

HADRON PHENOMENOLOGY IMPACT ON BSM TENSOR INTERACTION

RADPYC, MAY 2015

AURORE COURTOY

División de Ciencias e Ingenierías, Universidad de Guanajuato & IFPA, Université de Liège (Belgium)

HADRON PHENOMENOLOGY IMPACT ON BSM TENSOR INTERACTION

RADPYC, MAY 2015

AurorA Aurore Courtoy

División de Ciencias e Ingenierías, Universidad de Guanajuato & IFPA, Université de Liège (Belgium)

HADRON PHENOMENOLOGY IMPACT ON BSM TENSOR INTERACTION

RADPYC, MAY 2015

Aurora Curtuá

División de Ciencias e Ingenierías, Universidad de Guanajuato & IFPA, Université de Liège (Belgium)

How can hadronic physics help BSM search?

Hadronic observables extraction

Impact on β -decay observables

In collaboration with Stefan Baessler (UVa) Martín González Alonso (IPN, Lyon) Simonetta Liuti (UVa)

ARXIV 1503.06814

- ★ Direct search
 - ***** Large-x PDF
 - ***** α_s

 \bigstar

- ***** Indirect search
 - ***** Parity Violating DIS
 - ***** Beyond V-A interactions

See, e.g.,

Plan Nacional de Investigación en Física de Altas Energías

Sección "Frontera de la Intensidad"

QCD FOR BSM

- ★ Direct search
 - ***** Large-x PDF
 - ***** α_s

 \star

- ***** Indirect search
 - ***** Parity Violating DIS
 - ***** Beyond V-A interactions

See, e.g.,

Plan Nacional de Investigación en Física de Altas Energías

Sección "Frontera de la Intensidad"

QCD FOR BSM

 $N(p_n) \longrightarrow P(p_p)e^-(p_e)\bar{\nu}_e(p_\nu)$

BETA DECAY IN SM

 $N(p_n) \longrightarrow P(p_p)e^-(p_e)\bar{\nu}_e(p_\nu)$

can be sketched as

$$" \left[d \xrightarrow{\Gamma} u e^{-}(p_e) \bar{\nu}_e(p_\nu) \right] \otimes \left[\langle P | \bar{u} \, \Gamma \, d | N \rangle \right] "$$

BETA DECAY IN SM

 $N(p_n) \longrightarrow P(p_p)e^-(p_e)\bar{\nu}_e(p_\nu)$

BETA DECAY IN SM

***** Neutron decay rate parameterized:

$$d^{3}\Gamma = \frac{1}{(2\pi)^{5}} \frac{G_{F}^{2} |V_{ud}|^{2}}{2} p_{e} E_{e} \left(E_{0} - E_{e}\right)^{2} dE_{e} d\Omega_{e} d\Omega_{\nu}$$
$$\times \xi \left[1 + a \frac{\mathbf{p}_{e} \cdot \mathbf{p}_{\nu}}{E_{e} E_{\nu}} + b \frac{m_{e}}{E_{e}} + \mathbf{s}_{n} \left(A \frac{\mathbf{p}_{e}}{E_{e}} + B \frac{\mathbf{p}_{\nu}}{E_{\nu}} + \dots\right)\right]$$

- **\star** Effective Hamiltonian for β -decay
 - Lorentz \Rightarrow low energy constants $C_{S,P,V,A,T}$
 - SM \Rightarrow 1param $\lambda = -C_A/C_V$
 - $a(\lambda), A(\lambda), B(\lambda)$

BETA DECAY OBSERVABLES

***** Neutron decay rate parameterized:

$$d^{3}\Gamma = \frac{1}{(2\pi)^{5}} \frac{G_{F}^{2} |V_{ud}|^{2}}{2} p_{e} E_{e} \left(E_{0} - E_{e}\right)^{2} dE_{e} d\Omega_{e} d\Omega_{\nu}$$
$$\times \xi \left[1 + a \frac{\mathbf{p}_{e} \cdot \mathbf{p}_{\nu}}{E_{e} E_{\nu}} + b \frac{m_{e}}{E_{e}} + \mathbf{s}_{n} \left(A \frac{\mathbf{p}_{e}}{E_{e}} + B \frac{\mathbf{p}_{\nu}}{E_{\nu}} + \dots\right)\right]$$

- **\star** Effective Hamiltonian for β -decay
 - Lorentz \Rightarrow low energy constants $C_{S,P,V,A,T}$
 - SM \Rightarrow 1param $\lambda = -C_A/C_V$
 - a(λ), A (λ), B (λ)
 - ★ b=0 in SM

sensitivity of neutron beta decay to new physics

 $\star \quad B \subset b_{\nu} = 0 \text{ in SM}$

BETA DECAY OBSERVABLES

***** Neutron decay rate parameterized:

$$d^{3}\Gamma = \frac{1}{(2\pi)^{5}} \frac{G_{F}^{2} |V_{ud}|^{2}}{2} p_{e} E_{e} \left(E_{0} - E_{e}\right)^{2} dE_{e} d\Omega_{e} d\Omega_{\nu}$$
$$\times \xi \left[1 + a \frac{\mathbf{p}_{e} \cdot \mathbf{p}_{\nu}}{E_{e} E_{\nu}} + b \frac{m_{e}}{E_{e}} + \mathbf{s}_{n} \left(A \frac{\mathbf{p}_{e}}{E_{e}} + B \frac{\mathbf{p}_{\nu}}{E_{\nu}} + \dots\right)\right]$$

- **\star** Effective Hamiltonian for β -decay
 - Lorentz \Rightarrow low energy constants $C_{S,P,V,A,T}$
 - SM \Rightarrow 1param $\lambda = -C_A/C_V$
 - a(λ), A (λ), B (λ)
 - ★ b=0 in SM
 - $\star \quad B \subset b_\nu = 0 \text{ in SM}$

- sensitivity of neutron beta decay to new physics
- same for $0^+ \rightarrow 0^+$ processes: b_0^+

BETA DECAY OBSERVABLES

Neutron decay rate parameterized:

$$d^{3}\Gamma = \frac{1}{(2\pi)^{5}} \frac{G_{F}^{2} |V_{ud}|^{2}}{2} p_{e} E_{e} \left(E_{0} - E_{e}\right)^{2} dE_{e} d\Omega_{e} d\Omega_{\nu}$$
$$\times \xi \left[1 + a \frac{\mathbf{p}_{e} \cdot \mathbf{p}_{\nu}}{E_{e} E_{\nu}} + b \frac{m_{e}}{E_{e}} + \mathbf{s}_{n} \left(A \frac{\mathbf{p}_{e}}{E_{e}} + B \frac{\mathbf{p}_{\nu}}{E_{\nu}} + \dots\right)\right]$$

sensitivity of neutron beta decay to new physics

$$b = \frac{2\sqrt{1-\alpha^2}}{1+3\lambda^2} \left[\operatorname{Re}\left(\frac{C_{\rm S}}{C_{\rm V}}\right) + 3\lambda^2 \operatorname{Re}\left(\frac{C_{\rm T}}{C_{\rm A}}\right) \right]$$

* $b_0^+=0$ in SM

b=0 in SM

 \star

- sensitivity of $0^+ \rightarrow 0^+$ proc to new physics

$$b_0^+ = 2 \operatorname{Re}\left(\frac{C_{\mathrm{S}}}{C_{\mathrm{V}}}\right)$$

BETA DECAY OBSERVABLES

$\mathrm{d}^{3}\Gamma = \frac{1}{2} \frac{G_{F}^{2} |V_{ud}|^{2}}{n_{e} E_{e} (E_{0} - E_{e})^{2}} \mathrm{d}E_{e} \mathrm{d}\Omega_{e} \mathrm{d}\Omega$

Neutron decay rate parameterized:

$$\begin{aligned} \mathbf{u} \mathbf{T} &= (2\pi)^5 \qquad 2 \qquad p_e L_e \left(L_0 - L_e \right) \cdot \mathbf{u} L_e \mathbf{u} L_e \mathbf{u} L_e \mathbf{u} L_e \mathbf{u} \\ &\times \xi \left[1 + a \frac{\mathbf{p}_e \cdot \mathbf{p}_\nu}{E_e E_\nu} + b \frac{m_e}{E_e} + \mathbf{s}_n \left(A \frac{\mathbf{p}_e}{E_e} + B \frac{\mathbf{p}_\nu}{E_\nu} + \dots \right) \right] \end{aligned}$$

[Jackson et al., PR106]

[Lee & Yang, PR104]

BETA DECAY OBSERVABLES

New particles hints

- in loops
- mediators of interaction

Low energy **High energy Effective field theories for low energy** \star New (heavy) dof integrated out **Consider all Dirac structures for EW interactions** 1, γ_5 , $\gamma_{\mu}(1+\gamma_5)$, $\sigma_{\mu\nu}$ **Define** ``Wilson coefficient" for new interaction

NEW FUNDAMENTAL INTERACTIONS

EFT AT THE QUARK LEVEL $d_j ightarrow u_i l^- ar{ u}_l$

$$\mathcal{L}^{ ext{\tiny (eff)}} = \mathcal{L}_{ ext{\tiny SM}} + \sum_i rac{1}{\Lambda_i^2} \mathcal{O}_i$$

BETA DECAY IN EFT

[Bhattarchaya et al., PRD85] [Cirigliano et al., NPB 830]

Monday, 25 May 15

BETA DECAY IN EFT

EFT AT THE QUARK LEVEL

[Bhattarchaya et al., PRD85] [Cirigliano et al., NPB 830]

 $d_i \rightarrow u_i l^- \bar{\nu}_l$

 $\mathcal{L}^{ ext{\tiny (eff)}} = \mathcal{L}_{ ext{\tiny SM}} + \sum_i rac{1}{\Lambda_i^2} \mathcal{O}_i \, ,$

 $\bar{\nu}_e$

[Bhattarchaya et al., PRD85] [Cirigliano et al., NPB 830]

$$" \left[d \xrightarrow{\Gamma} u e^{-}(p_e) \bar{\nu}_e(p_{\nu}) \right] \otimes \left[\langle P | \bar{u} \, \Gamma \, d | N \rangle \right] "$$

$$C_{\rm SM} = \frac{G_F}{\sqrt{2}} \, V_{ud} \left(g_V - g_A \right)$$

STANDARD MODEL

$$C_{\rm S} = \frac{G_F}{\sqrt{2}} V_{ud} g_S \epsilon_S$$
$$C_{\rm T} = \frac{G_F}{\sqrt{2}} V_{ud} 4 g_T \epsilon_T$$

NEW BSM S & T INTERACTIONS

New LEC factorized into hadronic contribution & new EW interaction

LEC IN TERMS OF HADRONIC × NEW INT.

[Bhattarchaya et al., PRD85] [Cirigliano et al., NPB 830]

$$\left[d \xrightarrow{\Gamma} u e^{-}(p_e) \bar{\nu}_e(p_{\nu}) \right] \bigotimes \left[\langle P | \bar{u} \, \Gamma \, d | N \rangle \right] ,$$

$$C_{\rm SM} = \frac{G_F}{\sqrt{2}} V_{ud} \left(g_V - g_A \right)$$

STANDARD MODEL

NEW BSM S & T INTERACTIONS

New LEC factorized into hadronic contribution & new EW interaction

LEC IN TERMS OF HADRONIC × NEW INT.

[Bhattarchaya et al., PRD85] [Cirigliano et al., NPB 830]

$$\left[d \xrightarrow{\Gamma} u e^{-}(p_e) \bar{\nu}_e(p_{\nu}) \right] \bigotimes \left[\langle P | \bar{u} \, \Gamma \, d | N \rangle \right] ,$$

 $C_{\rm SM} = \frac{G_F}{\sqrt{2}} \, V_{ud} \left(g_V - g_A \right)$

STANDARD MODEL

$$G_T$$

 $|g_S \epsilon_S| = 0.0014 \pm 0.0013$ @10
 $|g_T \epsilon_T| < 6 \cdot 10^{-4}$
@95%CL

 \sqrt{Z}

NEW BSM S & T INTERACTIONS

Precision with which the NEW COUPLINGS can be measured depend on the knowledge of hadronic charges

New LEC factorized into hadronic contribution & new EW interaction

LEC IN TERMS OF HADRONIC × NEW INT.

 $\langle P(p_p, S_p) | \bar{u} \Gamma d | N(p_n, S_n) \rangle$

 \downarrow

Proton

Neutron

FORM FACTORS

MATCHING AT HADRONIC LEVEL

 $\langle P(p_p, S_p) | \bar{u} \Gamma d | N(p_n, S_n) \rangle$

FORM FACTORS

 \downarrow

 $\langle P(p_p, S_p) | \bar{u} \gamma_{\mu} d | N(p_n, S_n) \rangle = g_V(t) \ \bar{u}_P \gamma_{\mu} u_N + \mathcal{O}(\sqrt{t}/M)$

Isovector vector FF

 $\langle P(p_p, S_p) | \bar{u}\sigma_{\mu\nu}d | N(p_n, S_n) \rangle = g_T\left(t, Q^2\right) \, \bar{u}_P \sigma_{\mu\nu}u_N$

Isovector tensor FF

MATCHING AT HADRONIC LEVEL

 $\overline{\langle P(p_p, S_p) | \bar{u} \Gamma d | N(p_n, S_n) \rangle}$

FORM FACTORS

 \bigcup

 $\langle P(p_p, S_p) | \bar{u} \gamma_{\mu} d | N(p_n, S_n) \rangle = g_V(t) \ \bar{u}_P \gamma_{\mu} u_N + \mathcal{O}(\sqrt{t}/M)$

 $\langle P(p_p, S_p) | \bar{u}\sigma_{\mu\nu}d | N(p_n, S_n) \rangle = g_T\left(t, Q^2\right) \, \bar{u}_P \sigma_{\mu\nu}u_N$

Isovector vector FF

Isovector tensor FF

 $t=(p_n-p_p)^2$ Q² RGE scale

MATCHING AT HADRONIC LEVEL

 $\overline{\langle P(p_p, S_p) | \bar{u} \Gamma d | N(p_n, S_n) \rangle}$

FORM FACTORS

 \bigcup

 $\langle P(p_p, S_p) | \bar{u} \gamma_{\mu} d | N(p_n, S_n) \rangle = g_V(t) \ \bar{u}_P \gamma_{\mu} u_N + \mathcal{O}(\sqrt{t}/M)$

 $\langle P(p_p, S_p) | \bar{u}\sigma_{\mu\nu}d | N(p_n, S_n) \rangle = g_T\left(t, Q^2\right) \, \bar{u}_P \sigma_{\mu\nu}u_N$

Isovector vector FF

Isovector tensor FF

When $t \rightarrow 0$, $g(0) \equiv charge$

 $t=(p_n-p_p)^2$ Q² RGE scale

MATCHING AT HADRONIC LEVEL

 $\langle P(p_p, S_p) | \bar{u} \Gamma d | N(p_n, S_n) \rangle$

FORM FACTORS

 \bigcup

 $\langle P(p_p, S_p) | \bar{u} \gamma_\mu d | N(p_n, S_n) \rangle = g_V(t) \ \bar{u}_P \gamma_\mu u_N + \mathcal{O}(\sqrt{t}/M)$

 $\langle P(p_p, S_p) | \bar{u}\sigma_{\mu\nu} d | N(p_n, S_n) \rangle = g_T(t, Q^2) \ \bar{u}_P \sigma_{\mu\nu} u_N$ Exist in haitranic th

When $t \rightarrow 0$, $g(0) \equiv charge$

Isovector vector FF

kangstor tensor FF

 $t=(p_n-p_p)^2$ Q² RGE scale

MATCHING AT HADRONIC LEVEL

***** Nonlocal matrix element for proton structure

- ***** Parton Distribution Functions
- **built from Lorentz symmetry** from vectors at hand
- defined in Bjorken scaling
- nonperturbative objects
- 1st principle related to ``charges"

Fundamental charges for $\gamma_{\mu} \& \gamma_{\mu}\gamma_{5}$ only Structural charges for the others

Scalar & tensor charge

accessible through sum rules of Parton Distributions

HADRONIC STRUCTURE

Lorentz structure Discrete symmetries Vectors at hand...

To leading *twist*:

Kinematics of the Bjorken scaling $Q^2 \rightarrow \infty$ p.q $\rightarrow \infty$ Q²/2p.q=x=finite

PDF AT LEADING TWIST

Lorentz structure Discrete symmetries Vectors at hand...

To leading *twist*:

Kinematics of the Bjorken scaling $Q^2 \rightarrow \infty$ $p.q \rightarrow \infty$ $Q^2/2p.q=x=finite$

PDF AT LEADING TWIST

Lorentz structure Discrete symmetries Vectors at hand...

To leading *twist*:

PDFs ⇒

Dirac operator \Rightarrow

Charges \Rightarrow

 $\int_{-\infty}^{1} dx \, h_1^{u_V - d_V}(x) = g_T$ $f_1^q(x)\,,\qquad g_1^q(x)\,,\qquad$ $h_{1}^{q}(x)$

Kinematics of the Bjorken scaling $Q^2 \rightarrow \infty$ $p.q \rightarrow \infty$ $Q^2/2p.q=x=finite$

PDF AT LEADING TWIST

ACCESS TO DISTRIBUTION FUNCTIONS

DEFINITION AND FACTORIZATION

ACCESS TO DISTRIBUTION FUNCTIONS

ACCESS TO DISTRIBUTION FUNCTIONS

- ***** Semi-inclusive processes
 - * $eN \rightarrow e \pi X$ Torino et al
 - ★ $eN \rightarrow e(\pi\pi) X$ Pavia et al
- * Exclusive: $eP \rightarrow e \pi^0 P$ GGL

TRANSVERSITY PDF

ISOVECTOR TENSOR CHARGE

ISOVECTOR TENSOR CHARGE

- **GGL depends on new JLab data** \star
- Pavia depends on new JLab data \star
- **Torino depends on TMD evolution +new JLab data**

- **GGL depends on new JLab data** \star
- Pavia depends on new JLab data \star
- **Torino depends on TMD evolution +new JLab data**

Transversities		$\delta g_T/g_T$	$(\delta g_T/g_T)^{ m future}$
Pavia	rigid	0.599	0.518
	flexible	0.696	0.639
	extra-flexible	1.007	0.865
Pavia average		0.767	0.674
GGL		0.329	0.115

NOW WITH $g_T \pm \sigma_{gT}$

AND $|g_T \epsilon_T| < 6 \cdot 10^{-4}$

TENSOR INTERACTION AS OF NOW

NOW WITH $g_T \pm \sigma_{gT}$

AND $|g_T \epsilon_T| < 6 \cdot 10^{-4}$

we find....

TENSOR INTERACTION AS OF NOW

ϵ_T vs. ϵ_S plane from $b_0{}^+$ and b

Warning: not a global fit

with $g_S=1.02(11)$ at 90% CL from Gonzalez & Camalich, PRL112.

with $\langle g_T \rangle = 0.839(357)$ from GGL & Pavia new

1σ errors

- Hessian in blue & pink
- Rfit method in red
- Scatter plot in blue
- MC 1D gives $\langle \epsilon_T \rangle = 0.0012$

NEW SCALAR-TENSOR

- ***** Evaluation of bounds for BSM tensor interaction
 - from hadronic matrix elements extracted from experiments
 - as opposed to lattice calculations
- * Hadronic uncertainties are still very large
- * However, competitive results expected from future hadronic experiments
- * Complementarity +testing of lattice results

WORTH MENTIONING

HADRONIC MATRIX ELEMENTS RELATED TO OUTSTANDING QCD QUESTIONS STRUCTURE OF HADRONS→CONFINEMENT, CHIRAL SYMMETRY,...

CONCLUSIONS