Hadrons Physics from Lattice QCD

I. Concepts of lattice field theory

regularisation, simulation, numerical measurements

II. Results for the hadron spectrum

from quenched to dynamical quarks, results to %-level

III. QCD and Chiral Perturbation Theory

QCD simulations in the δ -regime

- IV. Topological summation and density correlation approach to a problem ahead of us
- V. Prospects for Quantum Simulations ?

Motivation : QCD : assumed to be the fundamental theory behind nuclear physics, formulated in terms of quark– and gluon–fields.

But what we perceive are **hadrons**:

baryons ("consisting of 3 quarks (qqq)") such as protons and neutrons **mesons** ("consisting of a quarks-antiquark pair (q \bar{q})") such as pions.

However, consider nucleons: proton (uud) and neutron (udd)

masses (from Higgs mechanism) $m_u \simeq m_d pprox 3~{
m MeV}$

 \Rightarrow 3 valence quarks together account for $\approx 1 \%$ of the nucleon masses $M_{\rm p, n} \simeq 939 \,\mathrm{MeV}$ 99 % of the masses of macroscopic objects *binding energy*, a *mess of gluons and sea-quarks* inside the nucleons.

I. Concepts of Lattice QCD

Functional integral formulation of Quantum Field Theory in Euclidean space

- Partition function : $Z = \int \mathcal{D}\Phi e^{-S_{\mathrm{E}}[\Phi]}$ ($\Phi(x)$: some fields, $\hbar = 1$)
- Vacuum Expectation Value of an *n*-point function:

$$\langle 0|\mathrm{T}\,\hat{\Phi}(x_1)\dots\hat{\Phi}(x_n)|0\rangle = \frac{1}{Z}\int \mathcal{D}\Phi \,\Phi(x_1)\dots\Phi(x_n)\,e^{-S_{\mathrm{E}}[\Phi]}$$

• Interpretation as a statistical system:

 $p[\Phi] = e^{-S_{\rm E}[\Phi]}/Z \stackrel{!}{=} \text{ probability for field configuration } [\Phi] \text{ (if } S_{\rm E}[\Phi] \in \mathbb{R}_+\text{)}$

• Lattice regularisation: <u>discrete</u> Euclidean space-time, lattice spacing a implies UV cutoff π/a Reduces $\Phi(x)$ to Φ_x , field variables defined only on lattice sites x

 $\int \mathcal{D}\Phi \to \prod_x \int d\Phi_x$ is well-defined

Idea of Lattice Simulations :

Generate a large set of field configurations, independent and distributed with probability density $p[\Phi] \propto \propto \exp(-S_{\rm E}[\Phi])$.

Summation over this set \rightarrow measure observables (*n*-point functions) up to

- <u>statistical errors</u> (finite set), can be estimated and reduced with enlarged statistics
- systematic errors (finite a, finite volume ...), can be varied and extrapolated, estimate error in physical limit (continuum, $V \to \infty ...$)

But truly **non-perturbative !** Results at finite coupling strength. No problem in capturing strong coupling, in particular: QCD at low energy.

Monte Carlo Simulation and Numerical Measurement

Start sequence of conf's $[\Phi] \to [\Phi'] \to [\Phi''] \dots e.g.$ from a random conf. ("hot start")

Condition: "Detailed Balance" for transition between confs. $\Phi_1 \leftrightarrow \Phi_2$:

$$\frac{p[\Phi_1 \to \Phi_2]}{p[\Phi_2 \to \Phi_1]} \stackrel{!}{=} \frac{p[\Phi_2]}{p[\Phi_1]}$$
$$= \exp(S[\Phi_1] - S[\Phi_2])$$

after many steps correct statistical distribution $\propto p[\Phi]$

First discard many steps, until the right regime is attained ("thermalisation"). Then pick well separated ("de-correlated") confs to measure observables.

With this set, measure e.g. connected correlation function

 $\langle X(\vec{x},s)X(\vec{x},s+t)\rangle_{\rm c} \propto \cosh(M(t-\beta/2))$

X : (product of) fields, separated by Euclidean time t (periodic boundary conditions). Fit yields energy gap $M = E_1 - E_0 = \{\text{Mass of particle described by } X\} = 1/\xi$

Lattice Gauge Theory

Consider a scalar field $\Phi_x \in \mathbb{C}$ with some action like

$$S[\Phi] = \frac{a^2}{2} \sum_{x,y} \Phi_x^* M_{xy} \Phi_y + \frac{\lambda}{4!} a^4 \sum_x |\Phi_x|^4$$
$$M_{xy} = \sum_{\mu=1}^4 (-\delta_{x+\hat{\mu},y} - \delta_{x-\hat{\mu},y} + 2\delta_{x,y}) + (ma)^2 \delta_{x,y}$$

 $|\hat{\mu}| = a$, vector in μ -direction

Global symmetry $\Phi_y \to \exp(ig\varphi) \Phi_y$ is promoted to <u>local</u> symmetry $\Phi_y \to \exp(ig\varphi_y) \Phi_y$ by replacing the δ -links as

$$\Phi_x^* \Phi_{x+\hat{\mu}} \to \Phi_x^* U_{x,\mu} \Phi_{x+\hat{\mu}} , \qquad U_{x,\mu} \in \mathrm{U}(1)$$

7

 $U_{x,\mu}$: gauge link variable, $U_{x,\mu} o \exp(\mathrm{i}g\varphi_x)U_{x,\mu}\exp(-\mathrm{i}g\varphi_{x+\hat{\mu}})$

Discrete covariant derivative, regularised system is gauge invariant. Deal with "compact link variables" \in gauge group, also SU(N) no gauge fixing needed !

Gauge Action

Plaquette variable : $U_{x,\mu\nu} := U_{x,\nu}^{\dagger} U_{x+\hat{\nu},\mu}^{\dagger} U_{x+\hat{\mu},\nu} U_{x,\mu} \in \mathrm{SU}(N)$

minimal lattice Wilson loop, closed \rightarrow gauge invariant

$$S_{\text{gauge}}[U] = \frac{1}{4a^2} \sum_{x,\mu < \nu} \left(2N - \text{Tr}[U_{x,\mu\nu} + U_{x,\mu\nu}^{\dagger}] \right)$$

8

Fermion fields : $\bar{\Psi}_x$, Ψ_y $Z = \int \mathcal{D}\bar{\Psi}\mathcal{D}\Psi \ \exp(-\bar{\psi}_i M_{ij}\psi_j)$

i, j run over :

- \bullet space-time points \rightarrow lattice sites
- internal degrees of freedom (spinor index, ev. flavour and color)
- M contains for each spinor a (discrete, Euclidean) Dirac operator.
 Variety of formulations is used, but differences are <u>irrelevant</u> (in the RG sense).
 With gauge interaction: covariant derivative.

Components $\bar{\psi}_i$, ψ_j anti-commute,

representation by Grassmann variables : $\eta_1, \eta_2, \eta_3, \ldots$ (Berezin '66)

$$\{\eta_i, \eta_j\} = 0$$
, $\frac{\partial}{\partial_{\eta_i}} \eta_j = \delta_{ij} = \int d\eta_i \ \eta_j$ (no bounds)

General results: fermion determinant and chiral condensate

$$\mathcal{D}\bar{\Psi}\mathcal{D}\Psi \exp(-\bar{\Psi}M\Psi) = \det M \quad , \qquad \langle \bar{\Psi}_i\Psi_j \rangle = -(M^{-1})_{ij}$$

 \Rightarrow Computer never deals with Grassmann variables, "just" needs det M, M^{-1} (though typically millions of components . . .) <u>Bottleneck in simulations !</u>

Optimal algorithm (HMC) circumvents computation of $\det M$ by updating an auxiliary field $\vec{\Phi} \in \mathbb{C}^N$

det
$$M[U] = \int D\Phi \exp(-\vec{\Phi}^{\dagger}M[U]^{-1}\vec{\Phi})$$

Still requires $M[U]^{-1}$

Gauge action: shift for local update $[U] \rightarrow [U']$ can be computed locally \rightarrow fast

With fermions tedious, in QCD: quarks cost O(100) times more compute time.

Lattice QCD

- Gauge configuration [U]: set of compact link variables $U_{x,\mu} \in SU(3)$.
- Gauge action: sum over plaquette variables $U_{x,\mu\nu}$.
- Quark fields $\overline{\Psi}$, Ψ on lattice sites \rightarrow fermion determinant.

$$Z = \int \mathcal{D}U \underbrace{\det M[U] \exp(-S_{\text{gauge}}[U])}_{\text{statistical weight of conf. } [U] \to Monte Carlo}$$

Measure correlation functions, e.g. of pseudoscalar density $P = \bar{\Psi} \gamma_5 \Psi$

 $\langle P_x P_y \rangle_c \propto \exp(-M_\pi |x - y|) \Rightarrow \text{pion mass } M_\pi$

⇒ Explicit results for hadron masses, matrix elements, critical temperature for transition: confinement ↔ de-confinement, decay constants, topological susceptibility, etc. REALLY based on QCD.

Method also applies to other quantum field theories, like QED, Higgs theory, models for condensed matter . . .

- Left: strong coupling $\alpha_{\rm s}(q) = g_{\rm s}^2(q)/4\pi$ at transfer momentum q. Fit: $\alpha_{\rm s}(q) \propto 1/\ln(q/\Lambda_{\rm QCD})$ ($\Lambda_{\rm QCD} \approx 250 \text{ MeV}$)
- Right: the potential between static quarks; numerical results confirm confinement. $(0.2 \text{ fm} \simeq (1 \text{ GeV})^{-1})$

Hadron Masses :

Status: year 2002 (CP-PACS Collaboration), "quenched" simulations (generate conf's with det M = 1, corresponds to $N_f = 0$) Simulation much faster, but uncontrolled systematic error (no sea quarks). Compared to experiment: agreement up to $\approx 10\% \dots 15\%$ Moreover: 20th century: $M_{\pi} \gtrsim 600$ MeV, required risky "chiral extrapolation".

Dynamical quarks (det M included), *e.g.* Budapest-Marseille-Wuppertal Collab. (2008)

Now M_{π} down to ≈ 190 MeV. System size $L \simeq 4/m_{\pi}$ *i.e.* up to 4 fm : finite size effects under control. Continuum extrapolation based on lattice spacings a = 0.125 fm, 0.085 fm, 0.065 fm.

Above: evaluation from exp. decay, and chiral extrapolation $M_{\pi} \rightarrow 135$ MeV. Below: hadron spectrum, in particular $M_{Nucleon} = 936(25)(22)$ MeV vs. 939 MeV in Nature (statistical) (systematic) error.

New Approach by **QCDSF Collaboration**

W.B., V. Bornyakov, N. Cundy, M. Göckeler, R. Horsley, A. Kennedy, W. Lockhart, Y. Nakamura, H. Perlt,

D. Pleiter, P. Rakow, A. Schäfer, G. Schierholz, A. Schiller, T. Streuer, H. Stüben, F. Winter, J. Zanotti, [*Phys. Lett. B 690 (2010) 436* and *Phys. Rev. D 84 (2011) 054509*]

Traditional treatment of 2 + 1 flavours:

- 1. Get kaon mass M_K (resp. renormalised s-quark mass) \approx right
- 2. Push for lighter pions, keeping $M_K \approx \text{const.}$

New Strategy:

- 1. Start from a SU(3)_{flavour} symmetric point: $m_u^R = m_d^R = m_s^R$, $M_\pi = M_K$
- 2. Approach physical point with $m_s^R m_l^R$ splitting while keeping

 $X_{\pi}^2 := \frac{1}{3}(M_{\pi}^2 + 2M_K^2) \approx \text{const.}$ (centre of mass² in meson octet) M_{π} down, M_K up; χ PT safe guide in extrapolation

• Virtue: trajectory towards physical point (m_l^{R*}, m_s^{R*}) is constrained and stable. Any flavour singlet quantity $X_S(\bar{m}_0^R)$ $(\bar{m}_0^R = m_l^R = m_s^R)$ obeys under quark mass variations

$$X_{S}(\bar{m}_{0}^{R} + \delta m_{l}^{R}, \bar{m}_{0}^{R} + \delta m_{s}^{R})\Big|_{2\delta m_{l}^{R} + \delta m_{s}^{R} = 0} = X_{S}(\bar{m}_{0}^{R}, \bar{m}_{0}^{R}) + \underline{O((\delta m^{R})^{2})}$$

Fan Plots for Baryon Octet (spin-1/2) and Decuplet (spin-3/2)

Nucleon (*lll*), Λ (*lls*), Σ (*lls*), Ξ (*lss*) Δ (*lll*), Σ^* (*lls*), Ξ^* (*lss*), Ω (*sss*)

Phenomenologyvs. (extrapolated) numerical resultsInput: M_{π} , M_{K} and scale based on flavor symmetric point of the multiplet.World data: FLAG Report, arXiv:1310.8555 [hep-lat]

III. QCD and Chiral Perturbation Theory (χ PT)

QCD with massless quarks : L, R spinor components decouple

 $\mathcal{L}_{\text{QCD}} = \bar{\Psi}_L D \Psi_L + \bar{\Psi}_R D \Psi_R + \mathcal{L}_{\text{gauge}}$

With N_f flavours: global symmetry

 $U(N_f)_L \otimes U(N_f)_R = \underbrace{SU(N_f)_L \otimes SU(N_f)_R}_{\text{chiral flavour sym.}} \otimes \underbrace{U(1)_{L=R}}_{\text{baryon number}} \otimes \underbrace{U(1)_{\text{axial}}}_{\text{anomalous}}$

Chiral flavour symmetry breaks spontaneously

 $\mathrm{SU}(N_f)_L \otimes \mathrm{SU}(N_f)_R \rightarrow \mathrm{SU}(N_f)_{L+R}$

 χ PT : eff. Lagrangian with field $U(x) \in SU(N_f) \equiv$ coset space $m_q \gtrsim 0$: $N_f^2 - 1$ quasi Nambu-Goldstone bosons \sim light mesons

(Weinberg '79, Gasser/Leutwyler '82 . . . '88)

Consider $N_f = 2$; \mathbf{m}_q : mass for (degenerate) u and d quark U captures π^0 , π^{\pm} . Leading terms in effective low energy Lagrangian:

LECs : Free parameters in χ PT,

evaluation only from fundamental theory, *i.e.* QCD

Challenge : Non-perturbative QCD results for LECs from lattice simulations

• δ -Regime of QCD

(H. Leutwyler '87)

Small <code>spatial</code> volume, say $L^3 imes T$, $L\lesssim \xi\ll T$ (opposite to finite temperature)

Analytical treatment \approx quantum rotator, 1d O(4) \sim SU(2) \otimes SU(2) model

Experimentally not accessible, but simulations are possible, determine LECs (same as in $V = \infty$)

Finite volume \rightarrow no spont. sym. breaking. In the chiral limit $m_q \rightarrow 0$:

Fixed spatial box :

- Large m_q : behaviour of p-regime: $M_\pi^2 \propto m_q$ (Gell-Mann/Oakes/Renner relation)
- Small m_q : strong finite size effects, behaviour of δ -regime

Result of δ -expansion : mass gap for rotator spectrum $E_{\ell} = \ell(\ell+2)/(2\Theta)$

$$M_{\pi}^{R} = \frac{3}{2F_{\pi}^{2}L^{3}(1+\Delta)}$$

$$\Delta = \frac{0.452}{F_{\pi}^{2}L^{2}} + \frac{0.0884}{F_{\pi}^{4}L^{4}} \left[1 - 0.160 \left(\ln(\Lambda_{1}L) + 4\ln(\Lambda_{2}L) \right) \right] \dots$$

 Λ_i : scale parameters for renormalised sub-leading LECs, $\bar{l}_i = \ln \left(\frac{\Lambda_i}{M_\pi^{\rm phys}} \right)^2$

 $1^{\rm st}$ order : Leutwyler '87 ($\Theta\approx F_\pi^2 L^3\to\Delta=0)$ $2^{\rm nd}$ order : Hasenfratz/Niedermayer '93 $3^{\rm rd}$ order : Hasenfratz '10

Goal: measure M_π^R based on numerical simulations

 $\rightarrow~$ Test $\delta\text{-regime}$ predictions, determine LECs from first principles of QCD

Simulation results near transition zone and in δ -regime

Data down to $M_{\pi}^{R} < M_{\pi}^{\rm phys} \simeq 138 {
m ~MeV}$, and in δ -regime ($M_{\pi}^{R}L \leq 1$).

Good agreement with χ PT prediction !

W.B., M. Göckeler, R. Horsley, Y. Nakamura, D. Pleiter, P.E.L. Rakow, G. Schierholz and J.M. Zanotti, Phys. Lett. B687 (2010) 410 Moreover, fits yield (with phen. values for F_{π} , \bar{l}_1 , \bar{l}_2 , \bar{l}_4)

 $\bar{l}_3 = 4.2(2)$

IV. Topological Summation and density correlation

Motivation: Status of Lattice QCD

• For the light hadron spectrum, low energy QCD is now tested from 1^{st} principles and <u>confirmed to $\approx 1 \%$.</u> { K. Wilson's pessimism in 1989: will take > 30 years . . . }

* Sub-% level: QED effects; m_u, m_d splitting $\rightarrow M_n - M_p$ (Borsanyi et al. '15)

• Outstanding challenges: *e.g.* precision data for excited states (Roper resonance!). Generally: Step from post-dictions to pre-dictions

* M_{Bc} predicted by HPQCD (2005): 6.82(8) GeV; CDF (2006): 6.78(7) GeV.

• Everything looks smooth, but conceptual worry expressed by Lüscher '10:

At tiny $a \leq 0.05$ fm the Markov chains of most algorithms — such as Hybrid Monte Carlo — will get stuck in one topological sector; not ergodic, wrong results . . .

Remedy: open boundary conditions (Lüscher) or top. summation (last subject of this talk)

• Top. sectors for configurations in Quantum Field Theory

in space with periodic boundary conditions (torus).

Examples:

- O(N) models in d = N 1 dimensions, spin $\vec{e}(x) \in S^{N-1}$
- 2d $\operatorname{CP}(N-1)$ models, $\vec{c}(x) \in \mathbb{C}^N, \ |\vec{c}(x)| = 1$
- Gauge theories (may include fermions):

$$2 \mathrm{d} \mathrm{U}(1) : \quad Q = \frac{1}{2\pi} \int d^2 x \,\epsilon_{\mu\nu} F_{\mu\nu} \in \mathbb{Z}$$

$$4 \mathrm{d} \mathrm{SU}(N \ge 2) : \quad Q = \frac{1}{32\pi^2} \operatorname{Tr} \int d^4 x \, F_{\mu\nu} \tilde{F}_{\mu\nu} \in \mathbb{Z} \quad (\tilde{F}_{\mu\nu} = \epsilon_{\mu\nu\rho\sigma} F_{\rho\sigma})$$

Configurations can be continuously deformed only within a fixed top. sector.

Functional integral splits into separate integrals for each $Q \in Z$.

Example on the lattice: 2d U(1) lattice gauge theory

$$Q = \frac{1}{2\pi} \sum_{x} \epsilon_{\mu\nu} U_{x,\mu\nu} \quad \text{(plaquette variable } U_{x,\mu\nu} = U_{x,\nu}^* U_{x+\hat{\nu},\mu}^* U_{x+\hat{\mu},\nu} U_{x,\mu} \text{)}$$

Action minimum at fixed Q on $L \times L$ lattice (Sinclair '90)

 $S_{\min} = L - (L - 1)\cos(2\pi Q/L) - \cos(2\pi Q(L - 1)/L)$

29

Monte Carlo Simulation

Generate a set of lattice configurations $[\Phi]$ with probability

$$p[\Phi] = \frac{1}{Z} \exp\{-S[\Phi]\}$$

Sum over this set to compute expectation values $\langle \dots \rangle$ of observables

Most popular algorithms to generate confs perform a sequence of **small update steps** (*Markov chain*), until a new (quasi-)independent conf. emerges.

$$[\Phi] \to [\Phi'] \to [\Phi''] \to [\Phi'''] \to \dots$$

In particular: Hybrid Monte Carlo algorithm for QCD with dynamical quarks.

Problem: local updates rarely change the top. sector

• Striking for QCD with chiral quarks

E.g. JLQCD '07; Wuppertal Collab. '15 : HMC trajectory permanently confined in Q = 0

- Non-chiral lattice quarks (*e.g.* Wilson fermions): problem less severe so far, *i.e.* for $0.05 \text{ fm} \lesssim a \lesssim 0.15 \text{ fm}$. But: *will* show up on <u>even finer lattices</u>; continuum-like.
- ⇒ Monte Carlo history tends to be trapped for a very long (computing) time (many, many update steps) in one top. sector.

Extremely long topological auto-correlation time.

So how can we measure n-point functions, or the top. susceptibility

$$\chi_{\rm t} = (\langle \mathbf{Q}^2 \rangle - \langle \mathbf{Q} \rangle^2) / \mathbf{V}$$
 ?

Should be summed over all sectors, with suitable statistical weight...

Easier in quenched QCD, results by W.B./Shcheredin '06

Charge histograms for overlap-HF (left) ,

and standard overlap (right)

 \sim Gauss distribution (1013 coll s)

Peak profile ~ parity: spontaneous breaking is not fully ruled out (Azcoiti/Galante '99) No evidence for spontaneous parity breaking, nor kurtosis $\frac{1}{V}(3\langle Q^2 \rangle^2 - \langle Q^4 \rangle)$

[Consistent with Alles/D'Elia/DiGiacomo '05, Dürr/Fodor/Hoelbling/Kurth '07]

Topological susceptibility $\chi_{\mathrm{t}} = \frac{1}{\mathrm{V}} \langle \mathbf{Q}^2 \rangle$

Witten, Veneziano '79: (leading order in $1/N_c$) $\mathbf{m}_{\eta'}^2 = \frac{2N_f}{F_{\pi}^2} \chi_t$ (quenched χ_t) result supports WV scenario; $m_{\eta'} \approx 1 \text{ GeV} \pm 60 \text{ MeV}$ (compatible with 958 MeV)

Back to the problem of topological transitions in presence of dynamical quarks:

• Lüscher '10, Lüscher/Schaefer '11 :

suggest the use of open boundary conditions $\rightarrow Q \in \mathbb{R}$ changes gradually.

May solve the problem in some sense, but e.g. to check predictions in the ϵ -regime, and extract Low Energy Constants, integer Q are useful

ullet Here: approach with periodic b.c. o maintains $Q\in \mathbb{Z}$

Studies in

- 2d O(3) non-linear σ -model (Heisenberg model) with *cluster algorithm*
- 2-flavour Schwinger model (QED₂) with dynamical chiral fermions
- 4d SU(2) YM theory,

as toy models for QCD

Summation Formula for Observables

Goal: compute an unknown observable $\langle \Omega \rangle$, only with input of some measurements $\langle \Omega \rangle_{|Q|}$ at fixed |Q|, in some volumes.

Brower/Chandrasekharan/Negele/Wiese '03 Approximation formula for pion mass in QCD. Generalisation:

$$\langle \Omega
angle_{|Q|} pprox \langle \Omega
angle + rac{c}{V\chi_{
m t}} \Big(1 - rac{Q^2}{V\chi_{
m t}} \Big)$$

Measure left-hand-side for several |Q| and V, 3-parameter fit $\Rightarrow \langle \Omega \rangle$, $\chi_{\rm t}$, (c)

Assumptions:

large
$$\langle Q^2
angle \equiv V \chi_{
m t}$$
 , small $|Q|/\langle Q^2
angle \, \Rightarrow \,$ work at small $|Q|$

				directly measured
fitting range for L	48 - 64	48 - 96	48 - 128	in all sectors at $L = 128$
$\chi_{ m m}$	36.56(4)	36.58(3)	36.57(2)	36.57(2)
$\chi_{ m t}$	0.00262(17)	0.00256(16)	0.00259(14)	0.002790(5)

Bautista/W.B./Gerber/Hofmann/Mejía-Díaz/Prado '14

Application to the "pion mass" M_{π} in the 2-flavour Schwinger model

Degenerate fermion mass

• m = 0.01

$$\begin{array}{ccc} M_{\pi,0} & M_{\pi,1} \\ L = 28: & 0.146(4) \\ L = 32: & 0.05(1) & 0.160(8) \end{array} \right\} \xrightarrow{\text{fit}} \mathbf{M}_{\pi} = \mathbf{0.073(25)}$$

Matches well theoretical prediction (Smilga '97): $M_{\pi} = 2.008 \cdot m^{2/3} \beta^{1/6} = 0.071$ (though with large error)

• m = 0.06

$$\begin{array}{ccc} M_{\pi,0} & M_{\pi,1} \\ L = 16: & 0.041(1) & 0.271(4) \\ L = 32: & 0.23(1) & 0.232(7) \end{array} \right\} \stackrel{\text{fit}}{\longrightarrow} \mathbf{M}_{\pi} = \mathbf{0.232(8)}$$

Theory : $\mathbf{M}_{\pi} = \mathbf{0.235}$

W.B./Hip/Shcheredin/Volkholz '12

4d SU(2) Yang-Mills gauge theory

Identify Q by "cooling" on a 16^4 lattice ($a \simeq 0.076$ fm) measure static "quark-anti-quark potential" $\mathcal{V}_{q\bar{q}}(R)$ over distances R/a = 2...6

Values for $\mathcal{V}_{q\bar{q}}(r)$ à la BCNW, and reproduce accurately the potential from all sectors. However: so far problems with χ_t , study is ongoing.

Dromard/W.B./Gerber/Mejía-Díaz/Wagner '15

Summary of the last project

For local update algorithms, Monte Carlo histories can be trapped in **one** top. sector over a **long** (simulation) time

Very large volume overcomes this problem $(\langle \Omega \rangle_Q \equiv \langle \Omega \rangle$, the same $\forall Q$), but in general — *e.g.* in QCD simulations — not accessible.

Can we obtain physical results despite top. restriction ?

Top. summation works for observables, in suitable regime also for χ_{t} .

Conditions: $\langle Q^2 \rangle \gtrsim 1.5$, $|Q| \leq 2$

Prospects for application to QCD; typically $\langle Q^2 \rangle = O(10)$.

Outlook: Millenium problem: QCD phase diagram at high baryon density

High density requires chemical potential \Rightarrow Euclidean QCD action \in C

 $p[U] = \exp(-S_{\text{QCD}}[U])/Z \notin \mathbb{R}$, not a probability straight Monte Carlo fails (re-weighting requires statistics $\propto \exp(c V)$, "sign problem")

Possible solution: (analog) quantum computing, complex phase is included.

Proposal for 2d CP(2) model (topology, asympt. freedom, dyn. mass gap \sim QCD): ultra-cold (nK) Alkaline Earth Atoms trapped in an optical lattice: nuclear spin as SU(3) field, SSB SU(3) \rightarrow U(2), low energy action for Nambu-Goldstone bosons $\stackrel{!}{=}$ CP(2) model

Laflamme/Evans/Dalmonte/Gerber/Mejía-Díaz/W.B./Wiese/Zoller '15; to be implemented in Innsbruck