PHENOMENOLOGY OF
 DIHADRON FRAGMENTATION FUNCTIONS

MWPF 2015, Mazatlán
Aurore Courtoy
CINVESTAV/CONACyT (Mexico)

HADRONIZATION

Well, what's with it?
(nearly) All visible matter is made up of quarks and gluons but quarks and gluons are not visible

Hadron mass from ~massless quarks and massless (?) gluons
\Rightarrow consequence of many-body quark-gluon dynamics
\% It seems we don't understand QCD Lagrangian

- So what about confinement and hadronization?

So, what can we do?

HADRONIZATION

No free partons $\boldsymbol{=}$ hadronization happens very often

e.g. at LHC

Coupled to parton distributions

THE TWO REGIMES OF QCD

"The duality of the strong interactions"

$$
A=A_{0}+\frac{\alpha_{s}(Q)}{4 \pi} A_{1}+\left(\frac{\alpha_{s}(Q)}{4 \pi}\right)^{2} A_{2}+\cdots
$$

PROCESSES TO ACCESS FRAGMENTATION

Inclusive hadron yields

$\mathrm{X}=\mathrm{all}$ the undetected stuffs

Kinematical regimes that allow for factorization

$$
p p \rightarrow \pi^{+} \pi^{-} X
$$

PROCESSES TO ACCESS FRAGMENTATION

Inclusive hadron yields

Kinematical regimes that allow for

NON-PERTURBATIVE FUNCTIONS

Parametrizing the unknown

Parton distribution functions (PDFs)
\rightarrow Probability to find a parton q with momentum fraction x at a scale μ in a proton

Define all the relevant Lorentz structures.

Evaluate with non-perturbative tools and/or global fits.

Fragmentation functions (FFs)
\rightarrow Probability to find a pion with momentum fraction z at a scale μ in a parton q

MODELS FOR FRAGMENTATION

Jet models \rightarrow infinite number of substeps

Comparing versions of Monte CarloMonte Carlo
Pythia
Herwig
Sherpa
...

\% Models
© Cascade
various vertices...
\& 1 quark dominance
spectator
© First principles: sum rule

$$
\sum_{h} \int_{0}^{1} d z z D_{i}^{h}\left(z, Q^{2}\right)=1
$$

SINGLE-HADRON SIDIS

₹*P-frame

here projected on lepton plane for 2D view

$\rightarrow X$ section sensitive to transverse mmt

SINGLE-HADRON SIDIS

₹*P-frame

here projected on lepton plane for 2D view

\rightarrow X section sensitive to transverse mmt
k_{\perp} correlations

DIHADRON SIDIS

γ^{*} P-frame

here projected on lepton plane for 2D view
S_{t}

Dihadron production plane

Transverse spin-orientation of the paif correlations

UNPOLARIZED FF

TMD FF

$$
D_{1}^{q \rightarrow h}\left(z, \kappa_{T}^{2}\right)
$$

$$
\rightarrow
$$

$$
\left.D_{\text {lquark }}^{q-m_{2}}\left(z_{1}, z_{2}, R_{T}^{2}\right) \xrightarrow{2}\right)
$$

$$
\uparrow \kappa_{T}
$$

DiFF

$$
\xrightarrow{h_{1}}
$$

$$
\frac{|R|}{M_{h}}=\frac{1}{2} \sqrt{1-\frac{4 m_{\pi}^{2}}{M_{h}^{2}}}
$$

SPIN DEPENDENT DIFF

$$
H_{1}^{\varangle}\left(z, M_{h}\right)
$$

transverse pol. of the fragm. quark \rightarrow angular distribution of hadron pairs in the transverse plane

$$
\frac{|\boldsymbol{R}|}{M_{h}}=\frac{1}{2} \sqrt{1-\frac{4 m_{\pi}^{2}}{M_{h}^{2}}} .
$$

SINGLE-HADRON \& DIHADRON

Transverse mmt dep.
$d \sigma \propto \sum_{q}\left[\mathrm{PDF}^{q} \otimes \mathrm{FF}^{q}\right]\left(x, z, P_{h \perp}^{2}\right)$
\% TMD Fragmention and Distribution functions
© Convolution
\& More Lorentz structures
© 3D "tomography"

SIDIS

Collinear

$$
d \sigma \propto \sum_{q} \operatorname{PDF}^{q}(x) \times \operatorname{DiFF}^{q}\left(z, M_{h}\right)
$$

© Collinear Distribution functions
\& Simple product
© 1D "tomography"

SI PION PAIRS PRODUCTION @ BELLE

$$
A_{e^{+} e^{-}}\left(z, M_{h}^{2}, \bar{z}, \bar{M}_{h}^{2}\right) \propto \frac{\sum_{q} e_{q}^{2} H_{1, s p}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}\right) \bar{H}_{1, s p}^{q \rightarrow \pi^{+} \pi^{-}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}{\sum_{q} e_{q}^{2} \bar{D}_{1}^{q+\pi^{+} \pi^{-}}\left(z, M_{h}^{2}\right) \bar{D}_{1}^{q \rightarrow \pi^{+} \pi^{-}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}
$$

\& Hadron multiplicities
\& Define
fitting procedure
statistical model
first principles constraints?

* Build functional form
* Account for QCD evolution

SI PION PAIRS PRODUCTION @ BELLE

$$
A_{e^{+} e^{-}}\left(z, M_{h}^{2}, \bar{z}, \bar{M}_{h}^{2}\right) \propto \frac{\sum_{q} e^{2} H_{1, s p}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}\right) \bar{H}_{1, s p}^{q \rightarrow \pi^{+} \pi^{-}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}{\sum_{q} e_{q}^{2} D_{1}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}\right) \bar{D}_{1}^{q \rightarrow \pi^{+} \pi^{-}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}
$$

Extraction/fit of DiFFs

\& from Artru-Collins asymmetry
\% Define
fitting procedure
statistical model
\& first principles constraints?

* Build functional form

Account for QCD evolution

SI PION PAIRS PRODUCTION @ BELLE

$$
A_{e^{+} e^{-}}\left(z, M_{h}^{2}, \bar{z}, \bar{M}_{h}^{2}\right) \propto \frac{\sum_{q} e_{q}^{2} H_{1, s p}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}\right) \bar{H}_{1, s p}^{q \rightarrow \pi^{+} \pi^{-}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}{\sum_{q} e_{q}^{2} D_{1}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}\right) \bar{D}_{1}^{q \rightarrow \pi^{+} \pi^{-}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}
$$

$$
R\left(z, M_{h}\right)=\frac{|\mathbf{R}|}{M_{h}} \frac{H_{1, s p}^{\varangle u}\left(z, M_{h} ; Q_{0}^{2}\right)}{D_{1}^{u}\left(z, M_{h} ; Q_{0}^{2}\right)}
$$

FITS \& MODELS FOR DIFF

Fitting PYTHIA at Belle

M_{h} behavior

NJL-jet based MC event generator

[H. Matevosyan et al., PRD88]

DIHADRON SIDIS

Beam pol.

 Target pol.Aut

$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right) \sin \theta}\left(x, y, z, M_{h} ; Q\right)=-\frac{B(y)}{A(y)} \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x ; Q^{2}\right) H_{1, s p}^{\varangle q}\left(z, M_{h} ; Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{\psi}\left(x ; Q^{2}\right) D_{1}^{q}\left(z, M_{h} ; Q^{2}\right)}
$$

\% $A_{L U}$

$$
\begin{aligned}
& \text { ALU } \\
& \qquad A_{L U}^{\sin \phi_{R} \sin \theta}\left(x, y, z, M_{h}, Q\right)=-\frac{W(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2}\left[x e^{q}(x) I_{1, s p}^{\varangle, q}\left(z, M_{h}\right)+\frac{M_{h}}{z M} f_{1}^{q}(x) \tilde{G}_{s p}^{\varangle, q}\left(z, M_{h}\right)\right]}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1, s s+p p}^{q}\left(z, M_{h}\right)}
\end{aligned}
$$

\% AuL

$$
A_{U L}^{\sin \phi_{R} \sin \theta}\left(x, y, z, M_{h}, Q\right)=-\frac{V(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2}\left(x h_{L}^{q}(x) I_{1, s p}^{\varangle, q}\left(z, M_{h}\right)+\frac{M_{h}}{z M} g_{1}^{q}(x) \tilde{G}_{s p}^{\varangle, q}\left(z, M_{h}\right)\right]}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1, s s+p p}^{q}\left(z, M_{h}\right)}
$$

DIHADRON SIDIS

- Aut @ HERMES \& COMPASS

$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right) \sin \theta}\left(x, y, z, M_{h} ; Q\right)=-\frac{B(y)}{A(y)} \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x ; Q^{2}\right) H_{1, s p}^{\varangle q}\left(z, M_{h} ; Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x ; Q^{2}\right) D_{1}^{q}\left(z, M_{h} ; Q^{2}\right)}
$$

- AL

$$
\begin{aligned}
& \text { ALU } \\
& \qquad A_{L U}^{\sin \phi_{R} \sin \theta}\left(x, y, z, M_{h}, Q\right)=-\frac{W(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2}\left[x e^{q}(x) I_{1, s p}^{\varangle, q}\left(z, M_{h}\right)+\frac{M_{h}}{z M} f_{1}^{q}(x) \tilde{G}_{s p}^{\varangle, q}\left(z, M_{h}\right)\right]}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1, s s+p p}^{q}\left(z, M_{h}\right)}
\end{aligned}
$$

(1) Au

$$
A_{U L}^{\sin \phi_{R} \sin \theta}\left(x, y, z, M_{h}, Q\right)=-\frac{V(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2}\left(x h_{L}^{q}(x) I_{1, s p}^{\varangle, q}\left(z, M_{h}\right)+\frac{M_{h}}{z M} g_{1}^{q}(x) \tilde{G}_{s p}^{\varangle, q}\left(z, M_{h}\right)\right]}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1, s s+p p}^{q}\left(z, M_{h}\right)}
$$

DIHADRON SIDIS ON PROTON \& DEUTERON

2002-4 Deuteron Data

2007 Proton Data

$\left(\mathbf{z}, \mathrm{M}_{\mathrm{h}}\right)$-dpdence determined by DiFF from Belle
[A.C., Bacchetta, Radici, Bianconi, Phys.Rev. D85
x-dependence only from
Transversity

$$
A_{\mathrm{DIS}}\left(x, z, M_{h}^{2}, Q^{2}\right)=-C_{y} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, Q^{2}\right)} \frac{\frac{|\bar{R}|}{M_{h}} H_{1, s p}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}, Q^{2}\right)}{D_{1}^{q \rightarrow \pi^{+} \pi^{-}}\left(z, M_{h}^{2}, Q^{2}\right)}
$$

STATE-OF-THE-ART TRANSVERSITY

Torino 2013 @2.4 GeV2

Kang et al central value

Discrepancy in the distribution
New proton data don't change that!
Pavia @2.4 GeV² flexible-0.125

FUTURE OF THE TRANSVERSITY

Proposal for CLAS12

DIHADRON SIDIS

■ Aut

@ HERMES \& COMPASS
 @ CLAS12 \& SoLID

$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right) \sin \theta}\left(x, y, z, M_{h} ; Q\right)=-\frac{B(y)}{A(y)} \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x ; Q^{2}\right) H_{1, s p}^{\triangleleft q}\left(z, M_{h} ; Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x ; Q^{2}\right) D_{1}^{q}\left(z, M_{h} ; Q^{2}\right)}
$$

- ALU

$$
A_{L U}^{\sin \phi_{R} \sin \theta}\left(x, y, z, M_{h}, Q\right)=-\frac{W(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2}\left[x e^{q}(x) I_{1, s p}^{\varangle, q}\left(z, M_{h}\right)+\frac{M_{h}}{z M} f_{1}^{q}(x) \tilde{G}_{s p,}^{\varangle, q}\left(z, M_{h}\right)\right]}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1, s s+p p}^{q}\left(z, M_{h}\right)}
$$

(Aus

$$
A_{U L}^{\sin \phi_{R} \sin \theta}\left(x, y, z, M_{h}, Q\right)=-\frac{V(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_{h}} \frac{\left.\sum_{q} e_{q}^{2} \left\lvert\, x h_{L}^{q}(x) I_{1, s p}^{\triangle, q}\left(z, M_{h}\right)+\frac{M_{h}}{z M} g_{1}^{q}(x) \tilde{G}_{s p}^{\varangle, q}\left(z, M_{h}\right)\right.\right]}{\sum_{q} e_{q}^{q} f_{1}^{q}(x) D_{1, s s+p p}^{q}\left(z, M_{h}\right)}
$$

DIHADRON SIDIS

■ Aut

@ HERMES \& COMPASS
 @ CLAS12 \& SoLID

$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right) \sin \theta}\left(x, y, z, M_{h} ; Q\right)=-\frac{B(y)}{A(y)} \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x ; Q^{2}\right) H_{1, s p}^{\varangle q}\left(z, M_{h} ; Q^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x ; Q^{2}\right) D_{1}^{q}\left(z, M_{h} ; Q^{2}\right)}
$$

(] ALu @CLAS \& CLAS12

$$
A_{L U}^{\sin \phi_{R} \sin \theta}\left(x, y, z, M_{h}, Q\right)=-\frac{W(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2}\left[x e^{q}(x) I_{1, s p}^{\varangle, q}\left(z, M_{h}\right)+\frac{M_{h}}{z M} f_{1}^{q}(x) \tilde{G}_{s p}^{\varangle, q}\left(z, M_{h}\right)\right]}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1, s s+p p}^{q}\left(z, M_{h}\right)}
$$

[] Aul @CLAS

$$
A_{U L}^{\sin \phi_{R} \sin \theta}\left(x, y, z, M_{h}, Q\right)=-\frac{V(y)}{A(y)} \frac{M}{Q} \frac{1}{2} \frac{|\mathbf{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} q\left(x h_{L}^{q}(x) I_{1, s p}^{\Lambda_{1}, q}\left(z, M_{h}\right)+\frac{M_{h}}{z M} g_{1}^{q}(x) \tilde{G}_{s p}^{\varangle, q}\left(z, M_{h}\right)\right]}{\sum_{q} e_{q}^{q} f_{1}^{q}(x) D_{1, s s+p p}^{q}\left(z, M_{h}\right)}
$$

BEAM SPIN ASYMMETRY@CLAS

FIRST TRY EXTRACTION

Assume no dynamical higher-twist in the fragmentation part

$$
\begin{aligned}
& A_{L U}^{\sin \phi_{R}}\left(x_{i}, m_{\pi \pi i}, z_{i} ; Q_{i}, y_{i}\right)=-\frac{W\left(y_{i}\right)}{A\left(y_{i}\right)} \frac{M}{Q_{i}} \frac{x_{i}\left[\frac{4}{9} e^{u_{V}}\left(x_{i}, Q_{i}^{2}\right)-\frac{1}{9} e^{d_{V}}\left(x_{i} Q_{i}^{2}\right)\right] n_{u, i}^{\uparrow}\left(Q_{i}^{2}\right)}{\sum_{q=u, d, s} e_{q}^{2} f_{1}^{q}\left(x_{i}, Q_{i}^{2}\right.} n_{q, i}\left(Q_{i}^{2}\right) \\
& \text { [AC et al, arXiv:1405.7659] }
\end{aligned}
$$

TWIST-3 PDF @CLAS12

Analysis Proposal for

CLAS 12

Higher-twist collinear structure of the nucleon through di-hadron SIDIS on unpolarized hydrogen and deuterium

A 12 GeV Research Proposal to Jefferson Lab (PAC 42)

E12-06-112B
 Silvia Pisano \& A.C.

e(x)
\& related to the scalar charge
quark-gluon correlation
quark mass term

BSM FUNDAMENTAL INTERACTIONS?

Example: New fundamental interaction from beta decay?

$$
\begin{aligned}
\Delta \mathcal{L}_{e f f} & =G_{F} V_{u d} \sqrt{2} \epsilon_{S} g_{S} \bar{p} n \cdot \bar{e}\left(1-\gamma_{5}\right) \nu_{e} \\
& -4 G_{F} V_{u d} \sqrt{2} \epsilon_{T} g_{T} \bar{p} \sigma_{\mu \nu} n \cdot \bar{e} \sigma^{\mu \nu}\left(1-\gamma_{5}\right) \nu_{e} \quad \text { [Cirigliano et al., NPB 830] }
\end{aligned}
$$

Could we do the same with gs?

Present DiFF extraction
Future DiFF extraction

BSM FUNDAMENTAL INTERACTIONS?

ε_{T} VS. ε_{S} plane from beta decay observables
with $\varepsilon_{s}=0.0011(21)$ at $90 \% \mathrm{CL}$
from Gonzalez \& Camalich,
PRL112.
with $\left\langle\mathrm{g}_{\mathrm{T}}\right\rangle=0.839(357)$ from GGL
\& Pavia new
\& 10 errors
\& Hessian in blue \& pink
\& Rfit method in red

\& Scatter plot in blue
$\%$ MC 1D gives $\left\langle\varepsilon_{\top}\right\rangle=0.0012 \pm$...
[AC,Baessler,Liuti, in progress]

CONCLUSIONS

\checkmark Hadronization and confinement are of high importance
\checkmark Here: Dihadron Fragmentation Functions

- Dihadron SIDIS is a good tool to
- access to scalar, tensor hadronic structures
- glimpse of quark-gluon correlations
- Future: get more info on DiFF from $\mathrm{e}^{+} \mathrm{e}^{-}$\& SIDIS (multiplicities,...)

Red de Física de Altas Energías Red FAE

Experimentos

Red de Física de Altas Energías Red FAE

Coordinador: Aurore Courtoy

