

Present status of the experimental highenergy cosmic ray research

J.C. Arteaga Velázquez IFM, Universidad Michoacana Morelia, Michoacán, México

Present status of the experimental highenergy cosmic ray research

J.C. Arteaga Velázquez IFM, Universidad Michoacana Morelia, Michoacán, México

Overview

- 1) Introduction
- 2) The energy spectrum of Cosmic Rays
- 3) Detectors & Results
- 4) Astrophysical interpretation
- 5) Summary

Problem with galactic confinement: E_{max} ~ Ze x B x R

G. Giacinti et al., Phys. Rev. D 91, (2015)

Ler $10^{40} \text{ erg/s} = 10\% \text{ L}_{SNR}$

© KAGAYA

H 10¹⁵ eV Fe 10¹⁷ eV log E Problem with efficiency of accelerators (Fermi mechanism):

 $E_{\max}(Z) = Ze \times R_c = Z \times E_{\max}(Z=1).$

 $E^{H}_{max} = 4 \times 10^{15} \text{ eV}$ & $E^{Fe}_{max} = 10^{17} \text{ eV}$

T.K.Gaisser et al., Frontiers of Phys. 8 (2013)

Cassiopea A

Tycho

Kepler

Modelo Remanente de Supernova:

- Mecanismo fermi 1^{er} Orden $\Delta E/E \sim (v_2/c) = \beta$
- Energía máxima

 $\mathbf{E}_{\max} \, \mathbf{^{\sim}} \, \mathbf{Ze} \!\cdot \, \boldsymbol{\beta}_{s} \!\cdot \, \mathbf{B} \!\cdot \! \mathbf{R}$

Espectro de la forma

 $dN/dE \sim E^{-(\gamma o + \varepsilon)}$

donde $\gamma_o = 2 y \epsilon < 1$

J.C.Arteaga - HE Cosmic Rays

Detection

Indirect measurements extended below 1 PeV

J.C.Arteaga - HE Cosmic Rays

J.C.Arteaga - HE Cosmic Rays

In general, good agreement regarding main features of the all-particle spectrum

The KASCADE experiment

Karlsruhe Shower Core and Array Detector

Components

- Ground array with 252 e/γ and μ scintillator detectors
- Central detector (Calorimeter, µ detectors)

12

- Muon tracking detector

Observables:

 N_e, N_μ, N_{hadron}

= 10¹⁴ - 10¹⁷ eV

J.C.Arteaga - HE Cosmic Rays

- e/γ detector (liquid scintillator)
- lead/iron absorber

muon detector (plastic scintillator)

 $E = 10^{15} - 10^{17} eV$

Unfolding: $n_A(\lg N_e, \lg N_\mu) = \int_0^\infty p_A(\lg N_e, \lg N_\mu | E) f_A(E) dE$

• Knee at 4 - 5 x 10¹⁵ eV

 Agreement with experiments at lower and higher energies

D. Fuhrmann, PhD Thesis, KIT, (2012)

J.C.Arteaga - HE Cosmic Rays

Spectra of elemental groups: $E = 10^{15} - 10^{17} eV$

- Knee produced by light component
- Knee position change with composition
- $E_{knee} \alpha Z \text{ or } A?$
- E^{Fe}_{knee} ~ 10¹⁷ eV?

Z	Knee (10 ¹⁵ eV)
H (Z = 1)	4
He (z = 2)	7-8
C (Z = 6)	20-30

D. Fuhrmann et al., Astrop. Phys. 47 (2013)

J.C.Arteaga - HE Cosmic Rays

Effect of hadronic interaction models:

- Relative abundances change.
- Main results for light mass groups independent of both result and model.

M. Finger PhD Thesis, KIT, (2011)

J.C.Arteaga - HE Cosmic Rays

Composition: Comparison with direct measurements

Good agreement with direct measurements

M. Finger PhD Thesis, KIT, (2011)

J.C.Arteaga - HE Cosmic Rays

KASCADE-Grande detector

All-particle energy spectrum: E = 10¹⁶ - 10¹⁸ eV

Light/heavy mass groups

Light Ankle: 10¹⁷ eV

Energy spectrum of the iron component

J.C.Arteaga - HE Cosmic Rays

Spectra of light/Heavy groups: Effect of hadronic interaction models

- Main features are retained.
- Location of features slightly dependent of model.
- Relative abundances sensitive to hadronic models.

All-particle energy spectrum: $E = 10^{15} - 10^{18} eV$

J.C.Arteaga - HE Cosmic Rays

SIBYLL 2.1 predictions for Fe+Si/H+He are smaller than the measured data at HE for inclined EAS

J.C.Arteaga - HE Cosmic Rays

Tibet AS-gamma: All-particle flux (10¹⁴-10¹⁷ eV)

Knee position in agreement with KASCADE results

L- Jin-Sheng et al., arxiv: 1501.06327 J. Huang, et al., Astop. Phys. 66 (2015)

Model	Knee
QGSJET+Heavy D.	4.0 ± 0.1
QGSJET+Proton D.	3.8 ± 0.1
SIBYLL + Heavy D.	4.0 ± 0.1

Argo-YBJ/LHAASO CTA: P&He spectrum (3 x 10¹² - 3 x10¹⁵ eV)

• Argo-YBJ: 6700 m², 1836 Resistive Plate chambers

• Cherenkov telescope: 256 pixels, 1° x 1° each

Location of light knee from ARGO (700 TeV) in disagreement with KASCADE

J.C.Arteaga - HE Cosmic Rays

ICETOP/ICECUBE: All-particle spectrum (10¹⁵-10¹⁸ eV)

K.Rawlins et al., PoS (ICRC2015) 334

IceTop (Antartic, 2835 m a.s.l.)

- 81 Cherenkov detectors
- 1 km² of effective area
- Cherenkov light in ice.
- S(125m).

ICETOP/ICECUBE: Elemental mass group spectra (10¹⁵-10¹⁸ eV)

K.Rawlins et al., PoS (ICRC2015) 334

J.C.Arteaga - HE Cosmic Rays

ICETOP/ICECUBE: All-particle spectrum (10¹⁵-10¹⁸ eV)

TUNKA-133 (Rusia, 675 m a.s.l.)

- -175 optical detectors
- -1 km² of effective area
- -Cherenkov light in atmosphere -Q(175 m).

S. Epimakhov, HAP workshop, KIT; Germany, 2015 V.V. Prosin et al., NIMA 756 (2014)

ICETOP/ICECUBE: All-particle spectrum (10¹⁵-10¹⁸ eV)

TUNKA-133 (Rusia, 675 m a.s.l.)

- -175 optical detectors
- -1 km² of effective area
- -Cherenkov light in atmosphere -Q(175 m).

S. Epimakhov, HAP workshop, KIT; Germany, 2015 V.V. Prosin et al., NIMA 756 (2014)

- FD: 3 fluorescence stations.
- SD: 507 scintillation detectors, 700 km².

Telescope Array/TALE: All-particle spectrum (10¹⁵-10¹⁸ eV) Hybrid detector (USA, 1400 m a.s.l.)

E> 10¹⁵ eV

TALE

- 103 SD's, 70 km².
- 10 HiRes FD's.

T. AbuZayyad, UHECR 2014 meeting

S. Ogio, PoS (ICRC2015) 637

J.C.Arteaga - HE Cosmic Rays

Telescope Array/TALE: All-particle spectrum (10¹⁵-10¹⁸ eV)

C. Jui, ICRC 2015

Telescope Array & Auger: Hot spots at ultra-high energies

TΑ

7 years, 109 Events (> 57 EeV)

Northern Hemisphere: hot spot seen by TA (3.4 σ) near the Ursa Major cluster

Auger

10 years 157 events (> 57 EeV)

Southern Hemisphere: hot spot seen by Auger (post-trial prob 1.4%) near to Cen A

Pierre Auger Observatory

See L. Villaseñor talk

Hybrid detector, Argentina (1340-1610 m a.s.l.)

E> 10¹⁸ eV

- FD: 24 fluorescence stations.
- SD: 1660 WCD's, 3000 km².
- AERA: 124 radio stations, 6 km².

E> 10¹⁷ eV

- HEAT: 3 fluorescence telescopes.
- AMIGA: Underground muon counters.

Pierre Auger Observatory: All-particle spectrum (2 x 10¹⁷-10²⁰ eV)

Pierre Auger Observatory: All-particle spectrum

J.C.Arteaga - HE Cosmic Rays

Pierre Auger Observatory: Composition (6 x 10¹⁷-10²⁰ eV) See L. Villaseñor talk

Hardening of spectrum due to to a GAP between CNO and Fe groups? or transition from one type of source to another one?

Escape model: Diffusion in galactic magnetic field (GMF)

Components: Regular + Random

Fits to elemental spectra to constrain magnitude of $\ensuremath{\mathsf{B}_{rand}}$ in GMF.

Reduced turbulence (β small) is preferred.

G. Giacinti et al., Phys. Rev. D 91, (2015)

J.C.Arteaga - HE Cosmic Rays

Escape model: Diffusion in galactic magnetic field (GMF)

G. Giacinti et al., Phys. Rev. D 91, (2015)

- $E_{knees} \propto Z$
- Explain recovery of protons at 10¹⁷ eV.

Different type of sources

- $E_{knees} \propto Z$ for populations 1&2.
- Population 1: Classical SN: Emax ~ 100 TeV
- Population 2: Galactic Pevatron (PWN/Hypernovae, etc.)
- Population 3: Galactic Eevatron. (Hypernovae/GRB's in the past)
- Population 4: Extragalactic.

S. Tilav, ISVHECRI (2014) T.K.Gaisser et al., Frontiers of Phys. 8 (2013)

y-ray emission at GeV's detected by FERMI-LAT from two SNR's confirms cosmic ray acceleration up to 100 TeV

Scientific American 19-02-2013 J.C.Arteaga - HE Cosmic Rays

PEVATRON at the galactic center?

J.C.Arteaga - HE Cosmic Rays

Hillas: Extrapolation is not enough to explain the all-particle energy spectrum of cosmic rays.

- Contribution from ultra-heavy elements (> A^{Fe})?
- New galactic sources?

- The origin, propagation, acceleration mechanism and composition of highenergy cosmic rays is still not known.
- First measurements of the spectra of elemental mass groups have been done.
- Composition results on relative abundances affected by uncertainties in hadronic interaction models.
- Rigidity dependent scenario of galactic cosmic rays.
- First look at the galactic-extragalactic transition at the ankle of the light component?

Thank you!

J.C.Arteaga - HE Cosmic Rays