# $\Lambda_b$ polarization in the decay

 $\Lambda_b \to J/\psi(\mu^+\mu^-)\Lambda(p^+\pi^-)$ 

21/05/2015

#### R. Reyes, R. Rabadan, I. Heredia, H. Castilla, CINVESTAV Mexico, Physics Dept.





## Outline

- \* Motivation
- \* Strategy to measure the  $\Lambda_b$  polarization
- \* Event Selection
- \* Likelihood fit
- \* Results
- **\*** Systematic Uncertainties
- \* Conclusions and plans

## Motivation

- Predictions based on heavy-quark effective theory (HQET) augur for Λ<sub>b</sub> baryons a large fraction of the transverse b-quark polarization to be retained after hadronization ~ 77% at 5.7 standard deviations. arXiv:hep-ph/0412116.
- A previous LHCb measurement in 2013 published in **Physics Letters B 724 (2013) 27.** where they exclude a tranverse polarization at the order of 20% at 2.7 standard deviations.

## Strategy to measure the polarization

#### The decay



#### Strategy to measure the polarization



 Assuming a uniform detector acceptance over the azimuthal angles

$$\frac{\mathrm{d}^{3}\Gamma}{\mathrm{d}\Omega_{3}}(\theta_{\Lambda},\theta_{p},\theta_{\mu}) = \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{\mathrm{d}^{5}\Gamma}{\mathrm{d}\Omega_{5}}(\theta_{\Lambda},\theta_{p},\theta_{\mu},\varphi_{p},\varphi_{\mu}) \,\mathrm{d}\varphi_{p} \,\mathrm{d}\varphi_{\mu}$$
$$\sim \sum_{i=1}^{8} \eta_{i}(T_{++},T_{+0},T_{-0},T_{--}) \,c_{i}(P,\alpha_{\Lambda}) \,f_{i}(\theta_{\Lambda},\theta_{p},\theta_{\mu})$$

Using the normalization constraint for the helicity amplitudes

$$|T_{++}|^2 + |T_{+0}|^2 + |T_{-0}|^2 + |T_{--}|^2 = 1,$$

•

#### Strategy to measure the polarization



• We use this approach as strategy to measure (P,  $\alpha_1$ ,  $\alpha_2$ ,  $\gamma$ ) in a simultaneous fit. Taking the 2011 and 2012 data samples.

## **Event Selection**

 2011 and 2012 data at 7 TeV, 8 TeV corresponds to a integrated luminosity 5.2 (1/fb) and 19.7 (1/fb) respectively in pp collisions are reconstructed.



### **Event Selection**



#### • The $\Lambda_b$ invariant mass signal and BKG is modelled by:

 $G(x;\mu,\sigma_1,\sigma_2,f) = f \bullet G_1(x;\mu,\sigma_1) + (1-f) \bullet G_2(x;\mu,\sigma_2) \quad Pol(x) = 1 + ax$ 

#### Mass fit results in the 2011 data sample

| Description               | Parameter                  | Estimate                                  | Estimate              | Estimate              |  |
|---------------------------|----------------------------|-------------------------------------------|-----------------------|-----------------------|--|
|                           |                            | Full sample $\Lambda_b + \bar{\Lambda}_b$ | $\Lambda_b$           | $ar{\Lambda}_b$       |  |
| Num. of bkg candidates    | $N_{bkg}$                  | $2325 \pm 59\ 56$                         | $1300 \pm 43$         | $1018 \pm 41$         |  |
| Num. of signal candidates | $N_{sig}$                  | $1890 \pm 55$                             | $981 \pm 39$          | $916 \pm 40$          |  |
| Mean of Gaussian          | $\mu$ (GeV)                | $5.61985 \pm 0.00034$                     | $5.619 \pm 0.00044$   | $5.620 \pm 0.00049$   |  |
| Width of Gaussian         | $\sigma_1 \; (\text{GeV})$ | $0.0214 \pm 0.0024$                       | $0.0215 \pm 0.0024$   | $0.0240 \pm 0.0059$   |  |
| Width of Gaussian         | $\sigma_2 \; (\text{GeV})$ | $0.00709 \pm 0.00095$                     | $0.00637 \pm 0.00092$ | $0.0086 \pm 0.00013$  |  |
| Double Gaussian fraction  | f                          | $0.539 \pm 0.082$                         | $0.578 \pm 0.074$     | $0.41\pm0.013$        |  |
| Bkg. coeff.               | a                          | $-0.1456 \pm 0.0052$                      | $-0.14287 \pm 0.0082$ | $-0.14816 \pm 0.0067$ |  |



#### Mass fit results in 2012 data sample

| Description               | Parameter                  | Estimate                                  | Estimate              | Estimate              |  |
|---------------------------|----------------------------|-------------------------------------------|-----------------------|-----------------------|--|
|                           |                            | Full sample $\Lambda_b + \bar{\Lambda}_b$ | $\Lambda_b$           | $\bar{\Lambda}_b$     |  |
| Num. of bkg candidates    | $N_{bkg}$                  | $4554\pm80$                               | $2409 \pm 58$         | $1975\pm53$           |  |
| Num. of signal candidates | $N_{sig}$                  | $4122 \pm 78$                             | $2072 \pm 55$         | $1974\pm53$           |  |
| Mean of Gaussian          | $\mu (GeV)$                | $5.61909 \pm 0.00025$                     | $5.61935 \pm 0.00036$ | $5.61885 \pm 0.00036$ |  |
| Width of Gaussian         | $\sigma_1 \; (\text{GeV})$ | $0.0205 \pm 0.001$                        | $0.0203 \pm 0.0014$   | $0.0203 \pm 0.0015$   |  |
| Width of Gaussian         | $\sigma_2 \; (\text{GeV})$ | $0.00729 \pm 0.0006$                      | $0.00765 \pm 0.00083$ | $0.00693 \pm 0.00086$ |  |
| Double Gaussian fraction  | f                          | $0.635\pm0.046$                           | $0.617 \pm 0.067$     | $0.655 \pm 0.063$     |  |
| Bkg. coeff.               | a                          | $-0.13502 \pm 0.0066$                     | $-0.1288 \pm 0.0012$  | $-0.13983 \pm 0.0080$ |  |

## Full Likelihood Fit

 In order to obtain a polarization measurement an extended likelihood fit is done on the data sample, the likelihood function has the form

$$L = \exp(-N_{sig} - N_{bkg}) \prod_{j=1}^{N} \left[ N_{sig} \cdot PDF_{sig} + N_{bkg} \cdot PDF_{bkg} \right]$$
Where the PDF of signal and background are:  
Signal  $PDF_{sig}^{+(-)} = F_{sig}^{+(-)}(\Theta, \alpha) \cdot \epsilon(\Theta)^{+(-)} \cdot G^{+(-)}(m; \mu, \sigma_1, \sigma_2, f).$ 
Mangular distribution of the signal described above
Angular efficiency shape by the detector



+(-) Relative to particle and anti particle

## Full Likelihood Fit

#### **Efficiency shapes**

## Angular distribution are generated flat at truth level using phsp models in EVTGEN



## After detection, reconstruction and selection angular distributions are distorted drastically!.

## Full Likelihood Fit

**Efficiency shapes** modelled with Chebyshev polynomials.  $\epsilon(\Theta)^{+-} = \left(\sum_{i=1}^{6} A_i^{+-} \bullet T_i(\cos\theta_\Lambda)\right) \times \left(\sum_{i=1}^{5} B_j^{+-} \bullet T_j(\cos\theta_p)\right) \times \left(\sum_{k=1}^{6} C_k^{+-} \bullet T_k(\cos\theta_\mu)\right)$ Events / ( 0.1) 000 000 -900 E 9000 Events / 800 Events / 600 600 600 500 400 400 400 300 F 200 200 work in progress work in progress work in progress 200 100 0 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 0 cos\_theta\_p cos theta m cos theta  $\cos\theta_p$  $\cos \theta_{\Lambda}$  $\cos \theta_{\mu}$ Events / (0.1) (-800 0) 0900 ents 800 <u></u>း 700 ē <sup>ش</sup> 700 <sup>ш</sup> 600 [ 600 600 500 500 500 400 400 400 300 300 300 200 200 200 work in progress work in progress work in progress 100 100 100 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 0E -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 cos theta I cos\_theta\_p cos theta m

Full Likelihood Fit Background PDF  $PDF_{bkg}^{+(-)} = F_{bkg}^{+(-)} \cdot Pol^{+(-)}(m)$ sidebands range  $[5.46, 5.54] \bigcup [5.69, 5.78]$ corresponding  $[\mu - 10\sigma, \mu - 5\sigma] \bigcup [\mu + 5\sigma, \mu + 10\sigma]$ 



- The angular distribution for  $\cos \theta_{\mu}$  and  $\cos \theta_{\Lambda}$  are modeled by a superposition of Gaussian kernels one for each data point, by implementing RooFit's class RooKeysPdf.
- The explicit form for  $\cos heta_p$  is a Chebyshev polynomial

$$F_{bkg}^{+(-)}\left(\cos\theta_{p}\right) = \sum_{i=0}^{3} B_{i}^{+(-)} \cdot T_{i}\left(\cos\theta_{p}\right)$$



## Results

Finally an unbinned maximum likelihood simultaneous fit is applied to 2011 and 2012 data samples.



### Results





## Systematic uncertainties

- \* About the uncertainties, until now
- \* <u>Background mass model</u> Exponential function instead of a 1st. order polynomial.
- \* <u>Signal mass model.</u> We are using a model that uses only one convoluted Gaussian with and exponential function.
- \* <u>Asymmetry parameter.</u> The value of this parameter is varied within ±sigma of its measured value.
- \* <u>Angular efficiency</u>. estimate the systematic uncertainty by varying the values of the coefficients of the Chebyshev polynomials by ±sigma.
- \* <u>Angular background.</u> We are using alternative models to fit the three angular distributions and the difference with the nominal result is taken as systematic uncertainty.
- \* Fitting bias. the difference between the input and the fitted value is taken as the systematic uncertainty.

**Systematic uncertainties** 

\*The contributions from the different uncertainty sources are assumed to be independent .

\* The total systematic uncertainty is calculated as the square root of the quadratic sum of all uncertainties.

| Uncertainty source             | P     | $\alpha_1$ | $\alpha_2$ | $\gamma_0$ |  |
|--------------------------------|-------|------------|------------|------------|--|
| Background mass model          | 0.001 | 0.015      | 0.008      | 0.024      |  |
| Signal mass model              | 0.003 | 0.009      | 0.037      | 0.021      |  |
| $\alpha_{\Lambda}$ uncertainty | 0.002 | 0.024      | 0.036      | 0.025      |  |
| Angular Efficiency             | 0.010 | 0.018      | 0.008      | 0.040      |  |
| Angular Background             | 0.000 | 0.022      | 0.013      | 0.046      |  |
| Fit bias                       | 0.001 | 0.003      | 0.012      | 0.002      |  |
| Total                          | 0.011 | 0.041      | 0.056      | 0.073      |  |

## **Conclusions and plans**

\*We measured polarization using the 2011 and 2012 data by using an unbinned likelihood fit. The analysis it's almost complete.

**\*We are competitive with LHCb.** 

\*We are working to calculate mising systematic uncertainties. the most significant uncertainties is:

**\***The non uniformity in azimuthal efficiency shape

**\***Have to compute over again using official MC.