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We neglect effects of time-reversal violation, i.e., we consider the above 8 cou-
plings to be real.

In neutron decay experiments the outgoing spins are usually not observed. Sum-
ming over these spin quantities, and neglecting the neutrino masses, one can evaluate
the triple differential decay rate to be:9

d3Γ =
1

(2π)5
G2

F |Vud|2

2
peEe (E0 − Ee)

2 dEedΩedΩν

×ξ
[
1 + a

pe · pν
EeEν

+ b
me

Ee
+ sn

(
A

pe

Ee
+ B

pν
Eν

+ . . .

)]
, (4)

where pe, pν , Ee, and Eν are the electron (neutrino) momenta and total energies,
respectively, E0 is the maximum electron total energy, me the electron mass, sn the
neutron spin, and the Ωi denote solid angles. Quantities a, A, and B are the angular
correlation coefficients, while b is the Fierz interference term. The latter, and the
neutrino-electron correlation a, are measurable in decays of unpolarized neutrons,
while the A and B, the beta and neutrino asymmetry parameters, respectively,
require polarized neutrons. The dependence of a, b, A, and B on the coupling
constants Lj and Rj is described in Ref. 7. We mention that in the presence of LH
S and T couplings B depends on the electron energy: B = B0 + bν

me
Ee

, where bν is
another Fierz-like parameter, similar to b.7,9 We note that a, A, and B0 are sensitive
to non-SM couplings only in second order, while b and bν depend in first order on
LS and LT . A non-zero b would indicate the existence of LH S and T interactions.

Another observable is C, the proton asymmetry relative to the neutron spin.
Observables related to the proton do not appear in Eq. (4). However, the proton is
kinematically coupled to the other decay products. The connection between C and
the coupling constants Lj and Rj is given in Refs. 7 and 10.

We also use the ratio of the Ft0
+→0+

values in superallowed Fermi (SAF) decays
to the equivalent quantity in neutron decay, Ftn:

rFt =
Ft0

+→0+

Ftn
=

Ft0
+→0+

fnt(1 + δ′R)
=

Ft0
+→0+

fR ln (2)τn
, (5)

where fn = 1.6887 is a statistical phase-space factor.1 The nucleus-dependent
(outer) radiative correction δ′R, and O(α2) corrections,11–13 change fn by ∼ 1.5%
to fR = 1.71385(34)a. The corrections implicitly assume the validity of the V −A
theory.15 The dependence of rFt on coupling constants Lj and Rj is given in Ref. 7.

An electrically charged gauge boson outside the SM is generically denoted W ′.
The most attractive candidate for W ′ is the WR gauge boson associated with the
left-right symmetric models,16,17 which seek to provide a spontaneous origin for
parity violation in weak interactions. WL and WR may mix due to spontaneous

aThe most recently published value of fR = 1.71335(15)14 used fn = 1.6886, and did not include
the corrections by Marciano and Sirlin.12 Applying the Towner and Hardy prescription for splitting
the radiative corrections13 increases the uncertainty in fR slightly, to reproduce Eq. (18) in Ref. 12.
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★ Effective Hamiltonian for  β-decay 

➡ Lorentz⇒ low energy constants CS,P,V,A,T

➡ SM⇒ 1param λ=-CA/CV

➡ a(λ), A (λ), B (λ)

[Lee & Yang, PR104]
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We neglect effects of time-reversal violation, i.e., we consider the above 8 cou-
plings to be real.

In neutron decay experiments the outgoing spins are usually not observed. Sum-
ming over these spin quantities, and neglecting the neutrino masses, one can evaluate
the triple differential decay rate to be:9
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where pe, pν , Ee, and Eν are the electron (neutrino) momenta and total energies,
respectively, E0 is the maximum electron total energy, me the electron mass, sn the
neutron spin, and the Ωi denote solid angles. Quantities a, A, and B are the angular
correlation coefficients, while b is the Fierz interference term. The latter, and the
neutrino-electron correlation a, are measurable in decays of unpolarized neutrons,
while the A and B, the beta and neutrino asymmetry parameters, respectively,
require polarized neutrons. The dependence of a, b, A, and B on the coupling
constants Lj and Rj is described in Ref. 7. We mention that in the presence of LH
S and T couplings B depends on the electron energy: B = B0 + bν

me
Ee

, where bν is
another Fierz-like parameter, similar to b.7,9 We note that a, A, and B0 are sensitive
to non-SM couplings only in second order, while b and bν depend in first order on
LS and LT . A non-zero b would indicate the existence of LH S and T interactions.

Another observable is C, the proton asymmetry relative to the neutron spin.
Observables related to the proton do not appear in Eq. (4). However, the proton is
kinematically coupled to the other decay products. The connection between C and
the coupling constants Lj and Rj is given in Refs. 7 and 10.

We also use the ratio of the Ft0
+→0+

values in superallowed Fermi (SAF) decays
to the equivalent quantity in neutron decay, Ftn:

rFt =
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+→0+

Ftn
=

Ft0
+→0+

fnt(1 + δ′R)
=

Ft0
+→0+

fR ln (2)τn
, (5)

where fn = 1.6887 is a statistical phase-space factor.1 The nucleus-dependent
(outer) radiative correction δ′R, and O(α2) corrections,11–13 change fn by ∼ 1.5%
to fR = 1.71385(34)a. The corrections implicitly assume the validity of the V −A
theory.15 The dependence of rFt on coupling constants Lj and Rj is given in Ref. 7.

An electrically charged gauge boson outside the SM is generically denoted W ′.
The most attractive candidate for W ′ is the WR gauge boson associated with the
left-right symmetric models,16,17 which seek to provide a spontaneous origin for
parity violation in weak interactions. WL and WR may mix due to spontaneous

aThe most recently published value of fR = 1.71335(15)14 used fn = 1.6886, and did not include
the corrections by Marciano and Sirlin.12 Applying the Towner and Hardy prescription for splitting
the radiative corrections13 increases the uncertainty in fR slightly, to reproduce Eq. (18) in Ref. 12.
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★ Effective Hamiltonian for  β-decay 

➡ Lorentz⇒ low energy constants CS,P,V,A,T

➡ SM⇒ 1param λ=-CA/CV

➡ a(λ), A (λ), B (λ)

[Lee & Yang, PR104]

➡ sensitivity of neutron beta decay to new physics★ b=0 in SM
★ B ⊂ bν =0 in SM
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We neglect effects of time-reversal violation, i.e., we consider the above 8 cou-
plings to be real.

In neutron decay experiments the outgoing spins are usually not observed. Sum-
ming over these spin quantities, and neglecting the neutrino masses, one can evaluate
the triple differential decay rate to be:9

d3Γ =
1

(2π)5
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where pe, pν , Ee, and Eν are the electron (neutrino) momenta and total energies,
respectively, E0 is the maximum electron total energy, me the electron mass, sn the
neutron spin, and the Ωi denote solid angles. Quantities a, A, and B are the angular
correlation coefficients, while b is the Fierz interference term. The latter, and the
neutrino-electron correlation a, are measurable in decays of unpolarized neutrons,
while the A and B, the beta and neutrino asymmetry parameters, respectively,
require polarized neutrons. The dependence of a, b, A, and B on the coupling
constants Lj and Rj is described in Ref. 7. We mention that in the presence of LH
S and T couplings B depends on the electron energy: B = B0 + bν

me
Ee

, where bν is
another Fierz-like parameter, similar to b.7,9 We note that a, A, and B0 are sensitive
to non-SM couplings only in second order, while b and bν depend in first order on
LS and LT . A non-zero b would indicate the existence of LH S and T interactions.

Another observable is C, the proton asymmetry relative to the neutron spin.
Observables related to the proton do not appear in Eq. (4). However, the proton is
kinematically coupled to the other decay products. The connection between C and
the coupling constants Lj and Rj is given in Refs. 7 and 10.

We also use the ratio of the Ft0
+→0+

values in superallowed Fermi (SAF) decays
to the equivalent quantity in neutron decay, Ftn:

rFt =
Ft0

+→0+

Ftn
=

Ft0
+→0+

fnt(1 + δ′R)
=

Ft0
+→0+

fR ln (2)τn
, (5)

where fn = 1.6887 is a statistical phase-space factor.1 The nucleus-dependent
(outer) radiative correction δ′R, and O(α2) corrections,11–13 change fn by ∼ 1.5%
to fR = 1.71385(34)a. The corrections implicitly assume the validity of the V −A
theory.15 The dependence of rFt on coupling constants Lj and Rj is given in Ref. 7.

An electrically charged gauge boson outside the SM is generically denoted W ′.
The most attractive candidate for W ′ is the WR gauge boson associated with the
left-right symmetric models,16,17 which seek to provide a spontaneous origin for
parity violation in weak interactions. WL and WR may mix due to spontaneous

aThe most recently published value of fR = 1.71335(15)14 used fn = 1.6886, and did not include
the corrections by Marciano and Sirlin.12 Applying the Towner and Hardy prescription for splitting
the radiative corrections13 increases the uncertainty in fR slightly, to reproduce Eq. (18) in Ref. 12.
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★ Effective Hamiltonian for  β-decay 

➡ Lorentz⇒ low energy constants CS,P,V,A,T

➡ SM⇒ 1param λ=-CA/CV

➡ a(λ), A (λ), B (λ)

[Lee & Yang, PR104]

➡ sensitivity of neutron beta decay to new physics★ b=0 in SM
★ B ⊂ bν =0 in SM

➡ same for 0+→0+ processes: b0+
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We neglect effects of time-reversal violation, i.e., we consider the above 8 cou-
plings to be real.

In neutron decay experiments the outgoing spins are usually not observed. Sum-
ming over these spin quantities, and neglecting the neutrino masses, one can evaluate
the triple differential decay rate to be:9

d3Γ =
1

(2π)5
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where pe, pν , Ee, and Eν are the electron (neutrino) momenta and total energies,
respectively, E0 is the maximum electron total energy, me the electron mass, sn the
neutron spin, and the Ωi denote solid angles. Quantities a, A, and B are the angular
correlation coefficients, while b is the Fierz interference term. The latter, and the
neutrino-electron correlation a, are measurable in decays of unpolarized neutrons,
while the A and B, the beta and neutrino asymmetry parameters, respectively,
require polarized neutrons. The dependence of a, b, A, and B on the coupling
constants Lj and Rj is described in Ref. 7. We mention that in the presence of LH
S and T couplings B depends on the electron energy: B = B0 + bν

me
Ee

, where bν is
another Fierz-like parameter, similar to b.7,9 We note that a, A, and B0 are sensitive
to non-SM couplings only in second order, while b and bν depend in first order on
LS and LT . A non-zero b would indicate the existence of LH S and T interactions.

Another observable is C, the proton asymmetry relative to the neutron spin.
Observables related to the proton do not appear in Eq. (4). However, the proton is
kinematically coupled to the other decay products. The connection between C and
the coupling constants Lj and Rj is given in Refs. 7 and 10.

We also use the ratio of the Ft0
+→0+

values in superallowed Fermi (SAF) decays
to the equivalent quantity in neutron decay, Ftn:

rFt =
Ft0

+→0+

Ftn
=

Ft0
+→0+

fnt(1 + δ′R)
=

Ft0
+→0+

fR ln (2)τn
, (5)

where fn = 1.6887 is a statistical phase-space factor.1 The nucleus-dependent
(outer) radiative correction δ′R, and O(α2) corrections,11–13 change fn by ∼ 1.5%
to fR = 1.71385(34)a. The corrections implicitly assume the validity of the V −A
theory.15 The dependence of rFt on coupling constants Lj and Rj is given in Ref. 7.

An electrically charged gauge boson outside the SM is generically denoted W ′.
The most attractive candidate for W ′ is the WR gauge boson associated with the
left-right symmetric models,16,17 which seek to provide a spontaneous origin for
parity violation in weak interactions. WL and WR may mix due to spontaneous

aThe most recently published value of fR = 1.71335(15)14 used fn = 1.6886, and did not include
the corrections by Marciano and Sirlin.12 Applying the Towner and Hardy prescription for splitting
the radiative corrections13 increases the uncertainty in fR slightly, to reproduce Eq. (18) in Ref. 12.
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[Lee & Yang, PR104]

➡ sensitivity of neutron beta decay to new physics★ b=0 in SM

BRIEF REPORTS PHYSICAL REVIEW C 88, 048501 (2013)

TABLE I. The statistical weighting and ratio of the phase-space factors is presented for each of the 13 isotopes used in the 0+ → 0+

superallowed data set to calculate the average F t value. Ik(x̃0) are the statistical rate functions defined in Eq. (4) and calculated by Towner and
Hardy [10,11].

Isotope F t I0(x̃0) I1(x̃0) I1(x̃0)/I0(x̃0)

10C 3067.7(4.6) 2.3004(12) 1.42401(74) 0.6190(5)
14O 3071.5(3.3) 42.772(23) 18.743(10) 0.4382(3)
22Mg 3078.0(7.4) 418.39(17) 128.948(52) 0.3082(2)
34Ar 3069.6(8.5) 3414.5(1.5) 724.56(32) 0.2122(1)
26Alm 3072.4(1.4) 478.237(38) 143.662(11) 0.3004(1)
34Cl 3070.6(2.1) 1995.96(47) 466.26(11) 0.2336(1)
38Km 3072.5(2.4) 3297.88(34) 701.459(69) 0.2127(1)
42Sc 3072.4(2.7) 4472.24(1.15) 895.34(23) 0.2002(1)
46V 3073.3(2.7) 7209.47(90) 1317.17(16) 0.1827(1)
50Mn 3070.9(2.8) 10745.97(57) 1816.07(10) 0.1690(1)
54Co 3069.9(3.3) 15766.6(2.9) 2470.63(45) 0.1567(1)
62Ga 3071.5(7.2) 26400.2(8.3) 3719.7(1.2) 0.1409(1)
74Rb 3078.0(13.0) 47300.0(110) 5884.1(1.4) 0.1244(4)
Average 3072.08(79) 0.2579(1)

term is zero G̃2
V = G2

V,

1
τ0+

=
G̃2

V

2π3h̄
(1 + 3λ2)fn(1 + $RC). (5)

A nonzero Fierz term will alter the neutron decay rate τn

via a 〈me/E〉 term in the phase-space integral and modify the
value of GV extracted from superallowed Fermi decays to

G̃2
V = G2

V〈1 + bFγ I1(x̃0)/I0(x̃0)〉, (6)

where γ =
√

1 − (Zα)2, Z is the atomic number, α is the
fine structure constant, and x̃0 is the end-point energy for
the superallowed Fermi decay isotopes, and I1(x̃0)/I0(x̃0)
corresponds to the ratio of phase-space integrals over the
superallowed decay used in the determination of Vud and
bF = 2 Re(CS/CV) [10]. For the moment we will ignore the
changes in λ induced by b; this will be addressed in detail
after presenting an outline of our approach. In Table I, the 13
isotopes included in the determination of the average F t are
listed with the absolute uncertainty on the measurement and
the statistical rate function and the ratio I1(x̃0)/I0(x̃0) [10]. The
reported values include both recoil and Coulomb corrections.
Writing Eqs. (2) and (5) in terms of GV, bF and b, we have

1
τn

= G2
V

2π3h̄
(1 + 3λ2)fn(1 + $RC)(1 + κb), (7)

and

1
τ0+

=
G2

V

2π3h̄
(1 + 3λ2)fn(1 + $RC)(1 + ζbF), (8)

where κ = I1(x0)/I0(x0), κ̃ = I1(x̃0)/I0(x̃0), and ζ = 〈γ κ̃〉 ∼
0.2560. In Eq. (7), the term (1 + κb) arises from the neutron
phase-space integral when b &= 0, and the (1 + ζbF) term in
Eq. (8) is from substitution of measured GV using Eq. (6).
Taking the difference between the measured neutron decay
rate and the decay rate predicted from 0+ → 0+ decays in

terms of measured quantities gives

τnK(1 + 3λ2) = 1 + ζbF

1 + κb
, (9)

where all the constants have been combined into K =
G̃2

Vfn(1 + $RC)/(2π3h̄) = 1.934(2) × 10−4 s−1, we express
Eq. (9). Critically, leading order differences in the predicted
versus measured decay rates must come from scalar and
tensor-induced couplings in the Fierz term, and any new
physics which adjusts the value of GV and λ affects both rates
uniformly (such as right-handed currents). Additionally, the
impact of the scalar coupling determined in the superallowed
decays is suppressed by ζ because of the much higher
end-point energy of these decays relative to neutron β decay.

Under the assumptions of this analysis the Fierz inference
term can be approximated in terms of the scalar CS/CV and
tensor CT/CA couplings [1]:

b = 2
√

1 − α2

1 + 3λ2

[
Re

(
CS

CV

)
+ 3λ2Re

(
CT

CA

)]
. (10)

At this point, we already have a reasonably strong constraint
on new physics by using Eqs. (9) and (10), and the definition
of bF,

CT

CA
(6λ2γn) = δb

τnKκ
− 2γn

CS

CV
− (1 + 3λ2)κ−1 (11)

where δb = 〈1 + 2γ (CS/CV)κ̃〉 and γn =
√

1 − α2. Using
the PDG values for λ = −1.2701(25), τn = 880.1(1.1) s,
and Vud = 0.97425(40) [12] and limits on scalar couplings,
CS/CV = 0.0011(13), from the superallowed data set [10],
one can place a limit on the tensor coupling. This results in
2-σ (95% C.L.) limits of −0.0009 < CT/CA < 0.0125. Note
that if only the Perkeo II result for λ = −1.2739(19) [13] is
used, then limits shift to −0.0012 < CT/CA < 0.0065.

b dependence of λ. The limits obtained from Eq. (11)
have ignored the fact that λ is determined experimentally
by measuring correlation coefficients, which typically are

048501-2

➡ sensitivity of 0+→0+ proc to new physics★ b0+=0 in SM

b+0 = 2Re

✓
CS
CV

◆
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We neglect effects of time-reversal violation, i.e., we consider the above 8 cou-
plings to be real.

In neutron decay experiments the outgoing spins are usually not observed. Sum-
ming over these spin quantities, and neglecting the neutrino masses, one can evaluate
the triple differential decay rate to be:9

d3Γ =
1

(2π)5
G2

F |Vud|2

2
peEe (E0 − Ee)

2 dEedΩedΩν

×ξ
[
1 + a

pe · pν
EeEν

+ b
me

Ee
+ sn

(
A

pe

Ee
+ B

pν
Eν

+ . . .

)]
, (4)

where pe, pν , Ee, and Eν are the electron (neutrino) momenta and total energies,
respectively, E0 is the maximum electron total energy, me the electron mass, sn the
neutron spin, and the Ωi denote solid angles. Quantities a, A, and B are the angular
correlation coefficients, while b is the Fierz interference term. The latter, and the
neutrino-electron correlation a, are measurable in decays of unpolarized neutrons,
while the A and B, the beta and neutrino asymmetry parameters, respectively,
require polarized neutrons. The dependence of a, b, A, and B on the coupling
constants Lj and Rj is described in Ref. 7. We mention that in the presence of LH
S and T couplings B depends on the electron energy: B = B0 + bν

me
Ee

, where bν is
another Fierz-like parameter, similar to b.7,9 We note that a, A, and B0 are sensitive
to non-SM couplings only in second order, while b and bν depend in first order on
LS and LT . A non-zero b would indicate the existence of LH S and T interactions.

Another observable is C, the proton asymmetry relative to the neutron spin.
Observables related to the proton do not appear in Eq. (4). However, the proton is
kinematically coupled to the other decay products. The connection between C and
the coupling constants Lj and Rj is given in Refs. 7 and 10.

We also use the ratio of the Ft0
+→0+

values in superallowed Fermi (SAF) decays
to the equivalent quantity in neutron decay, Ftn:

rFt =
Ft0

+→0+

Ftn
=

Ft0
+→0+

fnt(1 + δ′R)
=

Ft0
+→0+

fR ln (2)τn
, (5)

where fn = 1.6887 is a statistical phase-space factor.1 The nucleus-dependent
(outer) radiative correction δ′R, and O(α2) corrections,11–13 change fn by ∼ 1.5%
to fR = 1.71385(34)a. The corrections implicitly assume the validity of the V −A
theory.15 The dependence of rFt on coupling constants Lj and Rj is given in Ref. 7.

An electrically charged gauge boson outside the SM is generically denoted W ′.
The most attractive candidate for W ′ is the WR gauge boson associated with the
left-right symmetric models,16,17 which seek to provide a spontaneous origin for
parity violation in weak interactions. WL and WR may mix due to spontaneous

aThe most recently published value of fR = 1.71335(15)14 used fn = 1.6886, and did not include
the corrections by Marciano and Sirlin.12 Applying the Towner and Hardy prescription for splitting
the radiative corrections13 increases the uncertainty in fR slightly, to reproduce Eq. (18) in Ref. 12.
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➡ sensitivity of neutron beta decay to new physics★ b=0 in SM
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TABLE I. The statistical weighting and ratio of the phase-space factors is presented for each of the 13 isotopes used in the 0+ → 0+

superallowed data set to calculate the average F t value. Ik(x̃0) are the statistical rate functions defined in Eq. (4) and calculated by Towner and
Hardy [10,11].

Isotope F t I0(x̃0) I1(x̃0) I1(x̃0)/I0(x̃0)

10C 3067.7(4.6) 2.3004(12) 1.42401(74) 0.6190(5)
14O 3071.5(3.3) 42.772(23) 18.743(10) 0.4382(3)
22Mg 3078.0(7.4) 418.39(17) 128.948(52) 0.3082(2)
34Ar 3069.6(8.5) 3414.5(1.5) 724.56(32) 0.2122(1)
26Alm 3072.4(1.4) 478.237(38) 143.662(11) 0.3004(1)
34Cl 3070.6(2.1) 1995.96(47) 466.26(11) 0.2336(1)
38Km 3072.5(2.4) 3297.88(34) 701.459(69) 0.2127(1)
42Sc 3072.4(2.7) 4472.24(1.15) 895.34(23) 0.2002(1)
46V 3073.3(2.7) 7209.47(90) 1317.17(16) 0.1827(1)
50Mn 3070.9(2.8) 10745.97(57) 1816.07(10) 0.1690(1)
54Co 3069.9(3.3) 15766.6(2.9) 2470.63(45) 0.1567(1)
62Ga 3071.5(7.2) 26400.2(8.3) 3719.7(1.2) 0.1409(1)
74Rb 3078.0(13.0) 47300.0(110) 5884.1(1.4) 0.1244(4)
Average 3072.08(79) 0.2579(1)

term is zero G̃2
V = G2

V,

1
τ0+

=
G̃2

V

2π3h̄
(1 + 3λ2)fn(1 + $RC). (5)

A nonzero Fierz term will alter the neutron decay rate τn

via a 〈me/E〉 term in the phase-space integral and modify the
value of GV extracted from superallowed Fermi decays to

G̃2
V = G2

V〈1 + bFγ I1(x̃0)/I0(x̃0)〉, (6)

where γ =
√

1 − (Zα)2, Z is the atomic number, α is the
fine structure constant, and x̃0 is the end-point energy for
the superallowed Fermi decay isotopes, and I1(x̃0)/I0(x̃0)
corresponds to the ratio of phase-space integrals over the
superallowed decay used in the determination of Vud and
bF = 2 Re(CS/CV) [10]. For the moment we will ignore the
changes in λ induced by b; this will be addressed in detail
after presenting an outline of our approach. In Table I, the 13
isotopes included in the determination of the average F t are
listed with the absolute uncertainty on the measurement and
the statistical rate function and the ratio I1(x̃0)/I0(x̃0) [10]. The
reported values include both recoil and Coulomb corrections.
Writing Eqs. (2) and (5) in terms of GV, bF and b, we have

1
τn

= G2
V

2π3h̄
(1 + 3λ2)fn(1 + $RC)(1 + κb), (7)

and

1
τ0+

=
G2

V

2π3h̄
(1 + 3λ2)fn(1 + $RC)(1 + ζbF), (8)

where κ = I1(x0)/I0(x0), κ̃ = I1(x̃0)/I0(x̃0), and ζ = 〈γ κ̃〉 ∼
0.2560. In Eq. (7), the term (1 + κb) arises from the neutron
phase-space integral when b &= 0, and the (1 + ζbF) term in
Eq. (8) is from substitution of measured GV using Eq. (6).
Taking the difference between the measured neutron decay
rate and the decay rate predicted from 0+ → 0+ decays in

terms of measured quantities gives

τnK(1 + 3λ2) = 1 + ζbF

1 + κb
, (9)

where all the constants have been combined into K =
G̃2

Vfn(1 + $RC)/(2π3h̄) = 1.934(2) × 10−4 s−1, we express
Eq. (9). Critically, leading order differences in the predicted
versus measured decay rates must come from scalar and
tensor-induced couplings in the Fierz term, and any new
physics which adjusts the value of GV and λ affects both rates
uniformly (such as right-handed currents). Additionally, the
impact of the scalar coupling determined in the superallowed
decays is suppressed by ζ because of the much higher
end-point energy of these decays relative to neutron β decay.

Under the assumptions of this analysis the Fierz inference
term can be approximated in terms of the scalar CS/CV and
tensor CT/CA couplings [1]:

b = 2
√

1 − α2

1 + 3λ2

[
Re

(
CS

CV

)
+ 3λ2Re

(
CT

CA

)]
. (10)

At this point, we already have a reasonably strong constraint
on new physics by using Eqs. (9) and (10), and the definition
of bF,

CT

CA
(6λ2γn) = δb

τnKκ
− 2γn

CS

CV
− (1 + 3λ2)κ−1 (11)

where δb = 〈1 + 2γ (CS/CV)κ̃〉 and γn =
√

1 − α2. Using
the PDG values for λ = −1.2701(25), τn = 880.1(1.1) s,
and Vud = 0.97425(40) [12] and limits on scalar couplings,
CS/CV = 0.0011(13), from the superallowed data set [10],
one can place a limit on the tensor coupling. This results in
2-σ (95% C.L.) limits of −0.0009 < CT/CA < 0.0125. Note
that if only the Perkeo II result for λ = −1.2739(19) [13] is
used, then limits shift to −0.0012 < CT/CA < 0.0065.

b dependence of λ. The limits obtained from Eq. (11)
have ignored the fact that λ is determined experimentally
by measuring correlation coefficients, which typically are

048501-2

➡ sensitivity of 0+→0+ proc to new physics★ b0+=0 in SM

Best constraints so far 

�0.0026 < CT/CA < 0.0024

[Pattie et al., PRC88]

CS/CV = �0.0014± 0.0013

[Hardy et al., PRC91]

@1σ

@95%CL

b+0 = 2Re

✓
CS
CV

◆
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Low energy

NEW FUNDAMENTAL INTERACTIONS 

★ Effective field theories for low energy
➡ New (heavy) dof integrated out 

★ Consider all  Dirac structures for EW interactions
➡ 1,   γ5,   γμ(1+γ5),   σμν
➡ Define ``Wilson coefficient" for new interaction

High energy

New particles produced directlyNew particles hints 
• in loops
• mediators of interaction
• ...
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order in v2/Λ2, we do not need to consider diagrams contributing to µ → eν̄ανβ with the “wrong
neutrino flavor”, because they would correct the muon decay rate to O(v4/Λ4). After integrating
out the W and Z, the muon decay effective lagrangian reads:

Lµ→eν̄eνµ = −g2

2m2
W

[
(1 + ṽL) · ēLγµνeLν̄µLγ µµL + s̃R · ēRνeLν̄µLµR

]
+ h.c., (31)

where m2
W = 1/2g2v2 is the uncorrected W mass and

ṽL = 2
[
α̂

(3)
ϕl

]
11+22∗ −

[
α̂

(1)
ll

]
1221 − 2

[
α̂

(3)
ll

]
1122− 1

2 (1221)
, (32)

s̃R = +2[α̂le]2112, (33)

represent the correction to the standard (V −A)⊗ (V −A) structure and the coupling associated
with the new (S − P) ⊗ (S + P) structure, respectively.

3.4. Effective lagrangian for beta decays: dj → ui'
−ν̄'

The low-energy effective lagrangian for semileptonic transitions receives contributions from
both W exchange diagrams (with modified W -fermion couplings) and the four-fermion operators
O

(3)
lq , Oqde , Olq , Ot

lq . As in the muon case, we neglect lepton flavor violating contributions
(wrong neutrino flavor). The resulting low-energy effective lagrangian governing semileptonic
transitions dj → ui'

−ν̄' (for a given lepton flavor ') reads:

Ldj →ui'−ν̄'
= −g2

2m2
W

Vij

[(
1 + [vL]''ij

)
'̄Lγµν'Lūi

Lγ µd
j
L + [vR]''ij '̄Lγµν'Lūi

Rγ µd
j
R

+ [sL]''ij '̄Rν'Lūi
Rd

j
L + [sR]''ij '̄Rν'Lūi

Ld
j
R

+ [tL]''ij '̄Rσµνν'Lūi
Rσµνd

j
L

]
+ h.c., (34)

where

Vij · [vL]''ij = 2Vij

[
α̂

(3)
ϕl

]
''

+ 2Vim

[
α̂(3)

ϕq

]∗
jm

− 2Vim

[
α̂

(3)
lq

]
''mj

, (35)

Vij · [vR]''ij = −[α̂ϕϕ]ij , (36)

Vij · [sL]''ij = −[α̂lq ]∗''ji , (37)

Vij · [sR]''ij = −Vim[α̂qde]∗''jm, (38)

Vij · [tL]''ij = −
[
α̂t

lq

]∗
''ji

. (39)

In Eqs. (35)–(39) the repeated indices i, j,' are not summed over, while the index m is.

4. Flavor structure of the effective couplings

So far we have presented our results for the effective lagrangian keeping generic flavor struc-
tures in the couplings [α̂X]abcd (see Eqs. (32), (33), and (35) through (39)). However, some of the
operators considered in the analysis contribute to flavor changing neutral current (FCNC) pro-
cesses, so that their flavor structure cannot be generic if the effective scale is around Λ ∼ TeV:
the off-diagonal coefficients are experimentally constrained to be very small. While it is certainly
possible that some operators (weakly constrained by FCNC) have generic structures, we would

Scalars
εS≣sL+sRTensor

εT≣tL

right
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STANDARD MODEL

LEC IN TERMS OF HADRONIC × NEW INT.
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Notice that ✏
T

has a renormalization scale and scheme dependence that must be cancelled by the corresponding
form factor g

T

.
where The ✏

T

coe�cient carries a / v2/⇤2 dependence9 on the new-physics scale ⇤ and in the SM they vanish
leaving the well-known (V � A) ⇥ (V � A) structure generated by the exchange of a W boson. Such exotic tensor
interaction can be generated for example by the tree-level exchange of a scalar leptoquark.

Precise measurements in beta decay set strong bounds on the combination g
T

✏
T

, namely [69, 70]

|g
T

✏
T

| < 6 · 10�4 (90% C.L.) , (41)

which is expected to be improved by the next generation of experiments. In particular, a measurement of the Fierz
term b in neutron beta decay at the per-mil level, would improve this bound by a factor of 3.

In order to extract a bound on the Wilson coe�cient ✏
T

from Eq. (41) it is necessary to know the value of the
tensor charge g

T

. Such a bound on ✏
T

can be translated into bounds on masses and couplings in any specific new
physics setup.

It is clear that a large error in the tensor charge will dilute the strong bound given in Eq. (41), which in fact
vanishes completely if the tensor charge is zero. In other words, the sensitivity of beta decay measurements to exotic
tensor interactions depends on our knowledge of the tensor charge. This issue was studied in Ref. [] where it was
shown that a precision of 10-15% in g

T

was necessary to fully exploit a future determination of the Fierz term b at
the per-mil level. Let us do a similar analysis here to understand the impact of the phenomenological determinations
of g

T

explained in the previous sections.
Since the theoretical error is the dominating one in both lattice and phenomenological determinations, one cannot

assume a gaussian distribution of the error around the central value. In order to deal with this situation we follow
Ref. [2] and we calculate the confidence interval on ✏

T

using the so-called R-Fit method [71]. In this scheme the
theoretical likelihoods do not contribute to the �2 of the fit and the corresponding QCD parameters take values
within certain “allowed ranges”. In our case, this means that g

T

is restricted to remain inside a given interval, e.g.
0.16  g

T

 1.20 for the current determination from di-hadron SIDIS (Section ??) TO BE UPDATED. Notice that
all values inside this range are treated on an equal footing, whereas values outside the interval are not permitted
irrespective of how close they are from the edges of the allowed range. The chi-squared function is then given by

�2(✏
T

) = min
g

T

✓
[g

T

✏
T

]exp � g
T

✏
T

� [g
T

✏
T

]exp

◆
2

, (42)

where the minimization is performed varying g
T

within its allowed range. A careful look at this function reveals that
the bound on ✏

T

depends only on the lower limit of the tensor charge, as long as the experimental determination of
g
T

✏
T

is compatible with zero at 1�.
In this way we obtain the limits on the Wilson coe�cient ✏

T

that are shown in Fig. 6, using di↵erent values of the
tensor charge. Let us remind for comparison that the bound obtained from the analysis of LHC data carried out in
Ref. [72] is |✏

T

| < 0.0013.

V. CONCLUSIONS

The possibility of obtaining the scalar and tensor charges directly from experiment with su�cient precision, gives
an entirely di↵erent leverage to neutron beta decay searches.

Due to its non-perturbative nature, the nucleon structure can only be unveiled using complementary methods such
as e↵ecive field theories, lattice calculations, models for the nucleon structure, Schwinger-Dyson based techniques

9 v denotes the electroweak symmetry breaking scale, v = (
p
2GF )�1/2 ' 246 GeV.

|gS✏S | = 0.0014± 0.0013

@95%CL

@1σ
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theoretical likelihoods do not contribute to the �2 of the fit and the corresponding QCD parameters take values
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T
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where the minimization is performed varying g
T

within its allowed range. A careful look at this function reveals that
the bound on ✏

T

depends only on the lower limit of the tensor charge, as long as the experimental determination of
g
T

✏
T

is compatible with zero at 1�.
In this way we obtain the limits on the Wilson coe�cient ✏

T

that are shown in Fig. 6, using di↵erent values of the
tensor charge. Let us remind for comparison that the bound obtained from the analysis of LHC data carried out in
Ref. [72] is |✏
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| < 0.0013.

V. CONCLUSIONS

The possibility of obtaining the scalar and tensor charges directly from experiment with su�cient precision, gives
an entirely di↵erent leverage to neutron beta decay searches.

Due to its non-perturbative nature, the nucleon structure can only be unveiled using complementary methods such
as e↵ecive field theories, lattice calculations, models for the nucleon structure, Schwinger-Dyson based techniques

9 v denotes the electroweak symmetry breaking scale, v = (
p
2GF )�1/2 ' 246 GeV.

|gS✏S | = 0.0014± 0.0013

@95%CL

@1σ

Precision with which the NEW COUPLINGS can be measured depend on 
the knowledge of hadronic charges
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⇓

When t→0, g(0)≡charge

Isovector  vector FF

Isovector tensor FF

hP (pp, Sp)|ū�µd|N(pn, Sn)i = gV (t) ūP �µuN +O(
p
t/M)

hP (pp, Sp)|ū�µ⌫d|N(pn, Sn)i = gT
�
t, Q2

�
ūP�µ⌫uN

Exist in hadronic physics
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Fundamental charges for  γμ & γμγ5  only  

HADRONIC STRUCTURE

★ Nonlocal matrix element for proton structure
★ Parton Distribution Functions
- built from Lorentz symmetry from vectors at hand

- defined in Bjorken scaling
- nonperturbative objects
- 1st principle related to ``charges"

Structural charges for  the others

uud
Q2

Scalar & tensor charge
accessible through sum rules of Parton Distributions
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Discrete symmetries
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To leading twist:
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Vector TensorDirac operator ⇒ Axial-vector

Kinematics of the Bjorken scaling
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p.q→∞
Q2/2p.q≡x=finite

Monday, 25 May 15



PDF AT LEADING TWIST

Lorentz structure
Discrete symmetries
Vectors at hand...

To leading twist:

PDFs ⇒ f

q
1 (x) , g

q
1(x) , h

q
1(x)

- -

Vector TensorDirac operator ⇒ Axial-vector

Kinematics of the Bjorken scaling
Q2→∞

p.q→∞
Q2/2p.q≡x=finite

Charges ⇒ gV,                 gA,                               gT

Monday, 25 May 15



PDF AT LEADING TWIST

Lorentz structure
Discrete symmetries
Vectors at hand...

To leading twist:

PDFs ⇒ f

q
1 (x) , g

q
1(x) , h

q
1(x)

- -

Vector TensorDirac operator ⇒ Axial-vector

Kinematics of the Bjorken scaling
Q2→∞

p.q→∞
Q2/2p.q≡x=finite

Charges ⇒ gV,                 gA,                               gT

Z 1

�1
dxh

uV �dV
1 (x) = gT

Monday, 25 May 15



ACCESS TO DISTRIBUTION FUNCTIONS

di-π, ...

Semi-inclusive processes

π, ...

Inclusive processes

π, ...

Exclusive processes

Monday, 25 May 15



DEFINITION
AND

FACTORIZATION

ACCESS TO DISTRIBUTION FUNCTIONS

di-π, ...

Semi-inclusive processes

π, ...

Inclusive processes

π, ...

Exclusive processes

Monday, 25 May 15



DEFINITION
AND

FACTORIZATION

ACCESS TO DISTRIBUTION FUNCTIONS

di-π, ...

Semi-inclusive processes

π, ...

Inclusive processes
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σ→ PDF×dσ σ→ PDF×dσ×Fragmentation Function
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TRANSVERSITY PDF

★ Semi-inclusive processes 
★ eN→e π X               Torino et al

★ eN→e (ππ) X          Pavia et al

★ Exclusive: eP→e π0 P           GGL

[Goldstein et al, PRD 2015]
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Figure 8. The up (left) and down (right) valence transversities as functions of x at Q2
= 2.4

GeV2. The darker band with solid borders in the foreground is our result in the flexible scenario
with ↵s(M2

Z) = 0.125. The lighter band with dot-dashed borders in the background is the most
recent transversity extraction from the Collins effect [2]. The central thick dashed line is the result
of Ref. [5]. The thick solid lines indicate the Soffer bound.

displayed as a function of x at Q2
= 2.4 GeV2. The darker band with solid borders in the

foreground is our result in the flexible scenario with ↵s(M2
Z) = 0.125. The lighter band

with dot-dashed borders in the background is the most recent transversity extraction of
Ref. [2] using the Collins effect but applying the standard DGLAP evolution equations only
to the collinear part of the fitting function. The central thick dashed line is the result of
Ref. [5], where evolution equations have been computed in the TMD framework.

In the right panel, the disagreement between our result for xhdv
1 (x) at x � 0.1 and

the outcome of the Collins effect is confirmed with respect to our previous analysis (see
Fig. 4 in Ref. [16]). This is due to the fact that the COMPASS data for AD

SIDIS off deuteron
targets remain the same. This trend is confirmed also in the other scenarios, indicating
that it is not an artifact of the chosen functional form. As a matter of fact, our replicas for
the valence down transversity tend to saturate the lower limit of the Soffer bound because
they are driven by the COMPASS deuteron data, in particular by the bins number 7 and
8. It is worth mentioning that some of the replicas outside the 68% band do not follow
this trend. Their trajectories are spread over the whole available space between the upper
and lower limits of the Soffer bound, still maintaining a good �2/d.o.f. (typically, around
2). It is also interesting to remark that the dashed line from Ref. [5], although in general
agreement with the other extraction based on the Collins effect, also tends to saturate the
Soffer bound at x > 0.2.

Apart from the range x � 0.1, there is a general consistency among the various extrac-
tions which is confirmed also for the valence up transversity (left panel), at least for the
range 0.0065  x  0.29 where there are data. This is encouraging: while the dihadron
SIDIS data are a subset of the single-hadron ones, the theoretical frameworks used to in-
terpret them are very different. Nevertheless, we point out that the collinear framework, in
which our results are produced, represents a well established and robust theoretical context.
On the contrary, the implementation of the QCD evolution equations of TMDs needed in
the study of the Collins effect still contains elements of arbitrariness (see Refs. [3–5] and ref-
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[Radici et al., JHEP 2015]
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ISOVECTOR TENSOR CHARGE 
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extraction of the Collins function from e+e� annihilation data [2]. The three black squares
(labels 3-5) correspond to the results of our previous analysis [16] for the rigid, flexible, and
extraflexible scenarios, from left to right respectively. The three rightmost triangles (labels
6-8) indicate the outcome of the present work with ↵s(M2

Z) = 0.125 in the same order.
Consistently with Fig. 7, our new results for the up quark are smaller than the previous
ones. They also appear globally in better agreement with the values from Ref. [2] (and
not far from the ones obtained from the parametrization of chiral-odd Generalized Parton
Distributions of Ref. [37]), although the large uncertainties introduced by the numerical
extrapolation smooth most of the differences. This is particularly evident for the down
quark, where in addition the numerical values are very close because the experimental data
for AD

SIDIS are the same as before.
In Fig. 11, we show the isovector nucleon tensor charge gT = �uv��dv. While there is no

elementary tensor current at tree level in the Standard Model, the nucleon matrix element
of the tensor operator can still be defined (for a review, see Ref. [38] and references therein).
The gT belongs to the group of isovector nucleon charges that are related to flavour-changing
processes. A determination of these couplings may shed light on the search of new physics
mechanisms that may depend on them [39–42], or on direct dark matter searches [43]. The
vector charge gV , axial charge gA, and induced tensor charge g̃T , are fixed by baryon number
conservation, neutron �-decay, and nucleon magnetic moments, respectively [44]. Also the
pseudoscalar charge gP is, to some extext, constrained by low-energy n⇡+ scattering [45].
The other isovector nucleon couplings, including gT , have been determined so far only with
lattice QCD.

In Fig. 11, the leftmost light square with label 1 is our new result for gT = 0.81± 0.44

at Q2
= 4 GeV2 for the flexible scenario with ↵s(M2

Z) = 0.125 at 68% confidence level.
We compare it with various lattice computations. From left to right, the black square
refers to the lattice simulation of RQCD at m⇡ ⇡ 150 MeV with nf = 2 NPI Wilson-
clover fermions [46], the black triangle to that of RBC-UKQCD at m⇡ = 330 MeV with
nf = 2 + 1 domain wall fermions [47], the black circle to that of LHPC at m⇡ ⇡ 149

MeV with nf = 2+1 HEX-smeared Wilson-clover fermions [48], the black inverted triangle
to that of PNDME at m⇡ = 220 MeV with Wilson-clover fermions on a HISQ staggered
nf = 2 + 1 + 1 sea [49], the black diamond and star to that of ETMC at physical m⇡

with nf = 2 twisted mass fermions and at m⇡ = 213 MeV with nf = 2 + 1 + 1 twisted
mass fermions, respectively [50]. Our result is obviously compatible with the various lattice
simulations because of the very large error. As already remarked, this originates from the
fact that the integral in Eq. (4.4) involves the extrapolation of transversity outside the x

range of experimental data. From Fig. 7 it is evident that the replicas tend to take all
values within the Soffer bounds for x � 0.3 where there are no data, thus increasing the
uncertainty. Moreover, we stress again that there is also a source of systematic error related
to the power x1/2 in the fitting form of Eq. (4.2). The absence of data at very low x leaves
this choice basically unconstrained, whereas the value of the integral in Eq. (4.4) heavily
depends on it.

Finally, in Tab. 3 we collect all numerical values that we have obtained for the (trun-
cated) tensor charge. In the upper part of the table, we show the truncated tensor charge
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Figure 11. Isovector tensor charge �uv � �dv at Q2
= 4 GeV2. From left to right: light square

(label 1) is our result for the flexible scenario with ↵s(M2
Z) = 0.125; black square for the lattice

result of Ref. [46] (RQCD); black triangle from Ref. [47] (RBC-UKQCD); black circle from Ref. [48]
(LHPC); black inverted triangle from Ref. [49] (PNDME); black diamond and star from Ref. [50]
(ETMC) with 2+1 and 2+1+1 flavors, respectively.

�qqv of Eq. (4.3) at Q2
= 10 GeV2 for valence up and down quarks in the rigid, flexi-

ble, extraflexible scenarios for the fitting function of Eq. (4.2) with ↵s(M2
Z) = 0.125 or

↵s(M2
Z) = 0.139 in the evolution code. In the lower part of the table, we show the results

for the same cases but for the tensor charge �qv of Eq. (4.4) at the starting scale Q2
0 = 1

GeV2. All indicated errors are calculated at 68% confidence level.

5 Conclusions

The transversity parton distribution function is an essential piece of information on the
nucleon at leading twist. Its first Mellin moment is related to the nucleon tensor charge.
Due to its chiral-odd nature, transversity cannot be accessed in fully inclusive deep-inelastic
scattering (DIS). Within the framework of collinear factorization, it is however possible
to access it in two-particle-inclusive DIS in combination with Dihadron Fragmentation
Functions (DiFFs). The latter can be extracted from e+e� annihilations producing two
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extraction of the Collins function from e+e� annihilation data [2]. The three black squares
(labels 3-5) correspond to the results of our previous analysis [16] for the rigid, flexible, and
extraflexible scenarios, from left to right respectively. The three rightmost triangles (labels
6-8) indicate the outcome of the present work with ↵s(M2

Z) = 0.125 in the same order.
Consistently with Fig. 7, our new results for the up quark are smaller than the previous
ones. They also appear globally in better agreement with the values from Ref. [2] (and
not far from the ones obtained from the parametrization of chiral-odd Generalized Parton
Distributions of Ref. [37]), although the large uncertainties introduced by the numerical
extrapolation smooth most of the differences. This is particularly evident for the down
quark, where in addition the numerical values are very close because the experimental data
for AD

SIDIS are the same as before.
In Fig. 11, we show the isovector nucleon tensor charge gT = �uv��dv. While there is no

elementary tensor current at tree level in the Standard Model, the nucleon matrix element
of the tensor operator can still be defined (for a review, see Ref. [38] and references therein).
The gT belongs to the group of isovector nucleon charges that are related to flavour-changing
processes. A determination of these couplings may shed light on the search of new physics
mechanisms that may depend on them [39–42], or on direct dark matter searches [43]. The
vector charge gV , axial charge gA, and induced tensor charge g̃T , are fixed by baryon number
conservation, neutron �-decay, and nucleon magnetic moments, respectively [44]. Also the
pseudoscalar charge gP is, to some extext, constrained by low-energy n⇡+ scattering [45].
The other isovector nucleon couplings, including gT , have been determined so far only with
lattice QCD.

In Fig. 11, the leftmost light square with label 1 is our new result for gT = 0.81± 0.44

at Q2
= 4 GeV2 for the flexible scenario with ↵s(M2

Z) = 0.125 at 68% confidence level.
We compare it with various lattice computations. From left to right, the black square
refers to the lattice simulation of RQCD at m⇡ ⇡ 150 MeV with nf = 2 NPI Wilson-
clover fermions [46], the black triangle to that of RBC-UKQCD at m⇡ = 330 MeV with
nf = 2 + 1 domain wall fermions [47], the black circle to that of LHPC at m⇡ ⇡ 149

MeV with nf = 2+1 HEX-smeared Wilson-clover fermions [48], the black inverted triangle
to that of PNDME at m⇡ = 220 MeV with Wilson-clover fermions on a HISQ staggered
nf = 2 + 1 + 1 sea [49], the black diamond and star to that of ETMC at physical m⇡

with nf = 2 twisted mass fermions and at m⇡ = 213 MeV with nf = 2 + 1 + 1 twisted
mass fermions, respectively [50]. Our result is obviously compatible with the various lattice
simulations because of the very large error. As already remarked, this originates from the
fact that the integral in Eq. (4.4) involves the extrapolation of transversity outside the x

range of experimental data. From Fig. 7 it is evident that the replicas tend to take all
values within the Soffer bounds for x � 0.3 where there are no data, thus increasing the
uncertainty. Moreover, we stress again that there is also a source of systematic error related
to the power x1/2 in the fitting form of Eq. (4.2). The absence of data at very low x leaves
this choice basically unconstrained, whereas the value of the integral in Eq. (4.4) heavily
depends on it.

Finally, in Tab. 3 we collect all numerical values that we have obtained for the (trun-
cated) tensor charge. In the upper part of the table, we show the truncated tensor charge
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extraction of the Collins function from e+e� annihilation data [2]. The three black squares
(labels 3-5) correspond to the results of our previous analysis [16] for the rigid, flexible, and
extraflexible scenarios, from left to right respectively. The three rightmost triangles (labels
6-8) indicate the outcome of the present work with ↵s(M2

Z) = 0.125 in the same order.
Consistently with Fig. 7, our new results for the up quark are smaller than the previous
ones. They also appear globally in better agreement with the values from Ref. [2] (and
not far from the ones obtained from the parametrization of chiral-odd Generalized Parton
Distributions of Ref. [37]), although the large uncertainties introduced by the numerical
extrapolation smooth most of the differences. This is particularly evident for the down
quark, where in addition the numerical values are very close because the experimental data
for AD

SIDIS are the same as before.
In Fig. 11, we show the isovector nucleon tensor charge gT = �uv��dv. While there is no

elementary tensor current at tree level in the Standard Model, the nucleon matrix element
of the tensor operator can still be defined (for a review, see Ref. [38] and references therein).
The gT belongs to the group of isovector nucleon charges that are related to flavour-changing
processes. A determination of these couplings may shed light on the search of new physics
mechanisms that may depend on them [39–42], or on direct dark matter searches [43]. The
vector charge gV , axial charge gA, and induced tensor charge g̃T , are fixed by baryon number
conservation, neutron �-decay, and nucleon magnetic moments, respectively [44]. Also the
pseudoscalar charge gP is, to some extext, constrained by low-energy n⇡+ scattering [45].
The other isovector nucleon couplings, including gT , have been determined so far only with
lattice QCD.

In Fig. 11, the leftmost light square with label 1 is our new result for gT = 0.81± 0.44

at Q2
= 4 GeV2 for the flexible scenario with ↵s(M2

Z) = 0.125 at 68% confidence level.
We compare it with various lattice computations. From left to right, the black square
refers to the lattice simulation of RQCD at m⇡ ⇡ 150 MeV with nf = 2 NPI Wilson-
clover fermions [46], the black triangle to that of RBC-UKQCD at m⇡ = 330 MeV with
nf = 2 + 1 domain wall fermions [47], the black circle to that of LHPC at m⇡ ⇡ 149

MeV with nf = 2+1 HEX-smeared Wilson-clover fermions [48], the black inverted triangle
to that of PNDME at m⇡ = 220 MeV with Wilson-clover fermions on a HISQ staggered
nf = 2 + 1 + 1 sea [49], the black diamond and star to that of ETMC at physical m⇡

with nf = 2 twisted mass fermions and at m⇡ = 213 MeV with nf = 2 + 1 + 1 twisted
mass fermions, respectively [50]. Our result is obviously compatible with the various lattice
simulations because of the very large error. As already remarked, this originates from the
fact that the integral in Eq. (4.4) involves the extrapolation of transversity outside the x

range of experimental data. From Fig. 7 it is evident that the replicas tend to take all
values within the Soffer bounds for x � 0.3 where there are no data, thus increasing the
uncertainty. Moreover, we stress again that there is also a source of systematic error related
to the power x1/2 in the fitting form of Eq. (4.2). The absence of data at very low x leaves
this choice basically unconstrained, whereas the value of the integral in Eq. (4.4) heavily
depends on it.

Finally, in Tab. 3 we collect all numerical values that we have obtained for the (trun-
cated) tensor charge. In the upper part of the table, we show the truncated tensor charge
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extraction of the Collins function from e+e� annihilation data [2]. The three black squares
(labels 3-5) correspond to the results of our previous analysis [16] for the rigid, flexible, and
extraflexible scenarios, from left to right respectively. The three rightmost triangles (labels
6-8) indicate the outcome of the present work with ↵s(M2

Z) = 0.125 in the same order.
Consistently with Fig. 7, our new results for the up quark are smaller than the previous
ones. They also appear globally in better agreement with the values from Ref. [2] (and
not far from the ones obtained from the parametrization of chiral-odd Generalized Parton
Distributions of Ref. [37]), although the large uncertainties introduced by the numerical
extrapolation smooth most of the differences. This is particularly evident for the down
quark, where in addition the numerical values are very close because the experimental data
for AD

SIDIS are the same as before.
In Fig. 11, we show the isovector nucleon tensor charge gT = �uv��dv. While there is no

elementary tensor current at tree level in the Standard Model, the nucleon matrix element
of the tensor operator can still be defined (for a review, see Ref. [38] and references therein).
The gT belongs to the group of isovector nucleon charges that are related to flavour-changing
processes. A determination of these couplings may shed light on the search of new physics
mechanisms that may depend on them [39–42], or on direct dark matter searches [43]. The
vector charge gV , axial charge gA, and induced tensor charge g̃T , are fixed by baryon number
conservation, neutron �-decay, and nucleon magnetic moments, respectively [44]. Also the
pseudoscalar charge gP is, to some extext, constrained by low-energy n⇡+ scattering [45].
The other isovector nucleon couplings, including gT , have been determined so far only with
lattice QCD.

In Fig. 11, the leftmost light square with label 1 is our new result for gT = 0.81± 0.44

at Q2
= 4 GeV2 for the flexible scenario with ↵s(M2

Z) = 0.125 at 68% confidence level.
We compare it with various lattice computations. From left to right, the black square
refers to the lattice simulation of RQCD at m⇡ ⇡ 150 MeV with nf = 2 NPI Wilson-
clover fermions [46], the black triangle to that of RBC-UKQCD at m⇡ = 330 MeV with
nf = 2 + 1 domain wall fermions [47], the black circle to that of LHPC at m⇡ ⇡ 149

MeV with nf = 2+1 HEX-smeared Wilson-clover fermions [48], the black inverted triangle
to that of PNDME at m⇡ = 220 MeV with Wilson-clover fermions on a HISQ staggered
nf = 2 + 1 + 1 sea [49], the black diamond and star to that of ETMC at physical m⇡

with nf = 2 twisted mass fermions and at m⇡ = 213 MeV with nf = 2 + 1 + 1 twisted
mass fermions, respectively [50]. Our result is obviously compatible with the various lattice
simulations because of the very large error. As already remarked, this originates from the
fact that the integral in Eq. (4.4) involves the extrapolation of transversity outside the x

range of experimental data. From Fig. 7 it is evident that the replicas tend to take all
values within the Soffer bounds for x � 0.3 where there are no data, thus increasing the
uncertainty. Moreover, we stress again that there is also a source of systematic error related
to the power x1/2 in the fitting form of Eq. (4.2). The absence of data at very low x leaves
this choice basically unconstrained, whereas the value of the integral in Eq. (4.4) heavily
depends on it.

Finally, in Tab. 3 we collect all numerical values that we have obtained for the (trun-
cated) tensor charge. In the upper part of the table, we show the truncated tensor charge
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Figure 11. Isovector tensor charge �uv � �dv at Q2
= 4 GeV2. From left to right: light square

(label 1) is our result for the flexible scenario with ↵s(M2
Z) = 0.125; black square for the lattice

result of Ref. [46] (RQCD); black triangle from Ref. [47] (RBC-UKQCD); black circle from Ref. [48]
(LHPC); black inverted triangle from Ref. [49] (PNDME); black diamond and star from Ref. [50]
(ETMC) with 2+1 and 2+1+1 flavors, respectively.

�qqv of Eq. (4.3) at Q2
= 10 GeV2 for valence up and down quarks in the rigid, flexi-

ble, extraflexible scenarios for the fitting function of Eq. (4.2) with ↵s(M2
Z) = 0.125 or

↵s(M2
Z) = 0.139 in the evolution code. In the lower part of the table, we show the results

for the same cases but for the tensor charge �qv of Eq. (4.4) at the starting scale Q2
0 = 1

GeV2. All indicated errors are calculated at 68% confidence level.

5 Conclusions

The transversity parton distribution function is an essential piece of information on the
nucleon at leading twist. Its first Mellin moment is related to the nucleon tensor charge.
Due to its chiral-odd nature, transversity cannot be accessed in fully inclusive deep-inelastic
scattering (DIS). Within the framework of collinear factorization, it is however possible
to access it in two-particle-inclusive DIS in combination with Dihadron Fragmentation
Functions (DiFFs). The latter can be extracted from e+e� annihilations producing two
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extraction of the Collins function from e+e� annihilation data [2]. The three black squares
(labels 3-5) correspond to the results of our previous analysis [16] for the rigid, flexible, and
extraflexible scenarios, from left to right respectively. The three rightmost triangles (labels
6-8) indicate the outcome of the present work with ↵s(M2

Z) = 0.125 in the same order.
Consistently with Fig. 7, our new results for the up quark are smaller than the previous
ones. They also appear globally in better agreement with the values from Ref. [2] (and
not far from the ones obtained from the parametrization of chiral-odd Generalized Parton
Distributions of Ref. [37]), although the large uncertainties introduced by the numerical
extrapolation smooth most of the differences. This is particularly evident for the down
quark, where in addition the numerical values are very close because the experimental data
for AD

SIDIS are the same as before.
In Fig. 11, we show the isovector nucleon tensor charge gT = �uv��dv. While there is no

elementary tensor current at tree level in the Standard Model, the nucleon matrix element
of the tensor operator can still be defined (for a review, see Ref. [38] and references therein).
The gT belongs to the group of isovector nucleon charges that are related to flavour-changing
processes. A determination of these couplings may shed light on the search of new physics
mechanisms that may depend on them [39–42], or on direct dark matter searches [43]. The
vector charge gV , axial charge gA, and induced tensor charge g̃T , are fixed by baryon number
conservation, neutron �-decay, and nucleon magnetic moments, respectively [44]. Also the
pseudoscalar charge gP is, to some extext, constrained by low-energy n⇡+ scattering [45].
The other isovector nucleon couplings, including gT , have been determined so far only with
lattice QCD.

In Fig. 11, the leftmost light square with label 1 is our new result for gT = 0.81± 0.44

at Q2
= 4 GeV2 for the flexible scenario with ↵s(M2

Z) = 0.125 at 68% confidence level.
We compare it with various lattice computations. From left to right, the black square
refers to the lattice simulation of RQCD at m⇡ ⇡ 150 MeV with nf = 2 NPI Wilson-
clover fermions [46], the black triangle to that of RBC-UKQCD at m⇡ = 330 MeV with
nf = 2 + 1 domain wall fermions [47], the black circle to that of LHPC at m⇡ ⇡ 149

MeV with nf = 2+1 HEX-smeared Wilson-clover fermions [48], the black inverted triangle
to that of PNDME at m⇡ = 220 MeV with Wilson-clover fermions on a HISQ staggered
nf = 2 + 1 + 1 sea [49], the black diamond and star to that of ETMC at physical m⇡

with nf = 2 twisted mass fermions and at m⇡ = 213 MeV with nf = 2 + 1 + 1 twisted
mass fermions, respectively [50]. Our result is obviously compatible with the various lattice
simulations because of the very large error. As already remarked, this originates from the
fact that the integral in Eq. (4.4) involves the extrapolation of transversity outside the x

range of experimental data. From Fig. 7 it is evident that the replicas tend to take all
values within the Soffer bounds for x � 0.3 where there are no data, thus increasing the
uncertainty. Moreover, we stress again that there is also a source of systematic error related
to the power x1/2 in the fitting form of Eq. (4.2). The absence of data at very low x leaves
this choice basically unconstrained, whereas the value of the integral in Eq. (4.4) heavily
depends on it.

Finally, in Tab. 3 we collect all numerical values that we have obtained for the (trun-
cated) tensor charge. In the upper part of the table, we show the truncated tensor charge
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LATTICE RESULTS PRESENT TINY ERRORS W.R.T. HADRONIC EXTRACTIONS

HERE⇒TESTING GROUND FOR LATTICE QCD CALCULATIONS

Various Lattice QCD results
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Notice that ✏
T

has a renormalization scale and scheme dependence that must be cancelled by the corresponding
form factor g

T

.
where The ✏

T

coe�cient carries a / v2/⇤2 dependence9 on the new-physics scale ⇤ and in the SM they vanish
leaving the well-known (V � A) ⇥ (V � A) structure generated by the exchange of a W boson. Such exotic tensor
interaction can be generated for example by the tree-level exchange of a scalar leptoquark.

Precise measurements in beta decay set strong bounds on the combination g
T

✏
T

, namely [69, 70]

|g
T

✏
T

| < 6 · 10�4 (90% C.L.) , (41)

which is expected to be improved by the next generation of experiments. In particular, a measurement of the Fierz
term b in neutron beta decay at the per-mil level, would improve this bound by a factor of 3.

In order to extract a bound on the Wilson coe�cient ✏
T

from Eq. (41) it is necessary to know the value of the
tensor charge g

T

. Such a bound on ✏
T

can be translated into bounds on masses and couplings in any specific new
physics setup.

It is clear that a large error in the tensor charge will dilute the strong bound given in Eq. (41), which in fact
vanishes completely if the tensor charge is zero. In other words, the sensitivity of beta decay measurements to exotic
tensor interactions depends on our knowledge of the tensor charge. This issue was studied in Ref. [] where it was
shown that a precision of 10-15% in g

T

was necessary to fully exploit a future determination of the Fierz term b at
the per-mil level. Let us do a similar analysis here to understand the impact of the phenomenological determinations
of g

T

explained in the previous sections.
Since the theoretical error is the dominating one in both lattice and phenomenological determinations, one cannot

assume a gaussian distribution of the error around the central value. In order to deal with this situation we follow
Ref. [2] and we calculate the confidence interval on ✏

T

using the so-called R-Fit method [71]. In this scheme the
theoretical likelihoods do not contribute to the �2 of the fit and the corresponding QCD parameters take values
within certain “allowed ranges”. In our case, this means that g

T

is restricted to remain inside a given interval, e.g.
0.16  g

T

 1.20 for the current determination from di-hadron SIDIS (Section ??) TO BE UPDATED. Notice that
all values inside this range are treated on an equal footing, whereas values outside the interval are not permitted
irrespective of how close they are from the edges of the allowed range. The chi-squared function is then given by

�2(✏
T

) = min
g

T

✓
[g

T

✏
T

]exp � g
T

✏
T

� [g
T

✏
T

]exp

◆
2

, (42)

where the minimization is performed varying g
T

within its allowed range. A careful look at this function reveals that
the bound on ✏

T

depends only on the lower limit of the tensor charge, as long as the experimental determination of
g
T

✏
T

is compatible with zero at 1�.
In this way we obtain the limits on the Wilson coe�cient ✏

T

that are shown in Fig. 6, using di↵erent values of the
tensor charge. Let us remind for comparison that the bound obtained from the analysis of LHC data carried out in
Ref. [72] is |✏

T

| < 0.0013.

V. CONCLUSIONS

The possibility of obtaining the scalar and tensor charges directly from experiment with su�cient precision, gives
an entirely di↵erent leverage to neutron beta decay searches.

Due to its non-perturbative nature, the nucleon structure can only be unveiled using complementary methods such
as e↵ecive field theories, lattice calculations, models for the nucleon structure, Schwinger-Dyson based techniques

9 v denotes the electroweak symmetry breaking scale, v = (
p
2GF )�1/2 ' 246 GeV.
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with gS=1.02(11) at 90% CL from 
Gonzalez & Camalich, PRL112.

with <gT>=0.839(357) from GGL & 
Pavia new

εT vs. εS plane from b0+ and b

NEW SCALAR-TENSOR 

1σ errors
- Hessian in blue & pink
- Rfit method in red
- Scatter plot in blue
- MC 1D gives <εT> =0.0012

Warning: not a global fit
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WORTH MENTIONING

HADRONIC MATRIX ELEMENTS RELATED TO OUTSTANDING QCD QUESTIONS
STRUCTURE OF HADRONS→CONFINEMENT, CHIRAL SYMMETRY,...

CONCLUSIONS

★ Evaluation of bounds for BSM tensor interaction
➡ from hadronic matrix elements extracted from experiments
➡ as opposed to lattice calculations 

★  Hadronic uncertainties are still very large
★  However, competitive results expected from future hadronic experiments

★  Complementarity +testing of lattice results
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