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Key SM Parameters

4 parameters from bosonic sector: g, g′ 
!

h / mRb: α ≡ g2 sin2θW∕4π (± 6.6 × 10−10)	

ge−2: α ≡ g2 sin2θW∕4π (± 8 × 10−13) [derived]	

PSI: GF ≡ 1∕(√2 v2) (± 5 × 10−7) [v = 246.22 GeV]	

LEP 1: MZ ≡ MW∕cosθW (± 2 × 10−5)	

Tevatron: MW ≡ g v∕2 (± 2 × 10−4) [derived]	

Z pole: sin2θW ≡ g′2∕(g2 + g′2) (± 7 × 10−4) [derived]	

LHC: MH ≡ λ v = √(−2 μ2) (± 3 × 10−3)	

LHC / Tevatron: mt(mt) ≡ λt v (± 6 × 10−3)
6

L� = (Dµ�)†Dµ�� µ2�†�� �2

2
(�†�)2



History
1950s: development of fundamental ideas underlying the SM (Yang-Mills theory,    
parity violation, V−A, intermediate vector bosons)	

1960s: construction of the SM (gauge group, Cabbibo-universality, Higgs 
mechanism, model of leptons)	

1970s: discovery of key predictions of the SM (neutral currents, APV, ν-scattering, 
polarized DIS)	

1980s: establishment of basic structure of the SM (discovery of W & Z, mutually 
consistent values of sin

2θW = g′2∕(g
2 
+ g′2) from many different processes)	

1990s (LEP, SLC): confirmation of the SM at the loop level ⇒ new physics at most 
a perturbation	

2000s (Tevatron): ultra-high precision in mt (0.5%) and MW (0.02%) ⇒ (most of) 
new physics seperated by at least a little hierarchy (or else conspiracy or very 
weak coupling)	

2010s (LHC, intensity frontier): EW symmetry breaking sector (Higgs & BSM)
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Complementary physics
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precision tests
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Complementary tools
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Low-energy!
precision tests

Collider !
searches

Flavor !
physics

High-energy !
precision tests

new amplitudes

EW symmetry !
breaking

MW 
sin2θW 

Z & H properties 
top quark properties

polarized e− scattering 
ν scattering 

atomic parity violation 
lepton properties 



Complementary facilities
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Low-energy!
precision tests

Collider !
searches

Flavor !
physics

High-energy !
precision tests

new amplitudes

EW symmetry !
breaking

High energy lepton 
and hadron colliders 

LEP & SLC 
Tevatron & LHC 

ILC, CEPC (SppC) & FCC

Medium energy 
accelerators & table-top 

CEBAF (Jefferon Lab) 
MESA (Mainz) 

flavor physics facilities



Weak boson masses



MH from radiative corrections

Consider fundamental SM relations like	

sin2θW = gʹ2∕(g2 + gʹ2) = 1 − MW2∕MZ2∕(1 + ∆ρ)	

or √2 GF (1 − ∆r) = e2 ∕(4 sin2θW MW2)	

Compute radiative correction parameters such as ∆ρ and 
∆r to very high (two-loop EW) accuracy	

These are functions of mt, MH, MZ, …, as well as MW and 
sin2θW themselves (needs numerical iterations)	

Compare with experimental ∆ρ and ∆r to test SM and 
look for deviations (new physics)

12
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MH from Higgs branching ratios?
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MH from Higgs branching ratios?
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Compare with results on 
coupling strength 



MH [GeV]
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source M(H) uncertainty

radiative corrections 89
+22
–18

LHC Higgs branching ratios 123.7 ±2.3

ATLAS & CMS	
(combination 2015) 125.09 ±0.24

JE, Freitas 2013	
PDG 2014
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experimental errors 68% CL / collider experiment:

LEP2/Tevatron: today
ILC

Figure 7: Prediction for MW as a function of mt, as given in the left plot of Fig. 4 (the mass
Mh of the light CP-even Higgs boson is assumed to be in the region 125.6 ± 3.1 GeV). In
addition to the current experimental results for MW and mt that are displayed by the gray
68% C.L. ellipse the anticipated future precision at the ILC is indicated by the red ellipse
(assuming the same experimental central values).

scan accordingly. Any additional particle observation would impose a further constraint and
would thus enhance the sensitivity of the parameter determination. In Fig. 8 we show the
parameter points from our scan that are compatible with the above constraints. All points
fulfill Mh = 125.6 ± 3.1 GeV and m

˜t1 = 400 ± 40 GeV. Yellow, red and blue points have
furthermore a W boson mass of MW = 80.375, 80.385, 80.395 ± 0.005 GeV, respectively,
corresponding to three hypothetical future central experimental values for MW . The left
plot in Fig. 8 shows the MW prediction as a function of the lighter sbottom mass. Assuming
that the experimental central value for MW stays at its current value of 80.385 GeV (red
points) or goes up by 10 MeV (blue points), the precise measurement of MW would set
stringent upper limits of ⇠ 800 GeV (blue) or ⇠ 1000 GeV (red) on the possible mass range
of the lighter sbottom. As expected, this sensitivity degrades if the experimental central
value for MW goes down by 10 MeV (yellow points), which would bring it closer to the
SM value given in Eq. (19). The right plot shows the results in the m

˜b1
–m

˜t2 plane. It can
be observed that sensitive upper bounds on those unknown particle masses could be set9

based on an experimental value of MW of 80.385 ± 0.005 GeV or 80.395 ± 0.005 GeV (i.e.
for central values su�ciently di↵erent from the SM prediction). In this situation the precise
MW measurement could give interesting indications regarding the search for the heavy stop
and the light sbottom (or put the interpretation within the MSSM under tension).

9See also Ref. [120] for a recent analysis investigating constraints on the scalar top sector.
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Figure 6: Prediction for MW as a function of mt. The left plot shows all points allowed by
HiggsBounds, the middle one requires Mh to be in the mass region 125.6 ± 3.1 GeV, while
in the right plot MH is required to be in the mass region 125.6 ± 3.1 GeV. The color coding
is as in Figs. 1 and 4. In addition, the blue points are the parameter points for which the
stops and sbottoms are heavier than 500 GeV and squarks of the first two generations and
the gluino are heavier than 1200 GeV.

sleptons, charginos and neutralinos, as analyzed above.

While so far we have compared the various predictions with the current experimental
results for MW and mt, we now discuss the impact of future improvements of these mea-
surements. For the W boson mass we assume an improvement of a factor three compared
to the present case down to �MW = 5 MeV from future measurements at the LHC and a
prospective Linear Collider (ILC) [118], while for mt we adopt the anticipated ILC accuracy
of �mt = 100 MeV [119]. For illustration we show in Fig. 7 again the left plot of Fig. 4,
assuming the mass of the light CP-even Higgs boson h in the region 125.6 ± 3.1 GeV, but
supplement the gray ellipse indicating the present experimental results for MW and mt with
the future projection indicated by the red ellipse (assuming the same experimental central
values). While currently the experimental results for MW and mt are compatible with the
predictions of both models (with a slight preference for a non-zero SUSY contribution), the
anticipated future accuracies indicated by the red ellipse would clearly provide a high sen-
sitivity for discriminating between the models and for constraining the parameter space of
BSM scenarios.

As a further hypothetical future scenario we assume that a light scalar top quark has
been discovered at the LHC with a mass of m

˜t1 = 400 ± 40 GeV, while no other new
particle has been observed. As before, for this analysis we use an anticipated experimental
precision of �MW = 5 MeV (other uncertainties have been neglected in this analysis).
Concerning the masses of the other SUSY particles, we assume lower limits of 300 GeV
on both sleptons and charginos, 500 GeV on other scalar quarks of the third generation
and of 1200 GeV on the remaining colored particles. We have selected the points from our

19
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The weak mixing angle
W± = (W1 ∓ i W2)∕√2	

Z0 = cosθW W3 – sinθW B	

A = sinθW W3 + cosθW B	

!

!

MW = ½ g v = cosθW MZ	

sin2θW = g′2∕(g2 + g′2) = 1 – MW2∕MZ2



Renormalization schemes

Many different schemes and definitions. Most commonly used:	

M̅S-̅scheme: sin2θW̅(μ) ≡ g ʹ ̅2∕(g  ̅2 + g ʹ ̅2) (theorist’s definition)	

ideal for gauge coupling unifcation (analogous to α̅s in QCD)	

effective weak mixing angle in terms of vector (gV ∝ 1 – 4 Qf sin2θW) and 
axial-vector couplings gA (experimentalist’s definition) 
!

!

numerically close to sin2θW̅(MZ)	

on-shell definition: sin2θW ≡ 1 – MW
2∕MZ

2	

induces spurious mt
2-dependence (enhances higher order contributions)

22
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Asymmetries

Z-pole: χ ~ MZ/ΓZ ≫ 1 ⟹ [with Af = 2 ve ae / (ve
2 + ae

2)]	

Ae Aμ (AFB) LEP	

Aτ (final state Apol) LEP	

Ae (ALR) SLD	

Aμ (AFB
LR) SLD	

PVES / e+ e– annihilation: χ ~ Q2 GF ≪ 1 ⟹ 	

ae vf (ALR in forward direction) SLAC-E122 & E158, Qweak, MOLLER, P2	

ve aq (ALR at larger scattering angles) PVDIS, SoLID	

ae aμ (AFB) Belle II (independent of sin2θW)

!23
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10 2

10 3

0.23 0.232 0.234

sin2e
lept
eff

m
H
  [

G
eV

]

r2/d.o.f.: 11.8 / 5

A0,l
fb 0.23099 ± 0.00053

Al(Po) 0.23159 ± 0.00041

Al(SLD) 0.23098 ± 0.00026

A0,b
fb 0.23221 ± 0.00029

A0,c
fb 0.23220 ± 0.00081

Qhad
fb 0.2324 ± 0.0012

Average 0.23153 ± 0.00016

6_had= 0.02758 ± 0.000356_(5)

mt= 172.7 ± 2.9 GeV

Z-pole asymmetries

LEP/SLC Average:  0.23153 ± 0.00016   χ2∕d.o.f. = 16.8∕12	
!
CDF:                    0.2315   ± 0.0010	
DO:                     0.23146 ± 0.00047	
ATLAS:                 0.2308   ± 0.0012	
!
Grand Average:     0.23151 ± 0.00015	
!
Standard Model:    0.23155 ± 0.00005
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Oblique parameters (STU)



Oblique physics beyond the SM

STU describe corrections to gauge-boson self-energies	

T breaks custodial SO(4)	

a non-degenerate SU(2)L doublet contributes                       
ΔT ≈ Δm2/(264 GeV)2 	

Currently:  ∑i Ci/3 Δmi2 ≤ (50 GeV)2	

a multiplet of heavy degenerate chiral fermions contributes 
ΔS = NC∕3π ∑i [t3Li − t3Ri]2	

extra degenerate fermion family yields ΔS = 2∕3π ≈ 0.21	

S and T (U) correspond to dimension 6 (8) operators

29
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Low energy precision tests



Δα

within PQCD. The approach chosen in this paper also
has an important practical advantage. Calculations of
Higgs limits or χ2 plots [9] require thousands of fits each
with multiple function calls. A numerical (dispersion)
integration within each call would be too expensive com-
putationally, but within the approach introduced in this
work, no numerical integration will be necessary. As a
result α̂(MZ) can be self-consistently recalculated in each
call, and the parametric uncertainty due to α̂s (which is
a fit parameter) can be dropped.

II. HEAVY QUARKS

The polarization function in Eq. (1) is defined through
the current correlator,

(qµqν − q2gµν)Π̂(q2) = i

∫

d4xeiqx⟨0|T jµ(x)jν(0)|0⟩,

where jµ is the electromagnetic current. For a heavy
quark it has been calculated up to 3-loop O(α̂α̂2

s) in
Ref. [12]. The result for Π̂(h)(0) is expressed in terms
of the quark pole mass. The coefficients grow rapidly
and application to charm (bottom) quarks is impossible
(questionable). However, the adverse coefficients are al-
most entirely due to the employment of the pole mass,
which is (due to quark confinement) not a well defined
quantity [13]. It is therefore appropriate to reexpress
Π̂(h)(0) in terms of the MS mass, m̂(µ), yielding (in agree-
ment with Ref. [14]),

Π̂(h)(0) =
Q2

h

4π2

{

L +
α̂s

π

[

13

12
− L

]

+
α̂2

s

π2

[

655

144
ζ(3)−

3847

864
−

5

6
L −

11

8
L2 + nq

(

361

1296
−

L

18
+

L2

12

)]}

, (3)

where Qh is the electric charge of the heavy quark, nq the

number of active flavors, and L = ln µ2

m̂2 . Now all coeffi-
cients are of order unity, indicating a reliable expansion.
Moreover, all terms proportional to π2 have cancelled.
By setting µ = m̂(µ) the L terms can also be dropped.
The remaining constant terms play the rôle of matching
coefficients to be applied when the number of flavors in
the effective theory is increased from nq−1 to nq. This is
familiar from the renormalization group evolution (RGE)
of α̂s. Since n-loop matching must be supplemented with
n + 1-loop RGE, inclusion of the O(αα̂3

s) beta function
contribution is required and will be discussed later.

Eq. (3) describes the contribution of a heavy quark in
the external current. The nq − 1 light quarks appear-
ing in internal loops must be treated as massless, since
3-loop diagrams involving two massive quarks with dif-
ferent masses have not been computed. It is indeed safe
to neglect terms of O(α̂2

sm̂
2
l /m̂2

h), since in practice the
heavy quark mass, m̂h, is always sufficiently larger than

all lighter quark masses, m̂l, and we will follow this ap-
proximation throughout. Conversely, in O(α̂2

s) the heavy
quark also appears as a loop insertion into a one-gluon
exchange diagram (the “double bubble” diagram), and
in the wave function renormalization of a light quark in
the external current. The limit q2 → 0 can only be per-
formed when the heavy quark is decoupled, i.e., the α̂s

definition for nq − 1 active flavors is used. This has been
done in Ref. [14],

δΠ̂(h)(0) =
∑

l

Q2
l

4π2

α̂2
s

π2

(

295

1296
−

11

72
L +

L2

12

)

. (4)

Eqs. (3) and (4) carry to O(α̂2
s) the decoupling of a heavy

quark [14], as was first suggested by Marciano and Ros-
ner [15] for the case of the top quark and generalized
to O(α̂s) in Ref. [16]. The same decoupling can also be
applied to the MS definition of the weak mixing angle.

With α̂s(m̂c)/π ≈ 0.13 and the absence of non-
perturbative effects, Eqs. (3) and (4) can be used reliably
not only for b but also for c quarks. Complications with
J/Ψ and Υ resonances are then completely avoided at
the expense of the introduction of a stronger dependence
on the quark masses. The numerical uncertainty due to
m̂b will turn out to be small, while m̂c will introduce an
error comparable to the one introduced through the J/Ψ
resonances in the SDR approach.

III. LIGHT QUARKS

I now turn to the three light quark flavors. Applying
Cauchy’s theorem to the contour in Fig. 1, yields

Π̂(0) =
1

π

µ2
0
∫

4m2
π

ds

s − iϵ
Im Π̂(s) +

1

2πi

∮

|s|=µ2
0

ds

s
Π̂(s). (5)

The optical theorem applied to the first term, and the
substitution s = µ2

0e
iθ to the second, brings the UDR

into its final form,

Π̂(3)(0) =
1

12π2

µ2
0
∫

4m2
π

ds

s − iϵ
R(s) +

1

2π

2π
∫

0

dθ Π̂(3)(θ). (6)

As in the SDR approach, the first integral can be evalu-
ated using the measured function R(s) up to a scale µ0

where PQCD is trusted. Together with the second (called
I(3) hereafter) this results for µ0 < MJ/Ψ in the 3-flavor

definition α̂(3)(µ0). Other values of µ are obtained using
RGE, and other quark and lepton flavors are included at
µ = m̂(µ) using the matching description discussed be-
fore. Special care is needed if µ0 > m̂c, where convention-
ally 4-flavor QCD is used. The clash with 3-flavor QED
will generate some extra (non-decoupling) logarithms.

2

Im s

Re s

C

4m 2
π

2
0µ

2q   = 0

FIG. 1. Contour for an unsubtracted dispersion integra-
tion.

Indeed, following Refs. [3,4] I will use µ0 = 1.8 GeV and
the result of Ref. [5], as quoted in Ref. [3],

αM2
Z

3π

µ2
0
∫

4m2
π

ds
R(s)

s(M2
Z − s) − iϵ

= (56.9 ± 1.1) × 10−4. (7)

The difference between this and the first integral in
Eq. (6) (times 4πα̂) can be neglected since,

α

3π

µ2
0
∫

4m2
π

dsR(s)

[

1

s − iϵ
−

M2
Z

s(M2
Z − s) − iϵ

]

=

2αµ2
0

2π
∫

0

dθ
Π̂(3)(µ2

0e
iθ)

M2
Ze−iθ − µ2

0

≈ −
2αµ2

0

3πM2
Z

≈ −6 × 10−7.

The second integral in Eq. (6) can again be obtained with
the help of Ref. [12],

I(3) =
1

6π2

{

5

3
+

α̂s

π

[

55
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− 4ζ(3) + 2

m̂2
s(µ0)
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+ (8)
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25

3
ζ(5) + F (
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m̂2
c

)

]}

,

where in the O(α̂s) term I kept the small s quark mass
effect (∼ 2 × 10−6). F (x) can be reconstructed from the
absorbtive part of Π̂(3)(s), i.e., R(s). Below threshold it
can be well approximated as an expansion in x, despite
the fact that m̂2

c < µ2
0, as can be shown by comparison

with the exact result [17] (the large quark mass expansion
in O(α̂3

s) is also known [18]). The coefficients in F (x)
decrease even more rapidly than in R(s),

F (x) ≈ lnx

[

2

3
ζ(3) −

11

12
+

lnx

12

]

− x

[

2

25
−

2

135
lnx

]

+x2

[

1513

2116800
−

lnx

5040

]

− x3

[

1853

80372250
−

lnx

127575

]

.

In principle, F (x) also applies to the tiny b quark contri-
bution to Π̂(3)(0), but without the non-decoupling loga-
rithms in the first term.

IV. RENORMALIZATION GROUP EVOLUTION

The QED β function including QCD corrections reads,

β ≡ µ2 dα̂

dµ2
= 4πα̂2µ2 d Π̂(0)

dµ2
≡ −

α̂2

π
(β0 + β1

α̂

π
+ β̂2

α̂2

π2

+ δ1
α̂s

π
+ δ̂2

α̂2
s

π2
+ δ̂3

α̂3
s

π3
+ δ̂4

α̂4
s

π4
+ ϵ2

α̂

π

α̂s

π
+ . . .), (9)

where coefficients with a caret are scheme dependent.

β0 = −
∑

f

Q2
f

3
, β1 = −

∑

f

Q4
f

4
, δ1 = −NcCF

∑

q

Q2
q

4
,

and ϵ2 are scheme independent and can be gleaned from
the 3-loop β function for simple groups [19]. δ̂2 is
straightforwardly computed from Eq. (3), resulting in

δ̂2 = NcCF

∑

q

Q2
q

[

1

32
CF −

133

576
CA +

11

144
TF nq

]

, (10)

where for QCD we have Nc = CA = 3, CF = 4/3, and
TF = 1/2. ϵ2 can be obtained from the first term with
the substitution Q2

qCF → Q4
q. The coefficients in the first

and the last term of Eq. (10) are familiar from

β̂2 =
1

32

∑

f

Q6
f +

11

144

⎛

⎝

∑

f

Q4
f

⎞

⎠

⎛

⎝

∑

f

Q2
f

⎞

⎠ .

On the other hand, the second term cannot be obtained
from Refs. [19], since it cannot be disentangled from con-
tributions with gluons in the external current. δ̂3 has
been obtained by Chetyrkin [20], and can also be recon-
structed in the following way. Analytical continuation
encodes the 4-loop order logarithms of Π̂(0) in

R(s) = Nc

∑

q

Q2
q

∑

i

ri
α̂i

s

πi
,

where the ri are the non-singlet coefficients (singlet con-
tributions which are to be treated likewise are ignored for
the moment). Denoting QCD β function coefficients by

β(3)
i , and the constant terms appearing in Eq. (8) in two

and three-loop order by ρ2 = CF (55/16− 3ζ(3)) and ρ3,
I find from a comparative analysis of leading logarithms
in the SDR and UDR approaches,

3

matching RGE

within PQCD. The approach chosen in this paper also
has an important practical advantage. Calculations of
Higgs limits or χ2 plots [9] require thousands of fits each
with multiple function calls. A numerical (dispersion)
integration within each call would be too expensive com-
putationally, but within the approach introduced in this
work, no numerical integration will be necessary. As a
result α̂(MZ) can be self-consistently recalculated in each
call, and the parametric uncertainty due to α̂s (which is
a fit parameter) can be dropped.

II. HEAVY QUARKS

The polarization function in Eq. (1) is defined through
the current correlator,

(qµqν − q2gµν)Π̂(q2) = i

∫

d4xeiqx⟨0|T jµ(x)jν(0)|0⟩,

where jµ is the electromagnetic current. For a heavy
quark it has been calculated up to 3-loop O(α̂α̂2

s) in
Ref. [12]. The result for Π̂(h)(0) is expressed in terms
of the quark pole mass. The coefficients grow rapidly
and application to charm (bottom) quarks is impossible
(questionable). However, the adverse coefficients are al-
most entirely due to the employment of the pole mass,
which is (due to quark confinement) not a well defined
quantity [13]. It is therefore appropriate to reexpress
Π̂(h)(0) in terms of the MS mass, m̂(µ), yielding (in agree-
ment with Ref. [14]),

Π̂(h)(0) =
Q2

h

4π2

{

L +
α̂s

π

[

13

12
− L

]

+
α̂2

s

π2

[

655

144
ζ(3)−

3847

864
−

5

6
L −

11

8
L2 + nq

(

361

1296
−

L

18
+

L2

12

)]}

, (3)

where Qh is the electric charge of the heavy quark, nq the

number of active flavors, and L = ln µ2

m̂2 . Now all coeffi-
cients are of order unity, indicating a reliable expansion.
Moreover, all terms proportional to π2 have cancelled.
By setting µ = m̂(µ) the L terms can also be dropped.
The remaining constant terms play the rôle of matching
coefficients to be applied when the number of flavors in
the effective theory is increased from nq−1 to nq. This is
familiar from the renormalization group evolution (RGE)
of α̂s. Since n-loop matching must be supplemented with
n + 1-loop RGE, inclusion of the O(αα̂3

s) beta function
contribution is required and will be discussed later.

Eq. (3) describes the contribution of a heavy quark in
the external current. The nq − 1 light quarks appear-
ing in internal loops must be treated as massless, since
3-loop diagrams involving two massive quarks with dif-
ferent masses have not been computed. It is indeed safe
to neglect terms of O(α̂2

sm̂
2
l /m̂2

h), since in practice the
heavy quark mass, m̂h, is always sufficiently larger than

all lighter quark masses, m̂l, and we will follow this ap-
proximation throughout. Conversely, in O(α̂2

s) the heavy
quark also appears as a loop insertion into a one-gluon
exchange diagram (the “double bubble” diagram), and
in the wave function renormalization of a light quark in
the external current. The limit q2 → 0 can only be per-
formed when the heavy quark is decoupled, i.e., the α̂s

definition for nq − 1 active flavors is used. This has been
done in Ref. [14],

δΠ̂(h)(0) =
∑

l

Q2
l

4π2

α̂2
s

π2

(

295

1296
−

11

72
L +

L2

12

)

. (4)

Eqs. (3) and (4) carry to O(α̂2
s) the decoupling of a heavy

quark [14], as was first suggested by Marciano and Ros-
ner [15] for the case of the top quark and generalized
to O(α̂s) in Ref. [16]. The same decoupling can also be
applied to the MS definition of the weak mixing angle.

With α̂s(m̂c)/π ≈ 0.13 and the absence of non-
perturbative effects, Eqs. (3) and (4) can be used reliably
not only for b but also for c quarks. Complications with
J/Ψ and Υ resonances are then completely avoided at
the expense of the introduction of a stronger dependence
on the quark masses. The numerical uncertainty due to
m̂b will turn out to be small, while m̂c will introduce an
error comparable to the one introduced through the J/Ψ
resonances in the SDR approach.

III. LIGHT QUARKS

I now turn to the three light quark flavors. Applying
Cauchy’s theorem to the contour in Fig. 1, yields

Π̂(0) =
1

π

µ2
0
∫

4m2
π

ds

s − iϵ
Im Π̂(s) +

1

2πi

∮

|s|=µ2
0

ds

s
Π̂(s). (5)

The optical theorem applied to the first term, and the
substitution s = µ2

0e
iθ to the second, brings the UDR

into its final form,

Π̂(3)(0) =
1

12π2

µ2
0
∫

4m2
π

ds

s − iϵ
R(s) +

1

2π

2π
∫

0

dθ Π̂(3)(θ). (6)

As in the SDR approach, the first integral can be evalu-
ated using the measured function R(s) up to a scale µ0

where PQCD is trusted. Together with the second (called
I(3) hereafter) this results for µ0 < MJ/Ψ in the 3-flavor

definition α̂(3)(µ0). Other values of µ are obtained using
RGE, and other quark and lepton flavors are included at
µ = m̂(µ) using the matching description discussed be-
fore. Special care is needed if µ0 > m̂c, where convention-
ally 4-flavor QCD is used. The clash with 3-flavor QED
will generate some extra (non-decoupling) logarithms.
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R(s)

35

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

1 10 10
2

σ
[m

b
]

ω

ρ

φ

ρ′

J/ψ

ψ(2S)
Υ

Z

10
-1

1

10

10 2

10 3

1 10 10
2

R ω

ρ

φ

ρ′

J/ψ ψ(2S)

Υ

Z

√
s [GeV]

R(s) = 12� Im �̂(had)(s)

= ⇥hadrons
⇥

µ+µ�

PDG 2012



↵̂(µ) =

↵
1�4⇡↵ˆ

⇧(0)

(MS)

↵(s) =

↵
1��↵

lep

(s)��↵
had

(s) (on-shell)

�↵
had

(s) = � ↵
3⇡Re

1R

4m2

⇡

ds0 sR(s0)
s0(s0�s�i✏)

aµ ⌘ gµ�2

2

ahad,2�loop

µ =

↵2

3⇡2

1R

4m2

⇡

ds K(s)
s R(s)

K(s): known kernel function

Δα and μ anomalous magnetic moment (aμ)
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gμ−2

aμ ≡ (1165920.80 ± 0.63)×10−9 BNL-E821 2004	

goal of FNAL-E989 (New g−2 Collaboration):          
± 0.16 × 10−9 	

SM: aμ = (1165918.21 ± 0.48)×10−9	

3.3 σ deviation (includes e+e− & τ-decay data) 	

2 and 3-loop hadronic vacuum polarization:	

consistency between exp. B(τ− → ν π0 π−) 
and prediction from e+e− and CVC after 
accounting for γ-ρ mixing                   
Jegerlehner, Szafron 2011	

1.9 σ conflict between KLOE and BaBar
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gμ−2: other contributions

4-loop and leading 5-loop QED corrections                                         
Aoyama, Hayakawa, Kinoshita, Nio 2012	

electroweak corrections: 1-loop (W, Z, H)                                                  
Czarnecki, Krause, Marciano 1995	

2-loop, leading 3-loop Degrassi, Giudice 1998;                                    
Czarnecki, Krause, Marciano 1996; Czarnecki, Marciano, Vainshtein 1996	

γ×γ: (1.1 ± 0.3)×10-9 Prades, de Rafael, Vainshtein 2009	

< 1.6×10-9 JE, Toledo 2006	

SUSY? MSUSY ≃ + 71+14
−9 GeV √tanβ Arnowitt, Chamsedine, Nath 1984 	

dark photon? Fayet 2004; Finkbeiner, Weiner 2007; Arkani-Hamed, Finkbeiner, 
Slatyer, Weiner 2008 	

dark Z? Davoudiasl, Lee, Marciano 2012
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Running  
sin2θW̅

39

Define in M̅S-̅scheme: sin²θW̅(μ) ≡ g′̄²(μ)∕[g²̄(μ) + g′̄²(μ)]	

RGE for α̅: μ² dᾱ∕dμ² ≡ ᾱ∕24π ∑k NC
k γk (Qk)²	

RGE for vī: X̅ ≡∑i NC
i γi v ̄i Qi ⟹ dX̅∕X̅ = dᾱ∕α	

running of ᾱ (e+e− and/or τ data) ⇒ running of sin²θW̅ if	

	 either no mass threshold is crossed	

	 or perturbation theory applies (W±, leptons, b & c quarks)	

	 or all coefficient are equal (RGE factorizes) like for (d,s)	

	 or there is a symmetry like SU(3)F



Flavor separation and 	
threshold mass trick

40

only problem area: u vs. (d,s) or s vs. (u,d)                                      
(ms ≠ md ≈ mu)	

strategy: define threshold masses, m̅q = ½ ξq M1S (0≤ ξq ≤1)	

expect: ξb > ξc > ξs > ξd > ξu	

compute m̅b = 3.995 GeV and m̅c = 1.176 GeV in perturbative 
QCD ⟹ ξb = 0.845 > ξc = 0.759 (✓)	

heavy quark limit for m̅s: ξs → ξc ⟹ m̅s < 387 MeV	

SU(3)F limit: ξs → ξd ≈ ξu + dispersion result for Δα̅(3)(m̅c)	

⇒ m̅s > 240 MeV JE, Ramsey-Musolf 2005
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OZI rule 
violation

41

QCD annihilation (“singlet”) type diagrams	

Qu + Qd + Qs = 0 ⇒ no OZI rule violation in SU(3)F limit	

Tu + Td = 0 ⇒ only “induced” OZI rule violation	

assuming that the leading order perturbative coefficient is of 
typical size (not accidentally small) ⇒ δOZI sin2θW ~ 10−6	

not assuming this ⇒ δOZI sin2θW ~ α∕90π ~ 2.6 ×10−5 from NC 
counting and considering EFT with strange quarks integrated out	

10−6 estimate in line with small ω-Φ mixing angle ~ 0.055, but 
we use the very conservative 3 ×10−5 JE, Ramsey-Musolf 2005



Uncertainties
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source comment uncertainty

δΔα e 3 × 10

m flavor separation 5 × 10

m isospin breaking 1 × 10

singlet contributions OZI rule violation 3 × 10

m̅ QCD sum rules 4 × 10

α̅ Z and τ-decays 4 × 10

TOTAL incl. (excl.) parametric 9 (7) × 10

JE, Ramsey-Musolf 2005
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The low-energy (Fermi) limit
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Effective couplings

Normalized so that gLLLL = 1 (μ-decay)	

NC couplings: gefAV e  γ̅μγ5 e f  γ̅μ f        gefVA e  γ̅μ e f  γ̅μγ5 f	

      |gefAV| = ½ − 2 |Qf| sin2θW           |gefVA| = ½ − 2 sin2θW	

f = e → |geeAV| = ½ − 2 sin2θW ≪ 1	

in SM: enhanced sensitivity to sin2θW                         
(compete with Z-pole)	

BSM: enhanced sensitivity to Λnew
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Parity violation	
– interference –



Atomic parity violation

effects tiny and ~ Z3 → seen only in heavy atoms	

gAV (C1q) add up coherently → nuclear spin-independent 
interaction	

spin-dependent gVA (C2q) clouded by dominant nuclear anapole 
moment  (~ Z2∕3) 	

separate gAV and gVA by measuring different hyperfine transitions	

Future: take ratios of PV in different isotopes Rosner 1996	

single trapped Ra ions are promising due to much larger PV 
effect Wansbeek et al 2012
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Elastic scattering
Scattering from proton as a whole →  
gVA

ep ≡ 2 gVA
eu  + gVA

ed =− ½ + 2 sin2θW	

JLAB-Qweak Collaboration completed data taking to determine gVA
ep  from 

!

!

!

  	

Small Q2 = 0.025 GeV2  and y ≡ 1 − Eʹ∕E = 0.0082 important to keep y2-term 
and associated hadronic uncertainties below experimental error.	

extrapolation to y → 0 using other ALR
ep measurements at higher Q2	

can extract weak charge of proton QW
p ≈ − 2 gAV

ep (4%) and sin2θW (0.3%)

47

Aep
LR ⌘ d�L � d�R

d�L + d�R
= �mp(2Ee +mp)

v2
g ep
AV

4⇡↵
Fep

Fep =
⇥
y +O(y2)

⇤Fep
QED(Q

2, y)



γ-Z boxes	

generate large EW logs regulated in the IR by uncertain 
hadronic scale  
(similarly for charge radius correction to gVAeq)	

for APV (Ee ≈ 0, Q2 ≈ 0) effect for gAVeq is ∝ gVAeq and vice 
versa	

for elastic scattering Ee ≠ 0, mixing in opposite chirality 
structure	

 strong point for P2 (Mainz)
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Elastic scattering future (P2)

order y2-term significant at Qweak                                              
(⅓; no 1 − 4 sin2θW suppression)	

 1.5% theory uncertainty	

 go to even lower y	

New experiment (P2) planned at MESA (Mainz) at                    
Q2 = 0.0048 GeV2 and y = 0.0038	

γ-Z box correction will also be smaller at lower Q2	

auxiliary JLab and Mainz experiments will help to better 
constrain γ-Z box	

 P2 goal of 2% in gAV
ep or QW

p and ±0.00036 in sin2θW or better
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gVAeu and gVAed (DIS)

problematic at very low energies (elastic or quasi-elastic)	

charge weighted combination from (in valence quark approximation)	

!

!

eDIS asymmetries much larger (≳ 10−4) than in elastic scattering	

measured to ~ 10% at SLAC for 0.92 GeV2 < Q2 < 1.96 GeV2 
Prescott et al 1979 	

2 further points at Q2 = 1.1 and 1.9 GeV2 to 4.5%                         
by JLab-Hall A Collaboration 2014	

approved SOLID experiment will measure large array of kinematic 
points up to 9.5 GeV2 (0.5% precision in coupling combination)
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PVES and SUSY
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Energy-intensity complementarity



Contact interactions



Model independent new physics sensitivity
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LIMITS ON COMPOSITENESS SCALES

JENS ERLER

We want to obtain limits on compositeness scales which can be compared as di-
rectly as possible with existing limits. We mostly adapt here the conventions from [2]
and the procedure followed by the LEP 2 Collaborations, as it is quite explicitly de-
scribed in [1]. This is not necessarily meant as an endorsement of the conventions
and method used there.
The new physics e↵ective Lagrangian for eq interactions is given by [2]

(1) L
eq

=
g

2

⇤2

X

i,j=L,R

⌘

ij

ē

i

�

µ

e

i

q̄

j

�

µ

q

j

,

where ⇤ is defined [2] “such that the strong coupling g

2
/4⇡ = 1 and the largest

|⌘
ij

| = 1”. For ⌘

LL

= ⌘

RL

= �⌘

LR

= �⌘

RR

= 1, and adding the SM contribution,
one then obtains

(2) L
eq

=


G

Fp
2
g

eq

V A

(SM) +
g

2

⇤2

�
ē�

µ

e q̄�

µ

�

5
q

⌘ g

eq

V A

(SM) + g

eq

V A

(new)

2v2
ē�

µ

eq̄ �

µ

�

5
q ⌘ g

eq

V A

2v2
ē�

µ

e q̄�

µ

�

5
q,

where v = (
p
2G

F

)�1/2 = 246.22 GeV is the Higgs vacuum expectation value setting
the electroweak scale. Note, that the explicit factor 1/2 in the second line of Eq. (2)
is historical, and arises from writing g

V

= g

L

+ g

R

and g

A

= g

L

� g

R

instead of

(3) g

V,A

=
g

L

± g

Rp
2

,

and likewise for the bilinear e↵ective couplings in Eq. (2). This is important for the
numerical values of ⇤ discussed below.
Now suppose that a measurement of the e↵ective coupling, geq

V A

, or a fit to some
data set, finds the central value ḡ

eq

V A

, then the best estimate of the new physics
contribution would be given by

(4)
g

2

⇤2
=

4⇡

⇤2
=

ḡ

eq

V A

� g

eq

V A

(SM)

2v2
.

g2 = 4π (convention)

Customary to quote one-sided limits on Λ!
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important metric: 
generalization to other types of operators? 
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precision Δ Λ
APV 0.58 % 0.0019 32.3 TeV

E158 14 % 0.0013 17.0 TeV
Qweak I 19 % 0.0030 17.0 TeV
PVDIS 4.5 % 0.0051 7.6 TeV

Qweak final 4.5 % 0.0008 33 TeV
SoLID 0.6 % 0.00057 22 TeV

MOLLER 2.3 % 0.00026 39 TeV
P2 2.0 % 0.00036 49 TeV

PVES 0.3 % 0.0007 49 TeV
APV 0.5 % 0.0018 34 TeV

APV 0.1 % 0.0037 16 TeV
Belle II 0.14 % ― 33 TeV

CEPC / FCC ? ? ?



CepC-SppC

240 GeV e+ e– collider	

Can significantly increase precision of many EW observables 
over LEP even when no advances regarding systematics.	

Contact interactions from ZH threshold (poor statistics @LEP)	

Can obtain good measurements of MW and ΓW from WW 
threshold without beam polarization but very high rates?	

ΓW can determine αs with very small theory error and is 
less sensitive to new physics (invisible decays) than ΓZ 
and provides a CKM matrix unitarity check.
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Conclusions



Synopsis: separating new physics

Z-pole MW, ΓZ, 
AFB@Belle II

ZH-threshold!
PVES APV

oblique contactmixing portal
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Conclusions

Precision tests generally in excellent agreement with SM	

Three independent determinations of MH agree very well	

Persistent: gμ−2 (3.3 σ) and AFB(b) vs. ALR	

Emergence of MW anomaly? (small, but MW is special)	

Consistent with what the LHC has not seen, there appears to 
be at least a little hierarchy between MH and Λnew	

Low-energy: 	

next generation experiments set to reach LEP precision	

model-independent couplings: multi-TeV scale (stay tuned)
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If there is time…



66

Running sin2θW and Dark Parity Violation

Marciano 2013



Backups



Cs APV

good understanding of atomic structure crucial → Cs (Tl)	

moving history of most precise measurement (Cs) by Boulder group 	

initially agreement with SM Wood et al 1997	

direct measurement of ratio of off-diagonal hyperfine amplitude to 
polarizability reduced overall error → 2.5 σ deficit Bennett, Wieman 1999	

reevaluation of Breit interaction → 1.2 σ Derevianko 2000	

reevaluation of other effects canceled each other → 1 σ                      
Dzuba, Flambaum, Ginges; Johnson; Milstein, Sushkov; Kuchiev, Flambaum; Derevianko;  
Milstein, Sushkov, Terekhov 2002; Sapirstein 2003; Shabaev 2005	

state-of-the-art many body calculation → 0.1 σ Porsev, Beloy, Derevianko 2009	

corrections to two non-dominating terms → 1.5 σ Dzuba, Berengut, 
Flambaum, Roberts 2012
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APV Future

take ratios of PV in different isotopes Rosner 1996	

reduces atomic theory uncertainty Bouchiat, Pottier 1986	

but effect also partly cancels → higher precision needed 	

also new uncertainty from poorly known neutron radius                   
Pollock, Fortson, Wilets 1992	

JLab experiments such as PREX and CREX will help	

mostly constrains gAV
ep ≡ 2 gAV

eu + gAV
ed 

Ramsey-Musolf 1999
 	

but different γ-Z box than Qweak experiment (see later)	

ideally one would measure APV in H and D Dunford, Holt 2007	

single trapped Ra ions are promising due to much larger PV effect 
Wansbeek et al 2012
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NuTeV

sin
2θW

on-shell
 ≡ 1 − MW

2∕MZ
2
 = 0.2277 ± 0.0016	

SM: sin
2θW = 0.22296 ± 0.00028 (3.0 σ deviation)	

deviation sits in gL
2
 (2.7 σ)	

various SM effects have been suggested: 
asymmetric strange sea 
isospin violation (QED splitting effects Glück, Jimenez-Delgado, Reya 2005 and PDFs 

Sather 1992; Rodionov, Thomas, Londergan 1994; Martin et al. 2004)    
nuclear effects (e.g., isovector EMC effect Cloët, Bentz, Thomas 2009) 
QED Arbuzov, Bardin, Kalinovskaya 2005; Park, Baur, Wackeroth 2009, Diener, Dittmaier, Hollik 

2004 QCD Dobrescu, Ellis 2004 & EW Diener, Dittmaier, Hollik 2005 radiative corrections	

situation not conclusive: collaboration working on update	

new physics: difficult to explain full effect
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Portals to New Physics

neutrino portal: H L S	

Higgs portal: |H|2 |H|2	

U(1) portal: Fμν Fμν
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Running sin2θW and Dark Parity Violation

Davoudiasl, Lee, Marciano 2012; Marciano 2013

Br(Zd → e+ e−) ≈ 1 Br(Zd → e+ e−) ≈ 0

K+ → π+ ν ν̅



Hypothetical Data
current CEPC TLEP low-energy

M ± 2.1 ± 0.6 ± 0.1
Γ ± 2.3 ± 0.6 ± 0.1
σ ± 0.037 ± 0.01 ± 0.01

R ± 0.024 ± 0.0007 ± 0.0015
R ± 0.00066 ± 0.00018 ± 0.00006

A ± 0.0022 ± 2 × 10
M ± 15 ± 3 ± 0.6

A ± 0.0016 ± 0.00015
m ± 950 ± 16
Δα ± 7.8 × 10 ± 4 × 10

m ± 30 ± 3
m ± 29 ± 4

α ± 0.0001



STU
current CEPC CEPC + α

m
CEPC + m
m TLEP TLEP + α

m

S ± 0.101 ± 0.025 ± 0.023 ± 0.023 ± 0.012 ± 0.006

T ± 0.117 ± 0.032 ± 0.031 ± 0.030 ± 0.008 ± 0.006

U ± 0.096 ± 0.024 ± 0.023 ± 0.023 ± 0.007 ± 0.005

S ± 0.081 ± 0.018 ± 0.014 ± 0.013 (10) ± 0.012 ± 0.005

T ± 0.068 ± 0.019 ± 0.017 ± 0.013 (6) ± 0.004 ± 0.003

T ± 0.030 ± 0.014 ± 0.010 ± 0.006 ± 0.002 ± 0.002


