamma)$	2.69×10^{-4}	$3.87 imes 10^{-4}$
${\rm BR}(B_s\to\mu^+\mu^-)$	1.6×10^{-9}	4.2×10^{-9}
${\rm BR}(B^+\to\tau^+\nu_\tau)$	66×10^{-6}	161×10^{-6}
$\Omega_{ ilde{\chi}_1^0} h^2$		0.1208
$\Gamma_{\text{invisible}(\text{SUSY})}(Z)$	—	$2{ m MeV}$
Masses of charged sparticles	$100{ m GeV}$	—
$m(\tilde{\chi}_1^{\pm})$	$103{ m GeV}$	—
$m(\tilde{u}_{1,2},\tilde{d}_{1,2},\tilde{c}_{1,2},\tilde{s}_{1,2})$	$200{ m GeV}$	
m(h)	$124{ m GeV}$	$128{ m GeV}$

Generate 19 pMSSM parameters within the

Luis R Flores Castillo

XV Mexican Workshop on Particles and Fields

November 3, 2011

Long-lived SUSY particles

- Constraints on the gluino R-hadron are set
 - R-hadrons formed from long-lived coloured sparticle (squark or gluino) and SM quarks and gluons

Complementary sensitivity from different searches relying on:

- reconstructed
 displaced vertex
 high ionization in
 - high ionization in tracker
 - timing measurement in muon and calorimeters

From dE/dx study:

 \triangleright

Gluino R-hadron with 10ns lifetime and masses up to 1185 GeV are excluded.

Long-lived particle summary

ATLAS Long-lived Particle Searches* - 95% CL Exclusion

Status: July 2015 $\int \mathcal{L} dt = (18.4 - 20.3) \text{ fb}^{-1}$ $\sqrt{s} = 8 \text{ TeV}$ ∫L dt[fb⁻¹] Signature Model Lifetime limit Reference $m(\tilde{g}) = 1.3 \text{ TeV}, m(\chi_1^0) = 1.0 \text{ TeV}$ $\text{RPV} \chi_1^0 \rightarrow eev/e\mu v/\mu\mu v$ displaced lepton pair 20.3 χ_1^0 lifetime 7-740 mm 1504.05162 $\operatorname{GGM} \chi_1^0 \to Z \tilde{G}$ $m(\tilde{g}) = 1.1 \text{ TeV}, m(\chi_1^0) = 1.0 \text{ TeV}$ displaced vtx + jets 20.3 6-480 mm 1504.05162 AMSB $pp \rightarrow \chi_1^{\pm} \chi_1^0, \chi_1^+ \chi_1^ \chi_1^{\pm}$ lifetime 0.22-3.0 m $m(\chi_1^{\pm}) = 450 \text{ GeV}$ disappearing track 20.3 1310.3675 SUSY χ_1^{\pm} lifetime AMSB $pp \rightarrow \chi_1^{\pm} \chi_1^0, \chi_1^+ \chi_1^-$ 1.31-9.0 m $m(\chi_1^{\pm}) = 450 \text{ GeV}$ large pixel dE/dx 18.4 1506.05332 χ_1^0 lifetime GMSB non-pointing or delayed γ 20.3 0.08-5.4 m SPS8 with $\Lambda = 200$ TeV 1409.5542 Stealth SUSY 0.12-90.6 m $m(\tilde{g}) = 500 \text{ GeV}$ 1504.03634 2 ID/MS vertices 19.5 **Š** lifetime $m(\pi_v) = 25 \text{ GeV}$ Hidden Valley $H \rightarrow \pi_{y}\pi_{y}$ 2 low-EMF trackless jets π_v lifetime 0.41-7.57 m 20.3 1501.04020 10% $m(\pi_v) = 25 \text{ GeV}$ Hidden Valley $H \rightarrow \pi_{\rm v} \pi_{\rm v}$ 0.31-25.4 m 1504.03634 2 ID/MS vertices 19.5 π_v lifetime Higgs BR γ_d lifetime FRVZ $H \rightarrow 2\gamma_d + X$ 2 e-, μ-, π-jets 20.3 14-140 mm $H \rightarrow 2\gamma_d + X, m(\gamma_d) = 400 \text{ MeV}$ 1409.0746 FRVZ $H \rightarrow 4\gamma_d + X$ γ_d lifetime 20.3 15-260 mm $H \rightarrow 4\gamma_d + X, m(\gamma_d) = 400 \text{ MeV}$ 1409.0746 $2 e^{-}, \mu^{-}, \pi^{-}$ iets $m(\pi_v) = 25 \text{ GeV}$ Hidden Valley $H \rightarrow \pi_{y}\pi_{y}$ 2 low-EMF trackless jets π_{v} lifetime 0.6-5.0 m 20.3 1501.04020 5% Higgs BR = 0.43-18.1 m $m(\pi_v) = 25 \text{ GeV}$ Hidden Valley $H \rightarrow \pi_{y}\pi_{y}$ 2 ID/MS vertices 19.5 π_{v} lifetime 1504.03634 FRVZ $H \rightarrow 4\gamma_d + X$ γ_d lifetime 28-160 mm $H \rightarrow 4\gamma_d + X, m(\gamma_d) = 400 \text{ MeV}$ 2 e-, μ-, π-jets 1409.0746 20.3 Hidden Valley $\Phi \rightarrow \pi_{\nu}\pi_{\nu}$ 2 low-EMF trackless jets 0.29-7.9 m $\sigma \times BR = 1 \text{ pb}, m(\pi_v) = 50 \text{ GeV}$ 20.3 π_{v} lifetime 1501.04020 GeV 300 π_v lifetime **0.19-31.9 m** $\sigma \times BR = 1$ pb, $m(\pi_v) = 50$ GeV Hidden Valley $\Phi \rightarrow \pi_{\rm v} \pi_{\rm v}$ 1504.03634 2 ID/MS vertices 19.5 Hidden Valley $\Phi \rightarrow \pi_{\nu}\pi_{\nu}$ 2 low-EMF trackless jets 20.3 π_{v} lifetime 0.15-4.1 m $\sigma \times BR = 1 \text{ pb}, m(\pi_v) = 50 \text{ GeV}$ 1501.04020 GeV 906 π_v lifetime 0.11-18.3 m Hidden Valley $\Phi \rightarrow \pi_{\nu}\pi_{\nu}$ 2 ID/MS vertices 19.5 $\sigma \times BR = 1 \text{ pb}, m(\pi_v) = 50 \text{ GeV}$ 1504.03634 π_v lifetime HV Z'(1 TeV) $\rightarrow q_V q_V$ 0.1-4.9 m $\sigma \times BR = 1 \text{ pb}, m(\pi_v) = 50 \text{ GeV}$ 2 ID/MS vertices 20.3 1504 03634 Other HV Z'(2 TeV) $\rightarrow q_v q_v$ π_v lifetime 2 ID/MS vertices 20.3 0.1-10.1 m $\sigma \times BR = 1 \text{ pb}, m(\pi_v) = 50 \text{ GeV}$ 1504.03634 0.01 0.1 10 1 100 cτ [m] √s = 8 TeV

*Only a selection of the available lifetime limits on new states is shown.

Various scenarios are considered, but no signal yet

Luis R Flores Castillo

XV Mexican Workshop on Particles and Fields

SUSY and Exotic searches

ATLAS Preliminary

Resonances decaying to VV, with V→jets?

Major new tool: jet substructure

To the innocent slide reader: large overlap in events...

P. Sphicas Experimental Summary

Turning fast to leptonic modes...

P. Sphicas Experimental Summary

Long-range Correlations

ATLAS-CONF-2015-027

- High-multiplicity events show long-range correlations at ΔΦ ~ 0 (near-side ridge)
- Dedicated MBTS + high multiplicity trigger in low-pileup data
- Tracks with p_T > 0.4 GeV |η| < 2.5
- Strength consistent with 7 TeV CMS data

P. Sphicas Experimental Summary XV Mexican Workshop on Particles and Fields Luis R Flores Castillo

ATLAS-CONF-2015-043

Multi-jet Search

- Non-resonant search
- H_T trigger (0.85 TeV)
- N_{jet} ≥ 3, p_T > 50 GeV
- Look for excess in H_T = ∑ p_T (jets)
- Data-driven background fits in control region (CR)
- Check in validation (VR)
- Compared to events in signal region (SR)

Luis R Flores Castillo

November 3, 2011

Multi-jet search results

Improvement over Run1 limit

Luis R Flores Castillo

XV Mexican Workshop on Particles and Fields

Non-resonant Di-jet Search

- Look for anomalies in shapes and rates at high mass
- $\chi = \exp|y_1 y_2|$
 - ~independent of m₁₂ for t-channel LO QCD
 - $\begin{array}{l} & |y_1 y_2| < 3.4 \ (\chi < 30) \\ & |y_B| = |y_1 + y_2|/2 < 1.1 \\ & m_{jj} > 2.5 \ \text{TeV} \end{array}$
- Prediction from NLOJET++ including EW effects
- Systematics dominated by QCD prediction and jet energy scale

No significant deviation found