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Why is QCD special?

!  Predicts existence of  exotic 
matter, e.g. made from radiation 
(glueballs,hybrids) or novel plasmas. 

!  It builds from objects (quarks and 
gluons) that do not exist in a common 
sense. >90% mass comes from 
interactions!

!  A single theory is responsible for 
phenomena at distance scales of the 
order of 10-15m  as well as of the 
order 104m.

!  It is challenging!

!  A possible template for physics 
beyond the Standard Model
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This talk is about hadrons
1919 Rutherford discovers the proton

1932 Chadwick discovers the neutron

1909/1911 Rutherford/Geiger/Marsden discover the nucleus 

K-->π+ π- π-

π: Powell (1947) η: Pevsner (1961)

ω: Álvarez (1961)

φ: Connolly. Pevsner (1962)

ρ: Erwin (1961) 

ρ: Anderson (1960) 
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“Bare (free)” particles of QCD: quarks and gluons 

analogous to 8 (color) x 6 (flavor) 
copies of QED: 

quark → electron 
gluon → photon  
(but non-abelian)

e.g. as seen in high energy collisions 
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the nature of physical 
quarks and gluons 
remains a mystery 

e Q
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“free” quarks

quarks bound  
in hadrons

inverse distance between quarks
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Quark models

• Click to add text

physical quarks appear to move in 
a kind of  “mean, gluonic field” 

ω1 

ω8 

K*0 K*+ 

K*- 

ρ- 

K*0 

ρ+ 

ρ0 
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The QCD 
vacuum is not 
empty. Rather 
it contains 
quantum 
fluctuations in 
the gluon field 
at all scales. 
(Image: 
University of 
Adelaide)

HQCD  = Hc.h.o. +   non-linear 

“physical gluons” →  
mean field AND quasi particles 

“physical quarks” →  
quasi particles in gluon mean field 

finite energy, localized 
solutions: solitons 
(monopoles, vortices , ...)

gluon mean field 

Plausible model?
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Confinement in QCD

Properties of confinement: 

• Linearly rising potential 
• Regge trajectories 
• String behavior r0 = 0.5 fm  

Adiabatic           potential  Absence of isolated quarks
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• Click to add text
Spectroscopy of Hadrons  can  

teach us about “workings” of QCD

2. Hadron molecules 
(residual forces) 

1. Hadrons with gluon 
excitations (confinement)
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• Click to add text
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Lattice meson spectrum

• Click to add text
[Dudek 2011]
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Lattice meson spectrum

• Click to add text
[Dudek 2011]
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• Strong, theoretical evidence (lattice) for gluon field 
excitations in hadron spectrum 

• Phenomenologically, gluons behave as axial vector, 
quasiparticles JPC=1+-

• Lowest multiplet of “hybrid mesons” has JPC = 0-+, 1-+, 2-+, 
1-- states

• What about other non-quark model possibilities?
• Can these be detected and distinguished?
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High statistics
new beam-target combinations

polarization measurements 

New opportunities



ICN-UNAM Seminar, March 18, 2015

What kind of experiments?
2→ 2, 3 processes

p

p p

pp

p

p p

pp

γ, π, K
γ, π, K

π, K

π, K

π, K

π, K

π, K

π, K

γ

γ

π

π

π

π, K

π, K

η, ω, ϕ

ϕ
N, Δ, Σ, Λ

N, Δ, Σ, Λ

γ
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Evolution in statistics

• Click to add text

π- p → π-π+π- p
CERN ca. 1970

BNL (E852) ca 1995

E852  (Full sample)

COMPASS 2010

O(102 /10MeV ) 

O(103 /10MeV ) 

O(105 /10MeV ) 
O(106 /10MeV ) 



ICN-UNAM Seminar, March 18, 2015

Resonance paradigm: Δ(1232)
In 1952, Fermi and collaborators 
measured the cross section
and found it steeply raising.

⇡+p ! ⇡+ppeak in intensity 
(cross section)

width Γ

 mass ~ 30% above proton

lifetime ~ 4.5 x 10-24 s

width ~ lifetime-1 = 150 MeV

�++
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How do we catch resonances?

• Is every bump a resonance?
• Is every resonance a bump?

– The answer to both questions is NO

• Examples
– σ meson in ππ scattering has a broad structure
– Threshold effects can appear as resonances
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Actually, what is a resonance?

• A resonance is a pole of the scattering 
amplitude in the unphysical Riemann sheets
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• 12 GeV upgrade at JLab: CLAS, GlueX, etc.
– Aim: ✑ Complete understanding of the hadron spectrum 

      ✑ discover new resonances e.g, gluonic excitations (states 
           where glue builds their JPC)

 

– Tools: Amplitude analysis of data  
To find new resonances not bump-hunting, but search for poles 
        must build in S-Matrix constraints  
        + state-of-the-art knowledge  
           of reaction dynamics

resonance pole

E

Dispersive analytic continuation
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• 12 GeV upgrade at JLab: CLAS, GlueX, etc.
– Aim: ✑ Complete understanding of the hadron spectrum 

      ✑ discover new resonances e.g, gluonic excitations (states 
           where glue builds their JPC)

 

– Tools: Amplitude analysis of data  
To find new resonances not bump-hunting, but search for poles 
        must build in S-Matrix constraints  
        + state-of-the-art knowledge  
           of reaction dynamics

ChPT + Analyticity + Unitarity 
Dispersion Relations 
Regge Theory, Models

Experimental Data 
CLAS, GlueX, JEF, 
COMPASS, BESS,  
LHCb, PANDA,…

FFs, resonance  
parameters: MR,  
ΓΡ, couplings

Hadron spectrum, exotics
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Scattering theory

• S matrix

• S is unitary (probability conservation)

• T is an analytical function (causality)
• T has branch cuts at thresholds (several 

Riemann sheets)
• T has no poles in the first Riemann sheet

S†S = I

S = I + 2i�T

Disc T = Im T = T †�T
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Dispersion theory

• Cauchy Theorem

• Amplitude has no complex 
poles in the 1st Riemann 
sheet and has two branch 
cuts

• We can reconstruct the full 
amplitude in the whole 
complex plane

t(⇥ + i�) =
1

2⇤i

Z

C

t(⇥0)

⇥0 � ⇥ � i�
d⇥0

ν+iε

Re{ν}

Im{ν}
I Riemann 
sheet
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AI(s) =
M

M2 � s� iMqI(s)

Example: Breit-Wigner amplitude
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AI(s) =
M

M2 � s� iMqI(s)

Example: Breit-Wigner amplitude



ICN-UNAM Seminar, March 18, 2015

II
III

I

sp

s0p

I

tI� (s)

tII� (s)

tIII� (s)

tI� (s)

�{s}

�{s}

0
s1 s2

Riemann sheets

• The amount of 
Riemann sheets 
depends on the 
number of open 
channels: 2N
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Amplitude analysis: ππ scattering

• Click to add text

Peláez et al.

I=0

I=1

1. Parametrize the data
2. Check constrains (unitarity)
3. Continuation to extract the pole
4. Interpretation (hybrid, glueball, 
tetraquark, ...)

F (s, t = t0)

s0 = 4m2

Im(s)

Re(s)

⇢(770)

�(500) II

I

I
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γp → K+K-p
Amplitude depends on 5 Mandelstam variables:
• One is fixed: s 
• Two are measured: sK+K- and  sK-p

• Two are integrated out: tγK+ and tpp’

p

� K+

K�

t�K+

tpp0 p0

sK+K�

sK�p

fixed s
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Interesting channels

⇥⇥,KK̄ X = ⇤, ⇤3,⌅,⌅3, f0, f2, f 0
2, a0, a2

⇥�,⇥�0 X = a0, a2,⇥1

X

GlueX (Hall D@JLab) invariant mass range 2-3 GeV

Hybrid?

Glueballs?
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K+K- Dalitz plot
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K+K−

M
2 K
− p

Hyperons

Double Regge

W = 5 GeVPhi mesons

Disclaimer: not actual data 
(actual data from g12 CLAS@JLab under analysis)
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K+K- Dalitz plot
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Things we expect/hope to study

• Exotics
– new physics that will help us understand the role of 

the gluon and confinement
• Strangeonia 

– this spectrum is not well studied and looks pretty 
empty. Also information on gluons and virtual quarks

• Hyperons
– Strange content of hadrons, impact in hypernuclei 

physic and strangeness in neutron stars

(ss̄)
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Models

• Dual model (B5)
– Generalization of the Veneziano model
– In the double-Regge limit: 

Shi et al., PRD91, 034007 (2015)
• Deck model

– More elaborated
– Resonance region: K-matrix, coupled channels
– High energy: Regge
– Connection through dispersion theory
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Veneziano model (B4)

• Advantages
– Analyticity
– Incorporates Regge-resonance duality
– Right behavior at high energy
– Generalization to N legs

• Caveats: 
– Unitarity is violated
– Resonance details get lost
– Only for high energy
– Spinless particles (spin factor)

B4(s, t) =
�(�↵(s)�(�↵(t))

�(�↵(s)� ↵(t)
=

1X

n=0

�n(t)

n� ↵(s)
=

1X

n=0

�n(s)

n� ↵(t)

lim
s!1

B4(s, t) = [�↵(s)]↵(t) �(�↵(t))

B4(s, t) =

Z 1

0
dx x

�↵(s)�1(1� x)�↵(t)�1

1

2

4

3

2

1

2

3

4

1

1

3

4

2

3

1
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B5 for γp→K+K-p

A

B

1

2

3

A1

12

23

B3

AB

B5(sAB , sA1, s12, s23, sB3) =

Z 1

0
dt

Z 1

0
dx x

�↵12�1
t

�↵23�1(1� t)�↵A1�1(1� x)�↵B3�1(1� xt)�↵AB+↵12+↵23

• A lot more complicated to compute
• We consider the double-Regge limit

sAB , s12, s23 ! 1;

s12s23
sAB

= fixed;

tA1

sAB
,
tB3

sAB
! 0

A+B ! 1̄ + 2̄ + 3̄
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Shi et al., PRD91, 034007 (2015)
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Double-Regge Limit: Van Hove Plots
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2-dimensional plot of the longitudinal momenta

q =
q

p2K+L + p2K�L + p2pL

pK+L =
p
2/3q sin!

pK�L =
p

2/3q sin(2⇡/3 + !)

ppL =
p

2/3q sin(4⇡/3 + !)

In the DRL we want t to be small and s large

fixed transverse momentum
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Double-Regge Limit: Synthetic Data
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1. We generate an uniform distribution (phase space)
2. We cut the large transverse momenta
3. We perform the Van Hove selection
4. We incorporate spin
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Deck Model: one step at a time

X

Reggeon
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KN scattering

High energy regionResonance region
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KN in resonance region: Hyperons

• Partial-wave analysis

• Coupled channels 

• Unitarity
• Analyticity
• Right threshold behavior (angular momentum barrier)
• Resonances are incorporated “by-hand” through 

Breit-Wigner amplitudes

tI(s, cos �) =
X

�

f I
� (s)P� (cos �)

K̄N ! K̄N,�⇥,��
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Single channel

S = I + 2i ⇢(s)T (s)

⇢(s) = q
q2`

1 + q2`

T (s) =
K(s)

1� i⇢a(s)K(s)

K(s) =
M�

M2 � s

i⇢a(s) =
s� sth

⇡

Z 1

sth

ds0

s� s0
⇢(s0)

s0 � sth
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Coupled channels: 2 amplitudes
(K)kj = x

1
k x

1
j K1 + x

2
k(s) x

2
j (s)K2

(T )kj = c11 x
1
k x

1
j + c12 x

1
k x

2
j + c21 x

2
k x

a
j (s) + c22 x

2
k x

2
j

c11 = T1(s)/C(s)
c22 = T2(s)/C(s)

c12 = c21 = i

"
nCX

k=1

x

1
k x

2
k[⇢a(s)]k

#
(s)T1(s)T2(s)/C(s)

T1(s) =
M1

M

2
1 � s� i

PnC

k=1[⇢a(s)]kM1[x1
k]

2

C(s) = 1 +

"
nCX

k=1

x

1
k x

2
k[⇢a(s)]k

#2

T1(s)T2(s)
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KN in resonance region

Fit single-energy partial waves from  
Kent State University analysis of: 

• ~8000 exp. data for 
• ~4500 exp. data for 
• ~5000 exp. data for

K̄N ! K̄N

K̄N ! ⇡⌃
K̄N ! ⇡⇤
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Model can be readjusted once we extend 
to the two kaon photoproduction process, 
getting more insight on hyperons

Preliminary
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• Closest poles to the physical axis
• Errors computed through 
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Hyperons from KN scattering
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KN scattering in high energy region

p p
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Connecting high and low energies
• Let’s use πN scattering as a 

playground
• Dispersion theory (Finite 

energy sum rules)
• We use high-energy to 

constrain low-energy
• Construct Im A from 0 to 

infinity via FESR
• Reconstruct amplitude from 

dispersion relations
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Connecting high and low energies

• This is as far as I can go... we are working on finalizing 
both the high-energy and the low-energy models as well 
as the the pion-nucleon case

• Next steps will be to connect high and low energy in KN, 
build the full two kaon photoproduction amplitude and 
compare to data

• For B5 the next step is to compute the single Regge limit 
(associated to hyperon excitations)
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Summary

• Many interesting questions remain open regarding hadrons, 
QCD and confinement

• Hadron spectroscopy has been and remains as a prime tool
• Lattice is making big steps forward
• A lot of experimental data are going to come during the next 

years: JLAB, COMPASS, LHC, MAMI, ELSA, PANDA, KLOE, 
BES, J-PARC

• Amplitude analysis is a critical part of all this effort
✓ No solid amplitude analysis ⇒ No reliable data 

interpretation
✓ At JPAC we are doing as much as we can in close 

collaboration with experimentalists


