

Contribution ID: 102 Type: Poster

Dinámica de fotodisociación en fase gaseosa del éster Formiato de Etilo (HCOOCH2CH3) por Espectroscopia Translacional de Fotofragmentación basada en radiación sincrotrón VUV a 193 nm

Thursday, 13 August 2015 17:30 (1:00)

Abstract content

En este estudio de dinámica de fotodisociación del éster Formiato de Etilo (HCOOCH2CH3) a 193 nm, se detectaron 10 fotofragmentos usando Espectroscopia Translacional de Fotofragmentación basada en radiación sincrotrón (VUV-PTS), en condiciones libre de colisiones. Estos fragmentos incluyen m/z=+45 (CH3CH2O y HCO2), m/z=+44 (CH3CHO, CH2CH2O y CO2), m/z=+30 (HCOH y CH2O), m/z=+29 (HCOH y CH3CH2) y m/z=+15 (CH3), asociados con cuatro canales de disociación primaria; así como también los productos m/z=+45 (CH3CH2O y HCO2) y m/z=+44 (CH3CHO) que se asocian a tres canales de disociación secundaria. Con VUV-PTS se colectaron espectrogramas de masas de Tiempo-de-Vuelo (TOF) para cada uno de los fragmentos presentes en las diversos rutas de disociación en ángulos de laboratorio de un rango ϑ lab $=20^{\circ}$ a 40° . Estos datos se simularon usando los programas PHOTRAN y ANALMAX, considerando las condiciones experimentales. Como resultado, se generaron distribuciones de probabilidad de liberación de energía translacional (o) para cada uno de los canales de disociación. Estos resultados permitieron determinar la presencia de diversos canales y especies, así como derivar datos termodinámicos relevantes a los sistemas de reacción bajo estudio, tales como calores de formación () y energías de disociación (). Finalmente, se identificaron plenamente las disociaciones primarias CH3CH2O+HCO, CH3CHO+HCOH y HCO2+CH2CH3, así como las descomposiciones secundarias secuenciales CH3CH2O→CH3+CH2O, CH3CHO→CH3+HCO y HCO2→H+CO2. Estas descomposiciones han sido predichas en diversos trabajos teóricos y este trabajo provee la evidencia experimental necesaria para confirmarlas.

Summary

Primary author(s) : Mr. DOMÍNGUEZ-FLORES, Orlando (Departamento de Ingeniería Química y Bioquímica, Instituto Tecnológico de Zacatepec.)

Co-author(s): Mr. QUIROZ-CARDOSO, Oscar (Departamento de Ingeniería Química y Bioquímica, Instituto Tecnológico de Zacatepec.); Mr. SANTANA-HERNÁNDEZ, Uriel (Departamento de Ingeniería Química y Bioquímica, Instituto Tecnológico de Zacatepec.); Dr. LEE, Shih-Huang (National Synchrotron Radiation Research Center.); Dr. RODRÍGUEZ-HERNÁNDEZ, Annia (Laboratorio Nacional de Genómica para la Biodiversidad – CINVESTAV); Dr. QUINTO-HERNÁNDEZ, Alfredo (Departamento de Ingeniería Química y Bioquímica, Instituto Tecnológico de Zacatepec.)

Presenter(s) : Mr. DOMÍNGUEZ-FLORES, Orlando (Departamento de Ingeniería Química y Bioquímica, Instituto Tecnológico de Zacatepec.)

Session Classification: Posters II