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Hadrons Physics from Lattice QCD

Concepts of lattice field theory

regularisation, simulation, numerical measurements
Results for the hadron spectrum

from quenched to dynamical quarks, results to %-level

QCD and Chiral Perturbation Theory
QCD simulations in the J-regime
Topological summation and density correlation

approach to a problem ahead of us

Prospects for Quantum Simulations ?



Motivation : QCD : assumed to be the fundamental theory behind nuclear physics,
formulated in terms of quark— and gluon—fields.

But what we perceive are hadrons:
baryons ( “consisting of 3 quarks (qqq)”) such as protons and neutrons
mesons ( “consisting of a quarks-antiquark pair (q G)") such as pions.

However, consider nucleons: proton (uud) and neutron (udd)

masses (from Higgs mechanism) m, >~ m, ~ 3 MeV
= 3 valence quarks together account for &= 1 % of the nucleon masses M, , >~ 939 MeV
99 % of the masses of macroscopic objects binding energy, a mess of gluons and sea-quarks
inside the nucleons.




. Concepts of Lattice QCD

Functional integral formulation of Quantum Field Theory in Euclidean space
e Partition function : Z = [ D® e~ el®] (®(z) : some fields, h = 1)

e Vacuum Expectation Value of an n-point function:
(O|T ®(z1) ... D(x,)]0) = /Dq) (1) ... P(z,) e Bl

e Interpretation as a statistical system:

p[®] = e SEl®]/Z = probability for field configuration [®] (if Sg[®] € R,)

e Lattice regularisation:
discrete Euclidean space-time, lattice spacing a implies UV cutoff 7/a



Reduces ®(x) to @, field variables defined only on lattice sites x
[D® — ], [ dP, is well-defined

|dea of Lattice Simulations :

Generate a large set of field configurations, independent and distributed
with probability density p[®] xox exp(—Sg|P]).

Summation over this set — measure observables (n-point functions) up to

e statistical errors (finite set), can be estimated and reduced with enlarged
statistics

e systematic errors (finite a, finite volume ...), can be varied and extra-
polated, estimate error in physical limit (continuum, V' — oco...)

But truly non-perturbative ! Results at finite coupling strength.
No problem in capturing strong coupling, in particular: QCD at low energy.




Monte Carlo Simulation and Numerical Measurement
Start sequence of conf's [®] — [®'] — [®"]... e.g. from a random conf. (“hot start”)

Condition: “Detailed Balance” for transition between confs. &; +— &, :

plP1— P2] 1 p[P

p[Py — P4] p[P1]
= exp(S[P1] — S[P2])

after many steps correct statistical distribution o p[®]



First discard many steps, until the right regime is attained ( “thermalisation™).
Then pick well separated (“de-correlated”) confs to measure observables.

Thermalisation histories (3 hot starts)
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With this set, measure e.g. connected correlation function
(X (Z,8)X(Z,s+1t)). ox cosh(M(t — (/2))
X : (product of) fields, separated by Euclidean time t (periodic boundary conditions).
Fit yields energy gap M = E1 — Ey = {Mass of particle described by X'} = 1/¢&



Lattice Gauge Theory

Consider a scalar field ®, € € with some action like

S| = _Z o*M,,d, + Z @,
T,y
4
Mzy = Z Ont iy — Ow—jiy + 200,y) + (ma)25:c,y
|fL| = a, vector in p-direction

Global symmetry &, — exp(igy) ®,
is promoted to local symmetry ®, — exp(igy, )P,
by replacing the o0-links as

O D, — DU, Py,  Up, €U



Us.,. : gauge link variable, U, , — exp(igy,)Uy , exp(—igps+p)

Discrete covariant derivative, regularised system is gauge invariant.
Deal with “compact link variables” € gauge group, also SU(N)
no gauge fixing needed !

Gauge Action

Plaquette variable : U, ,, := U} Ul UsspUz € SU(N)

T,V x+U, 1

KUV — plane

minimal lattice Wilson loop, closed — gauge invariant

1
SgmgelU] = 73 > (zN — T[Uy 0 + U;,W])

T, <V



Fermion fields : ¥,, ¥,

7 — /D\I}D\I! exp(—; M j1;)
7, 7] run over :

® space-time points — lattice sites
e internal degrees of freedom (spinor index, ev. flavour and color)

M contains for each spinor a (discrete, Euclidean) Dirac operator.
Variety of formulations is used, but differences are irrelevant (in the RG sense).
With gauge interaction: covariant derivative.

Components ), 1); anti-commute,

representation by Grassmann variables : 1y, 12, ns, ... (Berezin '66)

0
{771'7 77]’} =0 ) ?773‘ — 51'3‘ — /dm T); (no bounds)



General results: fermion determinant and chiral condensate

/D\TJD\IJ exp(—YMVU) =det M (U, 0,) = —(M~ 1),

= Computer never deals with Grassmann variables, “just” needs det M, M ! (though
typically millions of components ...) Bottleneck in simulations !

Optimal algorithm (HMC) circumvents computation of det M by updating an auxiliary
field & € €V
det M[U] = /D<I> exp(— & M[U] &)

Still requires M[U]™*

Gauge action: shift for local update [U] — [U’] can be computed locally — fast

With fermions tedious, in QCD: quarks cost O(100) times more compute time.
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Lattice QCD

e Gauge configuration [U] : set of compact link variables U, , € SU(3).
e Gauge action: sum over plaquette variables U, ,,. .
e Quark fields W, W on lattice sites — fermion determinant,

7 = /DU getM[U] eXp(_Sgauge[U])J

statistical weight of conf. [U] — Monte Carlo

Measure correlation functions, e.g. of pseudoscalar density P = W~5W

(Py Py)c x exp(—Mz|x — y|) = pion mass M,

= Explicit results for hadron masses, matrix elements, critical temperature for transition:

confinement <+ de-confinement, decay constants, topological susceptibility, etc.
REALLY based on QCD.

Method also applies to other quantum field theories, like
QED, Higgs theory, models for condensed matter . ..
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e Left: strong coupling as(q) = g*(q)/4m at transfer momentum q.
Fit: as(q) o< 1/In(q/Aqep)  (Agep = 250 MeV)

e Right: the potential between static quarks;

numerical results confirm confinement.

(0.2 fm ~ (1 GeV)™1)
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Hadron Masses :

Status: year 2002 (CP-PACS Collaboration), “quenched” simulations
(generate conf’s with det M = 1, corresponds to Ny = 0)

Simulation much faster, but uncontrolled systematic error (no sea quarks).
Compared to experiment: agreement up to ~ 10% ... 15%

Moreover: 20" century: M, > 600 MeV, required risky “chiral extrapolation”.



Dynamical quarks (det M included), e.g. Budapest-Marseille-Wuppertal Collab. (2008)
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Now M down to ~ 190 MeV. System size . ~ 4/my  i.e. up to 4 fm : finite size effects under
control. Continuum extrapolation based on lattice spacings a = 0.125 fm, 0.085 fm, 0.065 fm.

Above: evaluation from exp. decay, and chiral extrapolation M — 135 MeV. Below: hadron spectrum,

in particular My cleon = 936(25)(22) MeV vs. 939 MeV in Nature (statistical) (systematic) error.
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New Approach by QCDSF Collaboration

W.B., V. Bornyakov, N. Cundy, M. Gockeler, R. Horsley, A. Kennedy, W. Lockhart, Y. Nakamura, H. Perlt,
D. Pleiter, P. Rakow, A. Schafer, G. Schierholz, A. Schiller, T. Streuer, H. Stuben, F. Winter, J. Zanotti,
[ Phys. Lett. B 690 (2010) 436 and Phys. Rev. D 84 (2011) 054509 |

Traditional treatment of 2 4+ 1 flavours:

1. Get kaon mass Mg (resp. renormalised s-quark mass) = right
2. Push for lighter pions, keeping M =~ const.

New Strategy:

1. Start from a SU(3)gavour Symmetric point: mlt = mff = mf“, M. = My

U
R R

2. Approach physical point with m_ — m;" splitting while keeping

X2 :=%(M: + 2M;) ~ const. (centre of mass” in meson octet)

M. down, My up; xPT safe guide in extrapolation
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R *

e Virtue: trajectory towards physical point (m;*",
and stable. Any flavour singlet quantity Xg(m/Y)
obeys under quark mass variations

Xg(mlt + omft, mE + om™)

25mlR—|—5mSR:O

Xs(mg

mI**) is constrained
(mgt = m;* = my)

16



Fan Plots for Meson Spectrum [V = 243 x 48 and 323 x 64, a = 0.0765(15) fm]
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Results for the Hadron Spectrum
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Phenomenology vs. (extrapolated) numerical results

Input: M, My and scale based on flavor symmetric point of the multiplet.

World data: FLAG Report, arXiv:1310.8555 [hep-lat]
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I11. QCD and Chiral Perturbation Theory (xPT)

QCD with massless quarks : L, R spinor components decouple
‘C'QCD — \TJLD\IJL + \TJRD\IJR + /:'gauge
With N flavours: global symmetry

UNf)L ® U(Nf)r = SUWNy)L @ SUWN)r® U)r=r @ U(L)axial

chiral flavour sym. baryon number anomalous

Chiral flavour symmetry breaks spontaneously

SU(Np)L ® SUN)r — SU(Np) sz

xPT : eff. Lagrangian with field U(x) € SU(N;) = coset space mq 2,0 :
NJ% — 1 quasi Nambu-Goldstone bosons ~ light mesons

(Weinberg '79, Gasser/Leutwyler '82 ... '88)
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Consider Ny = 2 ; m, : mass for (degenerate) u and d quark
U captures 7, 7* . Leading terms in effective low energy Lagrangian:

2

Lox[U] = —£ Tx[0,U70,U] +

> mg

Tr[U + U]

1 1
—biyg (Tr[0,U'6,U])* — I . (Tr[0,U'6,U])?

> 2 >
(s + 14)( mq) (Te[UT + U2 + 1,224 Tv[8,U18,U] Tr[UT + U + . ...
2F, 4F
F . :  pion decay constant
by : chiral condensate Low Energy Constants

li, 1o, ...
LECs : Free parameters in xPT,
evaluation only from fundamental theory, i.c. QCD

Challenge : Non-perturbative QCD results for LECs from lattice simulations
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e 6-Regime of QCD (H. Leutwyler '87)

Small spatial volume, say L”® x T, L. < & < T (opposite to finite temperature)

Analytical treatment &~ quantum rotator, 1d O(4) ~ SU(2)®SU(2) model

Experimentally not accessible, but simulations are possible,
determine LECs (same as in V' = o0)

22



Finite volume — no spont. sym. breaking. In the chiral limit m, — O :

Residual pion mass Mf Schematically:

d—regime

Fixed spatial box :
e Large m, : behaviour of p-regime: M? o m, (Gell-Mann/Oakes/Renner relation)

e Small m, : strong finite size effects, behaviour of d-regime
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Result of §-expansion : mass gap for rotator spectrum E, = £(£ + 2)/(20)

3
2F2L5(1 + A)
0.452 0.0884

A = ot [1—0.160(1n(A1L)—|—41n(A2L))]

M =

_ N
A, : scale parameters for renormalised sub-leading LECs, [; = In ( ﬁflys>
MT('

15 order : Leutwyler '87 (© ~ F2L® — A =0)

2" order : Hasenfratz/Niedermayer '93

3'd order : Hasenfratz '10

Goal: measure Mf based on numerical simulations

— Test d-regime predictions, determine LECs from first principles of QCD
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Simulation results near transition zone and in d-regime
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Data down to M " < MP™® ~ 138 MeV, and in 6-regime (ML < 1).
Good agreement with xPT prediction !

W.B., M. Gockeler, R. Horsley, Y. Nakamura, D. Pleiter, P.E.L. Rakow, G. Schierholz
and J.M. Zanotti, Phys. Lett. B687 (2010) 410



Moreover, fits yield (with phen. values for Fy, 1y, l2, 14)

I3 = 4.2(2)

In upper range compared to literature:

RBC-UKQCD '08

MILC, SU(@3) |

prelim.

MILC, SU(2) |

prelim.

PACS-CS

JLQCD |

prelim.

JLQCD |

ETMC |

prelim.

Colangelo etal. |

2001

Gasser,

Leutwyler

1984

‘ total error ——!
— stat. error + - - - -

s E——

phenom.

0

1 2 3 4 5

(plot by E. Scholz)

World average according to FLAG Working Group : I3 = 3.3 + 0.7
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IV. Topological Summation and density correlation

Motivation: Status of Lattice QCD

e For the light hadron spectrum, low energy QCD is now tested from 1% principles and
confirmed to =~ 1 %. { K. Wilson's pessimism in 1989: will take > 30 years ... }

* Sub-% level: QED effects; m,,, mgq splitting — M,, — M,, (Borsanyi et al. '15)

e Outstanding challenges: e.g. precision data for excited states (Roper resonance!).
Generally: Step from post-dictions to pre-dictions

* Mp. predicted by HPQCD (2005): 6.82(8) GeV; CDF (2006): 6.78(7) GeV.

e Everything looks smooth, but conceptual worry expressed by Luscher "10:

At tiny a < 0.05 fm the Markov chains of most algorithms — such as Hybrid Monte
Carlo — will get stuck in one topological sector; not ergodic, wrong results . . .

Remedy: open boundary conditions (Lischer) or top. summation (last subject of this talk)
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e Top. sectors for configurations in Quantum Field Theory

in space with periodic boundary conditions (torus).

Examples:

e O(N) models in d = N — 1 dimensions, spin &(xz) € S¥~!
e 2d CP(N — 1) models, &) € €V, |&(z)| =1

e Gauge theories (may include fermions):

1 2
2d U(1) : Q = o d°xenF, €2
1 ) ) _
4d SUN > 2) : Q = 392 Tr/d x FFu, €2 (Fu = €uwpotps)

Configurations can be continuously deformed only within a fixed top. sector.

Functional integral splits into separate integrals for each Q € 7.
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Example on the lattice: 2d U(1) lattice gauge theory
Q=+=>" €uwUs . (plaquette variable U, ,, = UX U*, . UpinUs )

27 2D,

Action minimum at fixed @ on L X L lattice (Sinclair '90)
Smin =L — (L —1)cos(27Q/L) — cos(2mQ(L — 1)/L)

Interpolation to @ € R:

| | | | | | |
6 =32 —
L=64
5 | L=infinite -
c
-8 4 _|
(&)
®©
g 3
=
E L, |
1F i
0
-3 ) 1 0 1 2 3

Q (cont. extended)
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Monte Carlo Simulation

Generate a set of lattice configurations [®] with probability
1
p[2] =  exp{-S[®])

Sum over this set to compute expectation values (. ..) of observables

Most popular algorithms to generate confs perform a sequence of small update steps
(Markov chain), until a new (quasi-)independent conf. emerges.

[®] — [®] — [®"] = [@"] — ...

In particular: Hybrid Monte Carlo algorithm for QCD with dynamical quarks.

Problem: local updates rarely change the top. sector
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e Striking for QCD with chiral quarks

E.g. JLQCD '07; Wuppertal Collab. '15 :
HMC trajectory permanently confined in Q = 0O

e Non-chiral lattice quarks (e.g. Wilson fermions): problem less severe so far, i.e. for

0.05 fm < a < 0.15 fm. But: will show up on even finer lattices; continuum-like.

= Monte Carlo history tends to be trapped for a very long (computing) time
(many, many update steps) in one top. sector.

Extremely long topological auto-correlation time.
So how can we measure n-point functions, or the top. susceptibility
- 2 2y /v o
xte = ((Q7) —(Q)7)/ :

Should be summed over all sectors, with suitable statistical weight. . .
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Easier in quenched QCD, results by W.B./Shcheredin '06

Charge histograms for overlap-HF (left) , and standard overlap (right)
140 T T T T T 140 T T T T T
Gaussian with same <v> and norm - Gaussian with same <v?> and norm -
120 | ey . 120 | 1 .
100 | 71 ; . 100 | ) .
80 |- ‘ # . 80 |- g * .
60 | * - 60 | * -
40 - R 40 - E
20 R 20 -
0 - / 1 ] 0 1 A e = P
-10 -5 0 5 10 0 5 10
topological charge topological charge

~~ Gauss distribution (1013 conf’s)

Peak profile ~ parity: spontaneous breaking is not fully ruled out (Azcoiti/Galante '99)
No evidence for spontaneous parity breaking, nor kurtosis +(3(Q%)* — (Q*)

[Consistent with Alles/D’Elia/DiGiacomo '05, Diirr/Fodor/Hoelbling/Kurth '07]
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Topological susceptibility x; = +(Q?)

Susceptibility in V = (1.48 fm)° x 2.96 fm

0.09
standard ovlerlap, =5.85, Ip:1.6 (1015 c(;nfs) ——
overlap HF, 3=5.85 (1013 confs) :--*---
standard overlap, =6, p=1.6 (506 confs) -
0.08 | cont. limit by Giusti et al., 2005 ---® --: _
- }
<5 }K
= 007 | & 3 _
/\ -l
N
>
V -
0.06 0 |
0.05 L ! !
0 0.005 0.01 0.015 0.02

a® [fm?]
: o, : : o _ 2Ny
Witten, Veneziano '79: (leading order in 1/N,) m, = —5 x¢ (quenched x¢)

result supports WV scenario; m.» ~ 1 GeV &+ 60 MeV (comT)atibIe with 958 MeV)

n!
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Back to the problem of topological transitions in presence of dynamical quarks:
e Liischer '10, Liischer/Schaefer '11 :
suggest the use of open boundary conditions — ) € IR changes gradually.

May solve the problem in some sense, but e.g. to check predictions in the e-regime,
and extract Low Energy Constants, integer () are useful

e Here: approach with periodic b.c. — maintains (Q € 7

Studies in
e 2d O(3) non-linear o-model (Heisenberg model) with cluster algorithm
e 2-flavour Schwinger model (QED2) with dynamical chiral fermions
e 4d SU(2) YM theory,

as toy models for QCD
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Summation Formula for Observables

Goal: compute an unknown observable (€2), only with input of some measurements

(€2)|q| at fixed |Q/, in some volumes.

Brower/Chandrasekharan/Negele/Wiese '03

Approximation formula for pion mass in QCD. Generalisation:

C

(g = () + Vs

(-

QQ
Vixt

)

Measure left-hand-side for several |Q| and V, 3-parameter fit = (), x:, (¢)

Assumptions:

large (Q?) = Vx¢, small |Q|/{(Q?*) = work at small |Q)|

35



2d O(3) model, L X L lattices, L = 16...128, £ ~ 3.6
Magnetic susceptibility xm = (M?)/V (M =38, (M)=0)

40 | | | | | |
+
T e & # % s
35 = .
([ ]
= 30 s
x*
o5 L all seé:tgrg S S
Q=1+
20 =N ! ! ! QI :|2 . ? 7777777
0O 20 40 60 80 100 120 140
L

directly measured
fitting range for L 48 — 64 48 — 96 48 — 128 || in all sectors at L = 128

Xm 36.56(4) 36.58(3) 36.57(2) 36.57(2)

Xt 0.00262(17) | 0.00256(16) | 0.00259(14) 0.002790(5)

Bautista/W.B./Gerber/Hofmann/Mejia-Diaz/Prado '14
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Application to the “pion mass” M in the 2-flavour Schwinger model

Degenerate fermion mass
em = 0.01

MT(',O Mw,l flt
L =28: 0.146(4) ~> M, = 0.073(25)
L =32: 0.05(1) 0.160(8)

Matches well theoretical prediction (Smilga '97): M, = 2.008 - m?/33%/6 = 0.071
(though with large error)

e m — 0.06

M7r,0 Mw,l flt
L=16: 0.041(1) 0.271(4) p == M, = 0.232(8)
L=232: 0.23(1) 0.232(7)

Theory : M, = 0.235

W.B./Hip/Shcheredin/Volkholz ’12
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4d SU(2) Yang-Mills gauge theory

ldentify Q by “cooling” on a 16* lattice (a ~ 0.076 fm)
measure static “quark—anti-quark potential” V,z(R) over distances R/a =2...6

Values for Vy;(r) a la BCNW, and reproduce accurately the potential from all sectors.
However: so far problems with ¢, study is ongoing.

0.33

T
all sectors r+= 0.35 fixed top.
Q=0+ all sectors F———
0.325 Q=1+~ 0.3 |
Q=2
0.32 Q=3
0.25
0.315
I I
S > 0.2
S 0.31 S
| 0.15
0.305 |
0.1
0.3 l
‘ 0.05 : °
5.95 6 6.05 2 3 ! ’ °
Rja =6 R/a

Dromard /W.B./Gerber/Mejia-Diaz/Wagner '15
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Summary of the last project

For local update algorithms, Monte Carlo histories can be trapped in one top. sector over
a long (simulation) time

Very large volume overcomes this problem ((2)o = (£2), the same V Q),
but in general — e.g. in QCD simulations — not accessible.

Can we obtain physical results despite top. restriction 7

Top. summation works for observables, in suitable regime also for .
Conditions: (Q*) > 1.5, |Q| < 2

Prospects for application to QCD; typically (Q*) = O(10).
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Outlook: Millenium problem: QCD phase diagram at high baryon density

i Deconfined
I B
Confined \ '
\ Quarkyomc
\
i 1 LY
Mn us—

gas of ultra-cold atoms

— ||| Wb | —

High density requires chemical potential = Euclidean QCD action € C

plU] = exp(—SqcplU])/Z € R, not a probability
straight Monte Carlo fails (re-weighting requires statistics < exp(c V'), “sign problem™)

Possible solution: (analog) quantum computing, complex phase is included.

Proposal for 2d CP(2) model (topology, asympt. freedom, dyn. mass gap ~ QCD):
ultra-cold (nK) Alkaline Earth Atoms trapped in an optical lattice: nuclear spin as SU(3)

field, SSB SU(3) — U(2), low energy action for Nambu-Goldstone bosons = CP(2) model

Laflamme/Evans/Dalmonte/Gerber/Mejia-Diaz/W.B./Wiese/Zoller '15; to be implemented in Innsbruck
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