Electroweak Physics: Present and Future

Jens Erler (IF-UNAM) XV MWPF 2015 Mazatlan, November 5, 2015

Outline

- Preliminaries / introduction
- Weak boson masses
- The weak mixing angle
- Oblique parameters (STU)
- Low energy precision tests
- Parity violation
- Contact interactions
- Conclusions

Introduction

Recent reviews

Krishna Kumar, Sonny Mantry, William Marciano and Paul Souder Annu. Rev. Nucl. Part. Sci. 63 (2013) 237–67

> Jens Erler and Shufang Su Prog. Part. Nucl. Phys. 71 (2013) 119–149

> > Jens Erler and Ayres Freitas Particle Data Group (2014)

Jens Erler, Charles Horowitz, Sonny Mantry and Paul Souder Annu. Rev. Nucl. Part. Sci. 64 (2014) 269–298

Introduction

(before electroweak symmetry breaking)

Key SM Parameters

 \bigcirc 4 parameters from bosonic sector: g, g' $\mathcal{L}_{\phi} = (D^{\mu}\phi)^{\dagger} D_{\mu}\phi - \mu^{2}\phi^{\dagger}\phi - \frac{\lambda^{2}}{2}(\phi^{\dagger}\phi)^{2}$ h / m_{Rb} : $\alpha = g^2 \sin^2 \theta_W / 4\pi (\pm 6.6 \times 10^{-10})$ • PSI: $G_F = 1/(\sqrt{2} v^2) (\pm 5 \times 10^{-7}) [v = 246.22 \text{ GeV}]$ $\Box LEP I: M_Z \equiv M_W / \cos \theta_W (\pm 2 \times 10^{-5})$ • Tevatron: $M_W \equiv g v/2 (\pm 2 \times 10^{-4})$ [derived] $\Box Z$ pole: $\sin^2 \theta_W = {g'}^2 / (g^2 + {g'}^2) (\pm 7 \times 10^{-4})$ [derived] • LHC: $M_{H} = \lambda v = \sqrt{(-2 \mu^{2}) (\pm 3 \times 10^{-3})}$ ○ LHC / Tevatron: $m_t(m_t) = \lambda_t v (\pm 6 \times 10^{-3})$

History

- I 950s: development of fundamental ideas underlying the SM (Yang-Mills theory, parity violation,V-A, intermediate vector bosons)
- I 960s: construction of the SM (gauge group, Cabbibo-universality, Higgs mechanism, model of leptons)
- I 970s: discovery of key predictions of the SM (neutral currents, APV, v-scattering, polarized DIS)
- 1980s: establishment of basic structure of the SM (discovery of W & Z, mutually consistent values of $\sin^2 \theta_W = {g'}^2 / (g^2 + {g'}^2)$ from many different processes)
- 1990s (LEP, SLC): confirmation of the SM at the loop level ⇒ new physics at most a perturbation
- Our Section 2000s (Tevatron): ultra-high precision in m_t (0.5%) and M_W (0.02%) ⇒ (most of) new physics separated by at least a little hierarchy (or else conspiracy or very weak coupling)
- 2010s (LHC, intensity frontier): EW symmetry breaking sector (Higgs & BSM)

Complementary physics

Complementary tools

High-energy precision tests

EW symmetry breaking

M_w sin²θ_w Z & H properties top quark properties

Low-energy precision tests

new amplitudes

polarized e⁻ scattering v scattering atomic parity violation lepton properties

Complementary facilities

High-energy precision tests

EW symmetry breaking

High energy lepton and hadron colliders LEP & SLC Tevatron & LHC ILC, CEPC (SppC) & FCC

Low-energy precision tests

new amplitudes

Medium energy accelerators & table-top CEBAF (Jefferon Lab) MESA (Mainz) flavor physics facilities

Weak boson masses

M_H from radiative corrections

Consider fundamental SM relations like

 $sin^{2}\theta_{W} = g'^{2} / (g^{2} + g'^{2}) = I - M_{W}^{2} / M_{Z}^{2} / (I + \Delta \rho)$ or $\sqrt{2} G_{F} (I - \Delta r) = e^{2} / (4 sin^{2}\theta_{W} M_{W}^{2})$

- Compute radiative correction parameters such as $\Delta \rho$ and Δr to very high (two-loop EW) accuracy
- These are functions of m_t , M_H , M_Z , ..., as well as M_W and $sin^2\theta_W$ themselves (needs numerical iterations)
- Compare with experimental $\Delta \rho$ and Δr to test SM and look for deviations (new physics)

M_H from Higgs branching ratios?

M_H from Higgs branching ratios?

Compare with results on coupling strength

ATLAS m _H = 125.5 GeV	⊢ σ(stat) σ(sys) σ(theo)	Total uncertainty ± 1σ on μ
$H \rightarrow \gamma \gamma$ μ = 1.55 ^{+0.3} _{-0.2}	±0.23 ±0.15 8 ±0.15	
Low p_{Tt} $\mu = 1.6^{+0.}_{-0.}$	⁵ ₄ ±0.3	
High p_{Tt} $\mu = 1.7^{+0.}_{-0.}$	⁷ ₆ ±0.5	
2 jet high mass (VBF) $\mu = 1.9_{-0.}^{+0.}$	⁸ ₆ ±0.6	
VH categories $\mu = 1.3^{+1}_{-1.}$	² ±0.9	
$H \rightarrow ZZ^* \rightarrow 4I$ $\mu = 1.43^{+0.4}_{-0.3}$	±0.33 ±0.17 5 +0.14	
VBF+VH-like $\mu = 1.2^{+1.}_{-0.}$	6 + 1.6 9 - 0.9	
Other $\mu = 1.45^{+0.4}_{-0.3}$	³ ₆ ±0.35	
$H \rightarrow WW^* \rightarrow I_V I_V$ $\mu = 0.99^{+0.3}_{-0.2}$	±0.21 ±0.21 ±0.21 ±0.12	
0+1 jet $\mu = 0.82^{+0.3}_{-0.3}$	³ ₂ ±0.22	
2 jet VBF $\mu = 1.4^{+0.}_{-0.}$	⁷ ₆ ±0.5	
Comb. H →γγ, ZZ* , W μ = 1.33 ^{+0.2} _{-0.1}	/* ±0.14 1 ±0.15 ⁸ ±0.11	
√s = 7 TeV ∫Ldt = 4.6-4.8 f	_{b-1} 0	1 2 3
√s = 8 TeV ∫Ldt = 20.7 fb⁻¹		Signal strength (µ)

M_H [GeV]

source	M(H)	uncertainty
radiative corrections	89	+22 -18
LHC Higgs branching ratios	123.7	±2.3
ATLAS & CMS (combination 2015)	125.09	±0.24

JE, Freitas 2013 PDG 2014

Heinemeyer, Hollik, Weiglein, Zeune 2013

The weak mixing angle $W^{\pm} = (W^{\dagger} \mp i W^{2})/\sqrt{2}$ $Z^{0} = \cos\theta_{W}W^{3} - \sin\theta_{W}B$ $A = \sin\theta_{W}W^{3} + \cos\theta_{W}B$

 $M_W = \frac{1}{2} g v = \cos\theta_W M_Z$

 $\sin^2\theta_W = g'^2/(g^2 + g'^2) = I - M_W^2/M_Z^2$

Renormalization schemes

Many different schemes and definitions. Most commonly used:

- \overline{MS} -scheme: $\sin^2\overline{\theta}_{W}(\mu) = g^{72}/(g^{-2} + g^{72})$ (theorist's definition)
 - \odot ideal for gauge coupling unifcation (analogous to $\overline{\alpha}_s$ in QCD)
- effective weak mixing angle in terms of vector $(g_V \propto I 4 Q^f \sin^2 \theta_W)$ and axial-vector couplings g_A (experimentalist's definition)

$$A^{f} \equiv \frac{2g_{V}^{f}g_{A}^{f}}{(g_{V}^{f})^{2} + (g_{A}^{f})^{2}} \qquad \qquad \sin^{2}\theta_{\text{eff}}^{\ell} \equiv \frac{1}{4} \left[1 - \frac{g_{V}^{\ell}}{g_{A}^{\ell}} \right] = \sin^{2}\hat{\theta}_{W}(M_{Z}) + 0.00029$$

- numerically close to $\sin^2 \overline{\theta}_{W}(M_Z)$
- on-shell definition: $\sin^2 \theta_W \equiv 1 M_W^2 / M_Z^2$

induces spurious m²_t-dependence (enhances higher order contributions)

Asymmetries

- $A_e A_\mu (A_{FB}) LEP$
- A_T (final state A_{pol}) LEP
- A_e (A_{LR}) SLD
- $A_{\mu} (A_{FB}^{LR}) SLD$
- PVES / $e^+ e^-$ annihilation: $\chi \sim Q^2 G_F \ll I \Longrightarrow$
 - a_e v_f (A_{LR} in forward direction) SLAC-E122 & E158, Qweak, MOLLER, P2
 - v_e a_q (A_{LR} at larger scattering angles) PVDIS, SoLID
 - **a**_e a_{μ} (A_{FB}) Belle II (independent of $\sin^2 \theta_{W}$)

Z-pole asymmetries

LEP/SLC Average: $0.23153 \pm 0.00016 \quad \chi^2/d.o.f. = 16.8/12$

CDF:	0.2315 ± 0.0010
DO:	0.23146 ± 0.00047
ΑΤΙ Δς.	0.2308 + 0.0012

Grand Average: 0.23151 ± 0.00015

Standard Model: 0.23155 ± 0.00005

Oblique parameters (STU)

Oblique physics beyond the SM

- STU describe corrections to gauge-boson self-energies
- T breaks custodial SO(4)
- a non-degenerate SU(2)_L doublet contributes
 $\Delta T \approx \Delta m^2/(264 \text{ GeV})^2$
- Currently: $\sum_{i} C_{i}/3 \Delta m_{i}^{2} \leq (50 \text{ GeV})^{2}$
- a multiplet of heavy degenerate chiral fermions contributes $\Delta S = N_C / 3\pi \sum_i [t_{3L}^i - t_{3R}^i]^2$
- extra degenerate fermion family yields $\Delta S = 2/3\pi \approx 0.21$
- S and T (U) correspond to dimension 6 (8) operators

S

30

Fan, Reece, Wang

Low energy precision tests

$$\begin{split} \hat{\Pi}^{(h)}(0) &= \frac{Q_h^2}{4\pi^2} \left\{ L + \frac{\hat{\alpha}_s}{\pi} \left[\frac{13}{12} - L \right] + \frac{\hat{\alpha}_s^2}{\pi^2} \left[\frac{655}{144} \zeta(3) - \frac{3847}{864} - \frac{5}{6} L - \frac{11}{8} L^2 + n_q \left(\frac{361}{1296} - \frac{L}{18} + \frac{L^2}{12} \right) \right] \right\}, \end{split}$$

$\Delta \alpha$ and μ anomalous magnetic moment (a_{μ})

$$\hat{\alpha}(\mu) = \frac{\alpha}{1 - 4\pi\alpha\hat{\Pi}(0)} (\overline{\text{MS}})$$

$$\alpha(s) = \frac{\alpha}{1 - \Delta\alpha_{\text{lep}}(s) - \Delta\alpha_{\text{had}}(s)} \text{ (on-shell)}$$

$$\Delta\alpha_{\text{had}}(s) = -\frac{\alpha}{3\pi} \operatorname{Re} \int_{4m_{\pi}^2}^{\infty} ds' \frac{sR(s')}{s'(s' - s - i\epsilon)}$$

$$a_{\mu} \equiv \frac{g_{\mu} - 2}{2}$$

$$a_{\mu}^{\text{had},2-\text{loop}} = \frac{\alpha^2}{3\pi^2} \int_{4m_{\pi}^2}^{\infty} ds \, \frac{K(s)}{s} R(s)$$

K(s): known kernel function

 $a_{\mu} \equiv (165920.80 \pm 0.63) \times 10^{-9}$ BNL-E821 2004

- Solution Solution ⇒ g = 2 Collaboration
 ★ 0.6 × 10⁻⁹
- \odot SM: $a_{\mu} = (||659|8.2| \pm 0.48) \times |0^{-9}|$
- \odot 3.3 σ deviation (includes $e^+e^- \& \tau$ -decay data)
- ② 2 and 3-loop hadronic vacuum polarization:
 - consistency between exp. $B(T^- \rightarrow v \pi^0 \pi^-)$ and prediction from e^+e^- and CVC after accounting for γ - ρ mixing Jegerlehner, Szafron 2011
 - \odot 1.9 σ conflict between KLOE and BaBar

g_{μ} -2: other contributions

- 4-loop and leading 5-loop QED corrections Aoyama, Hayakawa, Kinoshita, Nio 2012
- electroweak corrections: I-loop (W, Z, H) Czarnecki, Krause, Marciano 1995

- 2-loop, leading 3-loop Degrassi, Giudice 1998; Czarnecki, Krause, Marciano 1996; Czarnecki, Marciano, Vainshtein 1996
- $\gamma \times \gamma$: $(1.1 \pm 0.3) \times 10^{-9}$ Prades, de Rafael, Vainshtein 2009
 - \odot < 1.6×10^{-9} JE, Toledo 2006
- SUSY? $M_{SUSY} \simeq + 71^{+14}_{-9}$ GeV $\sqrt{\tan\beta}$ Arnowitt, Chamsedine, Nath 1984
- dark photon? Fayet 2004; Finkbeiner, Weiner 2007; Arkani-Hamed, Finkbeiner, Slatyer, Weiner 2008
- dark Z? Davoudiasi, Lee, Marciano 2012

- Define in \overline{MS} -scheme: $\sin^2 \overline{\theta}_W(\mu) = \overline{g}'^2(\mu) / [\overline{g}^2(\mu) + \overline{g}'^2(\mu)]$ • RGE for $\overline{\alpha}$: $\mu^2 d\overline{\alpha} / d\mu^2 = \overline{\alpha} / 24\pi \sum_k N_c^k \gamma^k (Q^k)^2$ • RGE for \overline{v}_i : $\overline{X} = \sum_i N_c^i \gamma^i \overline{v}^i Q^i \Longrightarrow d\overline{X} / \overline{X} = d\overline{\alpha} / \alpha$
- running of α (e⁺e⁻ and/or τ data) ⇒ running of sin²θ_W if
 either no mass threshold is crossed
 or perturbation theory applies (W[±], leptons, b & c quarks)
 or all coefficient are equal (RGE factorizes) like for (d,s)
 or there is a symmetry like SU(3)_F

Flavor separation and threshold mass trick

only problem area: u vs. (d,s) or s vs. (u,d) ($m_s \neq m_d \approx m_u$)

heavy quark limit for $\overline{m}_s: \xi_s \to \xi_c \Longrightarrow \overline{m}_s < 387 \text{ MeV}$ SU(3)_F limit: $\xi_s \to \xi_d \approx \xi_u + \text{dispersion result for } \Delta \overline{\alpha}^{(3)}(\overline{m}_c)$ $\Rightarrow \overline{m}_s > 240 \text{ MeV}$ JE, Ramsey-Musolf 2005

OZI rule violation

QCD annihilation ("singlet") type diagrams $Q_u + Q_d + Q_s = 0 \Rightarrow$ no OZI rule violation in SU(3)_F limit $T_u + T_d = 0 \Rightarrow$ only "induced" OZI rule violation

assuming that the leading order perturbative coefficient is of typical size (not accidentally small) $\Rightarrow \delta_{OZI} \sin^2 \theta_W \sim 10^{-6}$

not assuming this $\Rightarrow \delta_{OZI} \sin^2 \theta_W \sim \alpha / 90\pi \sim 2.6 \times 10^{-5}$ from N_C counting and considering EFT with strange quarks integrated out

 10^{-6} estimate in line with small ω - Φ mixing angle ~ 0.055, but we use the very conservative 3×10^{-5} JE, Ramsey-Musolf 2005

Uncertainties

JE, Ramsey-Musolf 2005

source	comment	uncertainty
δΔα	e	3 × 10
m	flavor separation	5 × 10
m	isospin breaking	× 0
singlet contributions	OZI rule violation	3 × 10
m	QCD sum rules	4 × 10
X	Z and T-decays 4 × 10	
TOTAL	incl. (excl.) parametric 9 (7) × 10	

The low-energy (Fermi) limit

Effective couplings

 $\begin{array}{ccc} \nu, e^{-} & \nu, e^{-} \\ & & \\ & & \\ & & \\ f & & \\ & & f \end{array}$

 $|g^{ef}_{VA}| = \frac{1}{2} - 2 \sin^2\theta_{W}$

- Normalized so that $g_{LLL} = I (\mu decay)$
- NC couplings: $g^{ef}_{AV} = \gamma^{\mu}\gamma^{5} = f \gamma_{\mu} f$ $g^{ef}_{VA} = \gamma^{\mu} e f \gamma_{\mu}\gamma^{5} f$
- $|g^{ef}_{AV}| = \frac{1}{2} 2 |Q_f| \sin^2 \theta_W$
- $f = e \rightarrow |g^{ee}_{AV}| = \frac{1}{2} 2 \sin^2 \theta_{W} \ll 1$
 - in SM: enhanced sensitivity to sin²θ_W (compete with Z-pole)
 - **BSM:** enhanced sensitivity to Λ_{new}

Parity violation – interference –

Atomic parity violation

- effects tiny and $\sim Z^3 \rightarrow$ seen only in heavy atoms
- $g_{AV}(C_{Iq})$ add up coherently \rightarrow nuclear spin-independent interaction
- spin-dependent $g_{VA}(C_{2q})$ clouded by dominant nuclear anapole moment (~ $Z^{2/3}$)
- \odot separate g_{AV} and g_{VA} by measuring different hyperfine transitions
- Future: take ratios of PV in different isotopes Rosner 1996
- single trapped Ra ions are promising due to much larger PV effect Wansbeek et al 2012

Elastic scattering

A Search for New Physics

 $_{\odot}$ Scattering from proton as a whole \rightarrow

 $g_{VA}^{ep} \equiv 2 g_{VA}^{eu} + g_{VA}^{ed} = -\frac{1}{2} + 2 \sin^2 \theta_{W}$

JLAB-Qweak Collaboration completed data taking to determine gvA^{ep} from

$$A_{LR}^{ep} \equiv \frac{d\sigma_L - d\sigma_R}{d\sigma_L + d\sigma_R} = -\frac{m_p(2E_e + m_p)}{v^2} \frac{g_{AV}^{ep}}{4\pi\alpha} \mathcal{F}^{ep}$$
$$\mathcal{F}^{ep} = \left[y + \mathcal{O}(y^2)\right] \mathcal{F}_{\text{QED}}^{ep}(Q^2, y)$$

Small $Q^2 = 0.025 \text{ GeV}^2$ and $y \equiv | - E'/E = 0.0082$ important to keep y^2 -term and associated hadronic uncertainties below experimental error.

- extrapolation to $y \rightarrow 0$ using other A_{LR}^{ep} measurements at higher Q^2
- can extract weak charge of proton $Q_W^P \approx -2 g_{AV}^{ep}$ (4%) and $\sin^2 \theta_W$ (0.3%)

γ-Z boxes (PVES-p)

generate large EW logs regulated in the IR by uncertain hadronic scale

(similarly for charge radius correction to g_{VA}^{eq})

- for APV (E_e ≈ 0, Q² ≈ 0) effect for g_{AV}^{eq} is ∝ g_{VA}^{eq} and vice versa
- Solution for elastic scattering $E_e ≠ 0$, mixing in opposite chirality structure
- strong point for P2 (Mainz)

Elastic scattering future (P2)

- order y²-term significant at Qweak $(\frac{1}{3}; no I 4 sin^2 \theta_W suppression)$
 - I.5% theory uncertainty
 - go to even lower y
- New experiment (P2) planned at MESA (Mainz) at $Q^2 = 0.0048 \text{ GeV}^2$ and y = 0.0038
- \odot γ -Z box correction will also be smaller at lower Q^2
 - auxiliary JLab and Mainz experiments will help to better constrain γ-Z box
- P2 goal of 2% in g_{AV}^{ep} or Q_{W}^{P} and ± 0.00036 in $sin^2\theta_{W}$ or better

gva^{eu} and gva^{ed} (DIS)

problematic at very low energies (elastic or quasi-elastic)

charge weighted combination from (in valence quark approximation)

$$A_{LR}^{e\text{DIS}} = -\frac{3}{20\pi\alpha} \frac{Q^2}{v^2} \left[\left(2g_{AV}^{eu} - g_{AV}^{ed} \right) + \left(2g_{VA}^{eu} - g_{VA}^{ed} \right) \frac{1 - (1 - y)^2}{1 + (1 - y)^2} \right]$$

- eDIS asymmetries much larger ($\geq 10^{-4}$) than in elastic scattering
- measured to ~ 10% at SLAC for 0.92 GeV² < Q² < 1.96 GeV² Prescott et al 1979
- 2 further points at $Q^2 = 1.1$ and 1.9 GeV^2 to 4.5%by JLab-Hall A Collaboration 2014
- approved SOLID experiment will measure large array of kinematic points up to 9.5 GeV^2 (0.5% precision in coupling combination)

PVES and SUSY

Energy-intensity complementarity

Contact interactions

Model independent new physics sensitivity

$$\mathcal{L}_{eq} = \left[\frac{G_F}{\sqrt{2}}g_{VA}^{eq}(\mathrm{SM}) + \frac{g^2}{\Lambda^2}\right]\bar{e}\gamma_{\mu}e\,\bar{q}\gamma^{\mu}\gamma^5q$$

$$\frac{g^2}{\Lambda^2} = \frac{4\pi}{\Lambda^2} = \frac{\bar{g}_{VA}^{eq} - g_{VA}^{eq}(SM)}{2v^2}$$

 $g^2 = 4\pi$ (convention)

Customary to quote one-sided limits on Λ !

important metric: generalization to other types of operators?

	precision	Δ	Λ
APV	0.58 %	0.0019	32.3 TeV
E158	14 %	0.0013	17.0 TeV
Qweak I	19 %	0.0030	17.0 TeV
PVDIS	4.5 %	0.0051	7.6 TeV
Qweak final	4.5 %	0.0008	33 TeV
SoLID	0.6 %	0.00057	22 TeV
MOLLER	2.3 %	0.00026	39 TeV
P2	2.0 %	0.00036	49 TeV
PVES	0.3 %	0.0007	49 TeV
APV	0.5 %	0.0018	34 TeV
APV	0.1 %	0.0037	I 6 TeV
Belle II	0.14 %		33 TeV
CEPC / FCC	?	?	?

CepC-SppC

- 240 GeV e⁺ e⁻ collider
- Can significantly increase precision of many EW observables over LEP even when no advances regarding systematics.
- Contact interactions from ZH threshold (poor statistics @LEP)
- Can obtain good measurements of M_W and Γ_W from WW threshold without beam polarization but very high rates?
 - Γ_w can determine α_s with very small theory error and is less sensitive to new physics (invisible decays) than Γ_Z and provides a CKM matrix unitarity check.

PV (axial)-electron (vector)-quark couplings

 $[2 g^{eu} - g^{ed}]_{AV}$

Compositeness scales

[2 g^{eu} - g^{ed}]_{AV}

Compositeness scales

present

future

Synopsis: separating new physics

Conclusions

- Precision tests generally in excellent agreement with SM
- Three independent determinations of M_H agree very well
- Persistent: g_{μ} -2 (3.3 σ) and $A_{FB}(b)$ vs. A_{LR}
- \odot Emergence of M_W anomaly? (small, but M_W is special)
- Consistent with what the LHC has not seen, there appears to be at least a little hierarchy between M_H and Λ_{new}
- Low-energy:
 - next generation experiments set to reach LEP precision
 - model-independent couplings: multi-TeV scale (stay tuned)

If there is time...

Running sin² θ_{W} and Dark Parity Violation

Marciano 2013

Cs APV

- \odot good understanding of atomic structure crucial \rightarrow Cs (Tl)
- moving history of most precise measurement (Cs) by Boulder group
- initially agreement with SM wood et al 1997
- [☉] direct measurement of ratio of off-diagonal hyperfine amplitude to polarizability reduced overall error → 2.5 σ deficit Bennett, Wieman 1999
- \odot reevaluation of Breit interaction \rightarrow 1.2 σ Derevianko 2000
- \odot state-of-the-art many body calculation $\rightarrow 0.1 \ \sigma$ Porsev, Beloy, Derevianko 2009

ⓒ corrections to two non-dominating terms → 1.5σ Dzuba, Berengut, Flambaum, Roberts 2012

APV Future

take ratios of PV in different isotopes Rosner 1996

- reduces atomic theory uncertainty Bouchiat, Pottier 1986
- but effect also partly cancels \rightarrow higher precision needed
- also new uncertainty from poorly known neutron radius
 Pollock, Fortson, Wilets 1992
 - **•** JLab experiments such as PREX and CREX will help
- = mostly constrains $g_{AV}^{ep} \equiv 2 g_{AV}^{eu} + g_{AV}^{ed}$ Ramsey-Musolf 1999
 - but different γ -Z box than *Qweak* experiment (see later)
- ideally one would measure APV in H and D Dunford, Holt 2007

single trapped Ra ions are promising due to much larger PV effect Wansbeek et al 2012

NuTeV

- $\sin^2 \theta_{W}^{\text{on-shell}} = 1 M_{W}^2 / M_Z^2 = 0.2277 \pm 0.0016$
- SM: $\sin^2 \theta_W = 0.22296 \pm 0.00028$ (3.0 σ deviation)
 - deviation sits in g_L^2 (2.7 σ)
 - various SM effects have been suggested:

asymmetric strange sea

isospin violation (QED splitting effects Glück, Jimenez-Delgado, Reya 2005 and PDFs Sather 1992; Rodionov, Thomas, Londergan 1994; Martin et al. 2004)

nuclear effects (e.g., isovector EMC effect *cloët*, *Bentz*, *Thomas* 2009)

QED Arbuzov, Bardin, Kalinovskaya 2005; Park, Baur, Wackeroth 2009, Diener, Dittmaier, Hollik 2004 QCD Dobrescu, Ellis 2004 & EW Diener, Dittmaier, Hollik 2005 radiative corrections

- situation not conclusive: collaboration working on update
- new physics: difficult to explain full effect

Portals to New Physics

oneutrino portal: H L S
oHiggs portal: $|H|^2 |H|^2$ oU(1) portal: F_{µν} F^{µν}

Running sin² θ_{W} and Dark Parity Violation

Davoudiasl, Lee, Marciano 2012; Marciano 2013

 $Br(Z_d \rightarrow e^+ e^-) \approx I$

 $Br(Z_d \rightarrow e^+ e^-) \approx 0$
Hypothetical Data

	current	CEPC	TLEP	low-energy
Μ	± 2.1	± 0.6	± 0.1	
Γ	± 2.3	± 0.6	± 0.1	
σ	± 0.037	± 0.01	± 0.01	
R	± 0.024	± 0.0007	± 0.0015	
R	± 0.00066	± 0.00018	± 0.00006	
Α	± 0.0022		$\pm 2 \times 10$	
Μ	± 15	± 3	± 0.6	
Α	± 0.0016	± 0.00015		
m	± 950		± 16	
Δα	± 7.8 × 10			\pm 4 \times 10
m	± 30			± 3
m	± 29			± 4
a				± 0.0001

STU

	current	CEPC	CEPC + a m	CEPC + m m	TLEP	TLEP + a m
S	± 0.101	± 0.025	± 0.023	± 0.023	± 0.012	± 0.006
т	± 0.117	± 0.032	± 0.031	± 0.030	± 0.008	± 0.006
U	± 0.096	± 0.024	± 0.023	± 0.023	± 0.007	± 0.005
S	± 0.081	± 0.018	± 0.014	± 0.013 (10)	± 0.012	± 0.005
Ţ	± 0.068	± 0.019	± 0.017	± 0.013 (6)	± 0.004	± 0.003
т	± 0.030	± 0.014	± 0.010	± 0.006	± 0.002	± 0.002