

New long distance contribution to semileptonic decays of heavy mesons

> Adolfo Guevara

Motivación

Cortas distancias

Largas distancias

Conclusiones

New long distance contribution to semileptonic decays of heavy mesons

Adolfo Guevara

¹Departamento de Física Cinvestav ¹en colaboración con G. López Castro, P. Roig y S. L. Tostado (arXiv:1503.06890[hep-ph])

Reunión Anual de la DPvC, 21º de mayo 2015 🐘 👘 🕫

Outline

New long distance contribution to semileptonic decays of heavy mesons

> Adolfo Guevara

Motivación

Cortas distancias

Largas distancias

Conclusiones

1 Motivación

2 Cortas distancias

3 Largas distancias

Motivación

New long distance contribution to semileptonic decays of heavy mesons

> Adolfo Guevara

Motivación

Cortas distancias

Largas distancias

Conclusiones

- Los procesos que presentan corrientes neutras con cambio de sabor están muy suprimidos en el SM, por lo que resultan interesantes para la búsqueda de física más allá del SM.
- En procesos tan suprimidos es necesario conocer todas las contribuciones del SM para la búsqueda de efectos de nueva física
- Recientemente¹, se ha buscado nueva física en el decaimiento del B[±] → P[±]ℓ⁺ℓ⁻, con P = π o K, que es en el que nos concentraremos.

¹S. Glashow, D. Guadagnoli, K. Lane PRL 114 091801 = → < = → ○ < ?

Contribución de cortas distancias (SD)

New long distance contribution to semileptonic decays of heavy mesons

Cinvestav

Adolfo Guevara

Motivación

Cortas distancias

Largas distancias

Conclusiones

Fig. 1 Diagramas SD a LO, penguin (izquierda) y W-box (derecha).

Usando el hamiltoniano débil efectivo

$$\mathcal{H}_{eff} = -\frac{\mathcal{G}_{F}\alpha}{\sqrt{2}\pi} V_{q'b} V_{q'q}^* \sum_i C_i^q(\mu_s) O_i^q(\mu_s).$$

- Se tiene la amplitud del proceso $B^- o P^- \ell^+ \ell^-$
 - $\mathcal{M}[B^- \to P^- \ell^+ \ell^-] = \frac{G_F \alpha}{\sqrt{2}\pi} V_{q'b} V^*_{q'q} \xi_P(q^2) p^\mu_B \left(F_V L_\mu + F_A L^{5}_\mu \right)$
- Donde $q = d, s; q' = c, t; L_{\mu} = \bar{\ell} \gamma_{\mu} \ell \gamma_{\mu} \xi = \bar{\ell} \gamma_{\mu} \gamma_{5} \ell$

Contribución de cortas distancias (SD)

New long distance contribution to semileptonic decays of heavy mesons

> Adolfo Guevara

Motivación

Cortas distancias

Largas distancias

Conclusiones

• Los operadores O_9 y O_{10} dan la contribución principal,

$$O_9^q = [\bar{q}\gamma_\mu b_L][\bar{\ell}\gamma^\mu\ell], \qquad O_{10}^q = [\bar{q}\gamma_\mu b_L][\bar{\ell}\gamma^\mu\gamma_5\ell]$$

• La dependencia de los factores de forma ξ_P , F_V , and F_A en q^2 se obtiene con HQET, QCDF y LCSR ²

$$\xi_{\pi}(q^2) = \frac{0.918}{1 - q^2/(5.32 \text{ GeV})^2} - \frac{0.675}{1 - q^2/(6.18 \text{ GeV})^2} + \mathcal{P}_{\pi}$$

$$\xi_{K}(q^2) = \frac{0.0541}{1 - q^2/(5.41 \text{ GeV})^2} + \frac{0.2166}{\left[1 - q^2/(5.41 \text{ GeV})^2\right]^2} + \mathcal{P}_{K}$$

$$F_A = C_{10} = -4.312$$
 $F_V \approx C_9 = 4.214$

• \mathcal{P}_P son polinomios en q^2 ; C_9 and C_{10} se toman a NNLL³.

²C. Bobeth et al. JHEP 0712 (2007) 040

A. Khodjamiriam et al. JHEP 1302(2013) 010

- P. Ball and R. Zwicky Phys.Rev.D71 (2005) 014015
- ³M. Beneke *et al.* Nucl.Phys.B 612(2001)25: → < = → < = → < = → < = → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → <

Nueva contribución de largas distancias (LD)

New long distance contribution to semileptonic decays of heavy mesons

Cinvesta

Adolfo Guevara

Motivación

Cortas distancias

Largas distancias

Conclusiones

Fig. 2 Contribución de LD. El cuadrado indica la dependencia en la estructura del mesón en el intercambio de un fotón.

- Al considerarse regiones por debajo de 8 GeV² no se tendrán contribuciones de la resonancia J/ψ .
- Existen otros diagramas de largas distancias, pero por invarianza de norma dan una contribución nula al proceso.
- El diagrama de la izquierda muestra una supresión proporcional a m_P^2/m_B^2 respecto al diagrama de la derecha.

New long distance contribution to semileptonic decays of heavy mesons

Adolfo Guevara

Motivación

Cortas distancias

Largas distancias

Conclusiones

• Usando Teoría quiral de resonancias $(R\chi T)^4$ encontramos la amplitud $\mathcal{M}(B^- \to P^- \ell^+ \ell^-)$ de la parte dominante de esta nueva contribución.

Nueva contribución de largas distancias (LD)

$$\mathcal{M}_{LD} = \sqrt{2} G_F V_{ub} V_{uq}^* f_B f_P \frac{e^2}{q^2} \frac{m_B^2}{m_B^2 - m_P^2} (F_P(q^2) - 1) p_B^{\mu} \bar{\ell} \gamma_{\mu} \ell$$

 Al tener la misma estructura que el término con F_V de la amplitud de SD se puede incluir este efecto como una corrección a F_V de la forma

$$F_V^{eff} = F_V + \frac{\kappa_P m_B^2}{q^2} \frac{F_P(q^2) - 1}{\xi_P(q^2)}$$

o donde

$$\kappa_P = -8\pi^2 \frac{V_{ub} V_{uq}^*}{V_{tb} V_{tq}^*} \frac{f_B f_P}{(m_B^2 - m_P^2)}.$$

⁴G. Ecker, J. Gasser, A. Pich and E. de Rafael, Nucl.Phys.B 321(1989)311

$|F_{\pi}(q^2)|^2$

New long distance contribution to semileptonic decays of heavy mesons

> Adolfo Guevara

Motivación

Cortas distancias

Largas distancias

Conclusiones

Fig. 3. Factores de forma de $R\chi T^5$ y de BaBar.⁶ ⁵O. Shekhovtsova *et al.* Phys. Rev. D86(2012)113008

⁶J. P. Lees *et al.* BaBar Collaboration Phys.Rev. D88 (2013) 032013 ∽ < ↔

$|F_{K}(q^{2})|^{2}$

New long distance contribution to semileptonic decays of heavy mesons

> Adolfo Guevara

Motivación

Cortas distancias

Largas distancias

Conclusiones

Fig. 4. Factores de forma de $R\chi T^7$ y de BaBar.⁸

⁷E. Arganda, et al. JHEP0806(2008)079

⁸J. P. Lees *et al.* BaBar Collaboration Phys:Rev. D86 (2012) 032013 🗥 🔍

Espectro de masa invariante de LD para $P = \pi$.

Fig. 5. Espectro de masa invariante para $P = \pi$ usando factores de forma de R χ T y BaBar, $\Box \rightarrow \langle \overline{C} \rangle \rightarrow \langle \overline{C} \rangle \rightarrow \langle \overline{C} \rangle$

Conclusiones

1e-12

Fig. 6. Espectro de masa invariante para P = K usando factores de forma de R χ T y BaBar, $a \to a = 0$

 m_{μ}^{2} (GeV²)

5

Ancho diferencial normalizado desde el umbral de LD ($P = \pi$)

New long distance contribution to semileptonic decays of heavy mesons

> Adolfo Guevara

Motivación

Cortas distancia

Largas distancias

Conclusiones

Fig. 7. Ancho normalizado del decaimiento $B \to \pi \ell^+ \ell^-$ para $\ell = e$ y $\ell = \mu$ La diferencia se vuelve importante debajo de $q^2 \lesssim 0.4 \text{ GeV}^2$

Ancho diferencial normalizado desde el umbral de LD (P = K)

New long distance contribution to semileptonic decays of heavy mesons

> Adolfo Guevara

Motivación

Cortas distancia

Largas distancias

Conclusiones

Fig. 8. Ancho normalizado del decaimiento $B \to K \ell^+ \ell^-$ para $\ell = e$ y $\ell = \mu$.

Nuestra contribución LD a $B \rightarrow \pi \ell^+ \ell^-$

New long distance contribution to semileptonic decays of heavy mesons

> Adolfo Guevara

Motivación

Cortas distancias

Largas distancias

Conclusiones

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline 0.05 \leq q^2 \leq 8 \ \text{GeV}^2 & 1 \leq q^2 \leq 8 \ \text{GeV}^2 \\ \hline \text{LD} & (9.16 \pm 0.15) \cdot 10^{-9} & (5.47 \pm 0.05) \cdot 10^{-10} \\ \hline \text{Interf} & (-2.62 \pm 0.13) \cdot 10^{-9} & (-2^{+2}_{-1}) \cdot 10^{-10} \\ \hline \text{SD} & (9.83^{+1.49}_{-1.04}) \cdot 10^{-9} & (8.71^{+1.35}_{-0.90}) \cdot 10^{-9} \\ \hline \text{Total} & (1.64^{+0.15}_{-0.11}) \cdot 10^{-8} & (9.06^{+1.36}_{-0.90}) \cdot 10^{-9} \\ \hline \text{Tabla 1. Contribuciones de LD, SD y su interferencia al BR.} \end{array}$$

- [1,8] GeV² es un rango limpio para buscar BSM.
 La medida de LHCb del BR⁹

 $BR^{LHCb} = (2.3 \pm 0.6(stat.) \pm 0.1(syst.)) \times 10^{-8}.$

• La predicción del SM para $q^2 \in [0.05, (m_B - m_\pi)^2]^{10}$ $BR^{SM}(SD) = (1.88^{+0.32}_{-0.21}) \times 10^{-8}.$

a
$$BR^{SM}(LD + SD) = (2.6^{+0.4}_{-0.3}) \times 10^{-8}.$$

⁹R. Aaij et al. JHEP12 (2012)125

¹⁰A. Ali *et al.* Phys. Rev. D89 094021(2014), W. Jian-Jun *et al.* 💿 🔊

Cinvestav Nuestra contribución de LD a $B o K \ell^+ \ell^-$

New long distance contribution to semileptonic decays of heavy mesons

> Adolfo Guevara

Motivación

Cortas distancias

Largas distancias

Conclusiones

	$1 \leq q^2 \leq$ 6 GeV 2
LD	$(1.70\pm0.21) imes10^{-9}$
Interf	$(-6\pm2) imes10^{-11}$
SD	$(1.90^{+0.69}_{-0.41}) imes10^{-7}$
$LHCb^{11}(\ell=e)$	$(1.56^{+0.20}_{-0.16}) \times 10^{-7}$

Tabla 2. Contribuciones de LD, SD y su interferencia al BR.

- La interferencia está suprimida ya que $|F_{\mathcal{K}}(q^2)|$ no supera el factor de supresión de CKM, contrario al caso de LD.
- Con esto, el BR cambia a

$$BR^{SM}(LD+SD)_{[1,6] \text{ GeV}^2} = (1.92^{+0.69}_{-0.41}) imes 10^{-7}$$

¹¹R. Aaij *et al.*, Phys. Rev. Lett. 113(2014)151601 → < = > < = > = ∽ < ?

Asimetría de CP

New long distance contribution to semileptonic decays of heavy mesons

> Adolfo Guevara

Motivación

Cortas distancias

Largas distancias

Conclusiones

• También calculamos la asimetría de CP para P = K y $P = \pi$

$$A^{P} = \frac{\Gamma(B^{+} \to P^{+}\ell^{+}\ell^{-}) - \Gamma(B^{-} \to P^{-}\ell^{+}\ell^{-})}{\Gamma(B^{+} \to P^{+}\ell^{+}\ell^{-}) + \Gamma(B^{-} \to P^{-}\ell^{+}\ell^{-})}$$

• Así obtuvimos los siguientes valores

$$\begin{array}{c|c} q_{min}^2 = 1 \ {\rm GeV}^2 & q_{min}^2 = 4 m_{\mu}^2 \\ \hline P = \pi & (2.5 \pm 1.5) \times 10^{-2} & (14 \pm 2) \times 10^{-2} \\ P = K & -(1.3 \pm 0.5) \times 10^{-2} & -(0.5 \pm 0.5) \times 10^{-2} \end{array}$$

Table 3. Asimetría de CP a diferentes rangos de energía para π y K.

• Esta nueva contribución es necesaria para obtener una asimetría de tal magnitud.

Conclusiones

New long distance contribution to semileptonic decays of heavy mesons

> Adolfo Guevara

Motivación

Cortas distancia

Largas distancias

Conclusiones

$B\to \pi\ell^+\ell^-$

- Nuestro análisis muestra que la búsqueda de física más allá del SM debe estar limitada al rango [1,8] GeV².
- Nuestra contribución es importante para entender la medición actual de LHCb.
- LHCb podría medir este efecto de LD en la siguiente corrida en el rango [1,8] GeV².

 $B \to K \ell^+ \ell^-$

- El LHCb podría ser sensible a nuestra contribución, mas no en la diguiente corrida.
- Esta contribución de LD no afectará la búsqueda de nueva física en la región [1,6] GeV².
- Calculamos una asimetría de CP significativa para π y K que debe considerarse en la búsqueda de nueva física.