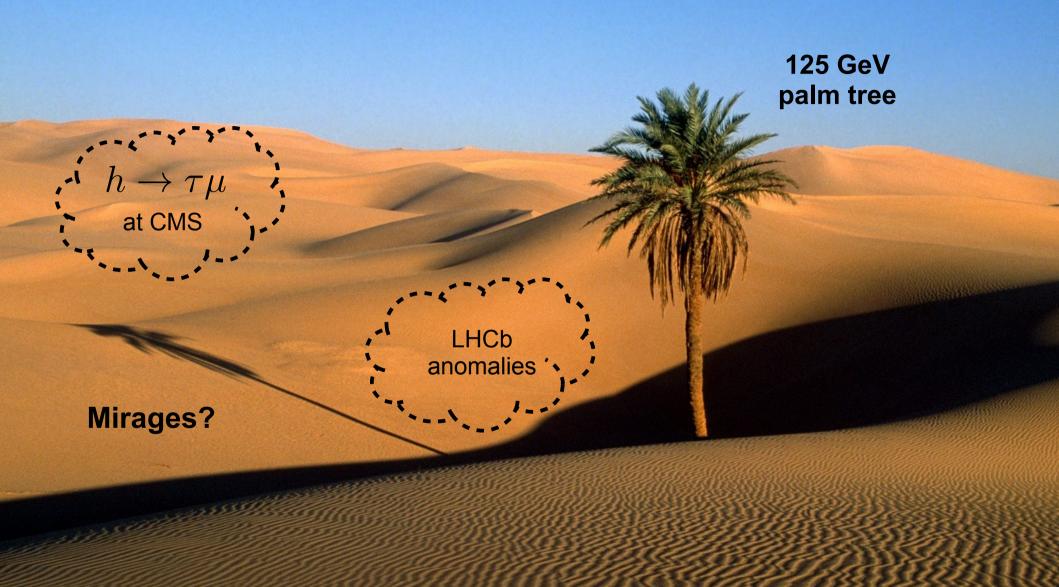
Flavored surprises at the LHC

Avelino Vicente IFIC Valencia & Université de Liège

FLASY 15
Manzanillo (Mexico)


Introduction

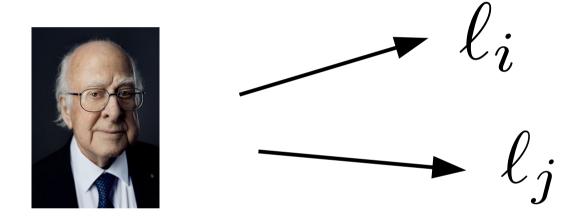
Last year at FLASY 14...

LHC results...

LHC results...

Higgs LFV decays

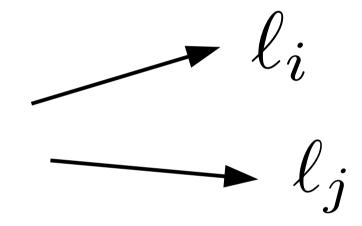
Where lepton physicists meet collider physicists


See talk by Gomez Bock

Higgs LFV decays

Where lepton physicists meet collider physicists

Higgs LFV decays


We have discovered the Higgs However, is there room for non-standard decays?

Higgs LFV decays

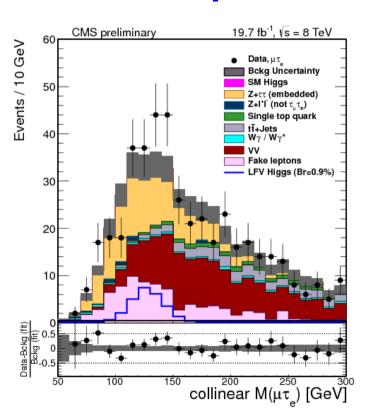
We have discovered the Higgs However, is there room for non-standard decays?

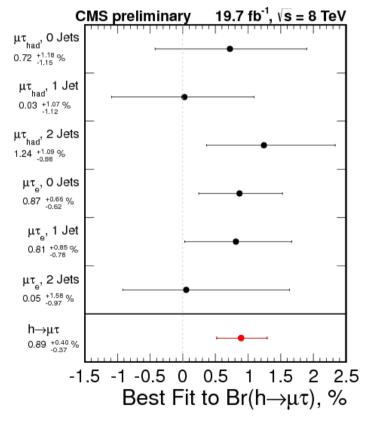
Popular BSM signature:

[Blankenburg et al, 2013; Harnik et al, 2013]

LHC sensitivity: $Br \sim 10^{-3}$ [Davidson, Verdier, 2012]

 $20fb^{-1}$ at $\sqrt{s} = 8 \,\mathrm{TeV}$


[Pilaftsis, 1992; Diaz-Cruz, Toscano, 2000] Early works:


A hint from CMS?

A 2.5σ excess in $h \to \tau \mu$

See recent update [arXiv:1502.07400]

[CMS-PAS-HIG-14-005, July 2014]

$$BR(h \to \tau \mu) = (0.89^{+0.40}_{-0.37})\%$$

A hint from CMS?

$$BR(h \to \tau \mu) = (0.89^{+0.40}_{-0.37})\%$$

Large LFV branching ratio

$$BR(h \to \tau \bar{\tau})_{SM} \sim 6\%$$

- Needs more statistics and confirmation from ATLAS
- If taken seriously, any model?

Any model?

Flavor constraints seem to preclude any explanation for the CMS excess...

MSSM [Arana-Catania et al, 2013]

RPV Supersymmetry [Arhrib et al, 2013]

Vector-like leptons [Falkowski et al, 2014]

Inverse Seesaw [Arganda et al, 2014]

$$BR(h \to \tau \mu) \lesssim 10^{-4}$$

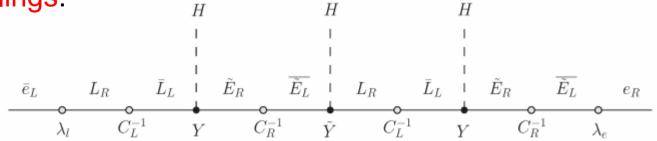
$$BR(h \to \tau \mu) \lesssim 10^{-5}$$

$$BR(h \to \tau \mu) \lesssim 10^{-5}$$

$$BR(h \to \tau \mu) \lesssim 10^{-5}$$

No hope?

Vector-like leptons

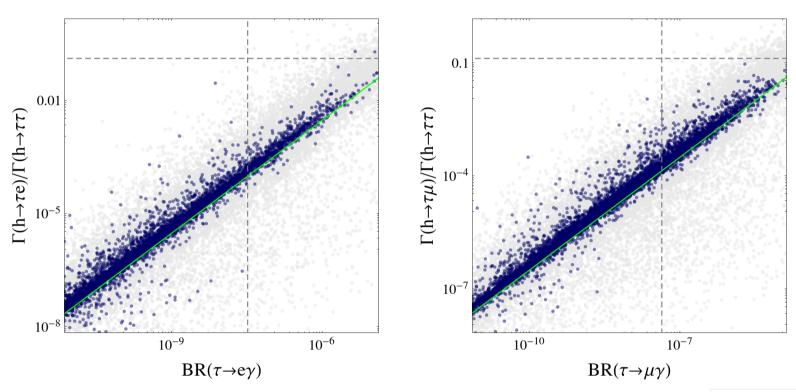

[Falkowski, Straub, AV, 2014]

Model with vector-like leptons "Composite Higgs inspired"

$$\mathcal{L}_{F,c} = -M\left(\bar{L}C_L L + \tilde{E}C_R \tilde{E}\right) - \left(\bar{L}_L Y \tilde{E}_R H + \bar{L}_R \tilde{Y} \tilde{E}_L H + \text{h.c.}\right)$$

$$\mathcal{L}_{\text{mix}} = M \left(\bar{l}_L \lambda_l L_R + \tilde{E}_L \lambda_e e_R \right) + \text{h.c.}$$

Higgs LFV couplings:



$$\mathcal{L}_{\text{eff}} = -\frac{h}{\sqrt{2}}\bar{e}_L c_{\text{eff}} e_R + \text{h.c.} \qquad c_{\text{eff}} = Y_{\text{eff}} + \frac{v^2}{M^2} \lambda_l C_L^{-1} Y C_R^{-1} \tilde{Y} C_L^{-1} Y C_R^{-1} \lambda_e$$

Vector-like leptons

[Falkowski, Straub, AV, 2014]

$$\Rightarrow BR's \lesssim 10^{-5}$$

Unfortunately... unobservable at the LHC

[Davidson, Grenier, 2010; Harnik et al, 2013; Kopp, Nardecchia, 2014]

A model! Type-III 2HDM

[Type-III = most general case]

$$\mathcal{L}_Y = m_i \bar{f}_L^i f_R^i - \rho_{ij} (\bar{f}_L^i f_R^j + \text{h.c.}) h$$

General 3x3 matrix

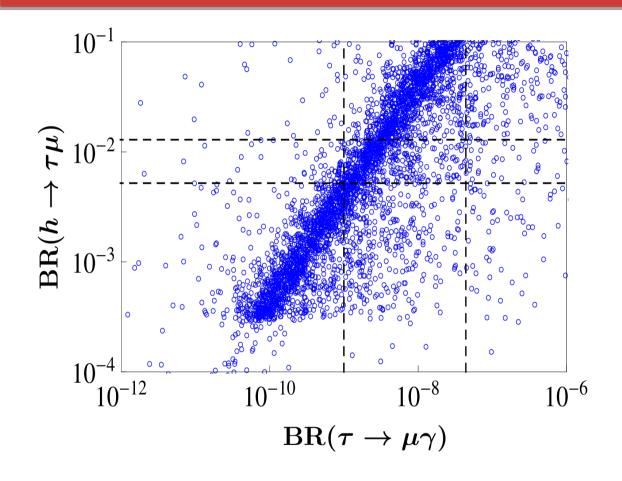
In *principle*... it is possible to account for the CMS excess!

[Davidson, Grenier, 2010; Harnik et al, 2013; Kopp, Nardecchia, 2014]

A model! Type-III 2HDM

[Type-III = most general case]

See talks by Montes de Oca Yemha, Solaguren-Beascoa Negre



In *principle*... it is possible to account for the CMS excess!

[Aristizabal Sierra, AV, 2014]

Explicit *proof of validity* including the relevant constraints

- Direct searches
- Indirect constraints from flavor
- $\tau \rightarrow \mu \gamma$
- Higgs couplings to fermions
- T parameter
- Perturbativity and boundedness from below

[Aristizabal Sierra, AV, 2014]

Explicit *proof of validity* including the relevant constraints

The signal is consistent with the Sher-Cheng ansatz

$$\rho_{\tau\mu} \simeq \frac{\sqrt{m_{\tau}m_{\mu}}}{\langle H \rangle}$$

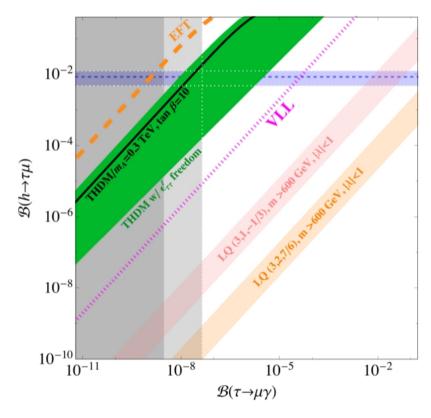
A flavor symmetry at work?

In this model
$$BR(\tau \to 3 \,\mu) \simeq 2 \cdot 10^{-3} \, BR(\tau \to \mu \gamma)$$

The observation of $au o 3\,\mu$ at LHCb would exclude this explanation!

Other models?

Other models?


[Doršner et al, 2015]

$$\mathcal{O}_6 = \bar{L}He \left(H^{\dagger}H \right)$$

$$\mathcal{O}_{\text{dipole}} = \bar{L}H\left(\sigma \cdot F\right)e$$

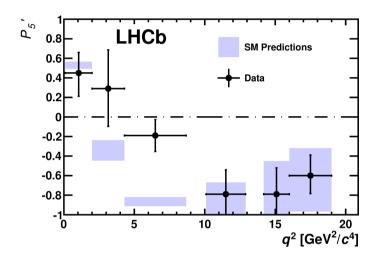
Same properties under flavor transformations

- Extended scalar sectors seem to be the only valid scenario
- No way with 1-loop induced Higgs LFV (unless huge fine-tuning!)

[Figure from Doršner et al, arXiv:1502.07784]

LFV in B meson decays

Where lepton physicists meet quark physicists


See talk by Martin Camalich

LFV in B meson decays

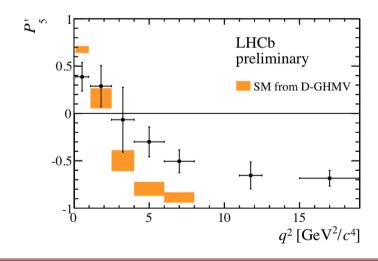
Where lepton physicists meet quark physicists

Episode 1

2013 : First anomalies found by LHCb

Episode 2

2014 : Lepton universality violation


$$R_K = \frac{\text{BR}(B \to K\mu^+\mu^-)}{\text{BR}(B \to Ke^+e^-)} = 0.745^{+0.090}_{-0.074} \pm 0.036$$

$$R_K^{\rm SM} = 1.0003 \pm 0.0001$$
 [Hiller, Kruger, 2004]

 2.6σ away from the SM

Episode 3

2015: LHCb confirms first anomalies

Interpreting the anomalies

Effective hamiltonian

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i \left(C_i \mathcal{O}_i + C_i' \mathcal{O}_i' \right) + \text{h.c.}$$

 C_i : Wilson coefficients

 \mathcal{O}_i : Operators

$$\mathcal{O}_9 = (\bar{s}\gamma_{\mu}P_Lb) \left(\bar{\ell}\gamma^{\mu}\ell\right)$$

$$\mathcal{O}_{10} = (\bar{s}\gamma_{\mu}P_Lb) \left(\bar{\ell}\gamma^{\mu}\gamma_5\ell\right)$$

$$\mathcal{O}_{9}' = (\bar{s}\gamma_{\mu}P_{R}b) (\bar{\ell}\gamma^{\mu}\ell)$$

$$\mathcal{O}_{10}' = (\bar{s}\gamma_{\mu}P_{R}b) (\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$$

$$C_i = C_i^{\rm SM} + C_i^{\rm NP}$$

[analogous for primed operators]

...including also $b \rightarrow s e^+e^-$

Model-independent analysis

David Straub's talk Moriond 2015

Coeff.	best fit	1 σ	2σ	$\sqrt{\chi^2_{ m b.f.} - \chi^2_{ m SM}}$	p [%]
$C_7^{\sf NP}$	-0.04	[-0.07, -0.02]	[-0.10, 0.01]	1.52	1.1
C_7'	0.00	[-0.05, 0.06]	[-0.11, 0.11]	0.05	8.0
$C_9^{\sf NP}$	-1.12	[-1.34, -0.88]	[-1.55, -0.63]	4.33	10.6
C_9'	-0.04	[-0.26, 0.18]	[-0.49, 0.40]	0.18	8.0
C_{10}^{NP}	0.65	[0.40, 0.91]	[0.17, 1.19]	2.75	2.5
C_{10}^{\prime}	-0.01	[-0.19, 0.16]	[-0.36, 0.33]	0.09	8.0
$\mathit{C}_{9}^{NP} = \mathit{C}_{10}^{NP}$	-0.20	[-0.41, 0.05]	[-0.60, 0.33]	0.82	8.0
$C_9^{NP} = -C_{10}^{NP}$	-0.57	[-0.73, -0.41]	[-0.90, -0.27]	3.88	6.8
$\mathit{C}_9' = \mathit{C}_{10}'$	-0.08	[-0.33, 0.17]	[-0.58, 0.41]	0.32	8.0
$C_9^\prime = -C_{10}^\prime$	-0.00	[-0.11, 0.10]	[-0.22, 0.20]	0.03	0.8

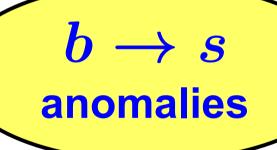
 $\chi^2_{\rm SM} =$ 125.8 for 91 measurements (p = 0.92 %)

Composite Higgs

Buras, Girrbach-Noe, Niehoff, Stangl, Straub

Other

Calibbi, Crivellin, Greljo, Isidori, Marzocca, Ota Model building


Z' boson

Altmannshofer, Aristizabal Sierra, Buras, Celis, Crivellin, D' Ambrosio, Fuentes-Martín, Gauld, Girrbach-Noe, Goertz, Gori, Haisch, Heeck, Jung, Niehoff, Pospelov, Serôdio, Staub, Straub, Vicente, Yavin

<u>Leptoquarks</u>

Alonso, Becirevic, Biswas, Chowdhuri, de Medeiros Varzielas, Fajfer, Grinstein, Gripaios, Han, Hiller, Kosnik, Lee, Martin Camalich, Mohanta, Nardecchia, Renner, Sahoo, Schmaltz

SM uncertainties

Altmannshofer, Bharucha,
Descotes-Genon, Ghosh, Hiller,
Hofer, Horgan, Hurth, Jaeger, Liu,
Lyon, Martin Camalich, Matias,
Meinel, Straub, Virto, Wingate,
Zwicky

Global fits

Alonso, Altmannshofer, Beaujean, Bobeth, Descotes-Genon, Egede, Ghosh, Grinstein, Hiller, Hurth, Mahmoudi, Martin Camalich, Matias, Nardecchia, Neshatpour, Patel, Petridis, Renner, Schmaltz, Straub, van Dyk, Virto

Implications - LFV -


Bhattacharya, Boucenna, Civellin, Datta, de Medeiros Varzielas, Glashow, Gripaios, Guadagnoli, Hiller, Hofer, Kane, Lee, London, Matias, Mohanta, Nardecchia, Nierste, Pokorski, Renner, Rosiek, Sahoo, Shivashankara, Tandean, Valle, Vicente

Beyond the Standard Model

Boring

Sizable corrections

What do we need?

Z' model building

Easiest (but not unique) solution

List of "ingredients":

- A Z' boson that contributes to \mathcal{O}_9 (and optionally to \mathcal{O}_{10})
- The Z' must have flavor violating couplings to quarks
- The Z' must have non-universal couplings to leptons
- Optional (but highly desirable!): <u>interplay</u> with some <u>other</u> <u>physics</u>

A model with a dark sector

[Aristizabal Sierra, Staub, AV, 2015]

$$SU(3)_c \otimes SU(2)_L \otimes U(1)_Y \otimes U(1)_X$$

Vector-like = "joker" for model builders

Vector-like fermions

Link to SM fermions

$$Q = \left(\mathbf{3}, \mathbf{2}, \frac{1}{6}, 2\right)$$

$$L = \left(\mathbf{1}, \mathbf{2}, -\frac{1}{2}, 2\right)$$

Scalars

$$\phi = (\mathbf{1}, \mathbf{1}, 0, 2)$$

$$U(1)_X$$
 breaking

$$\chi = (\mathbf{1}, \mathbf{1}, 0, -1)$$

Dark matter candidate

A model with a dark sector

[Aristizabal Sierra, Staub, AV, 2015]

$$SU(3)_c \otimes SU(2)_L \otimes U(1)_Y \otimes U(1)_X$$

Vector-like = "joker" for model builders

$$\mathcal{L}_m = m_Q \overline{Q}Q + m_L \overline{L}L$$

Vector-like (Dirac) masses

$$\mathcal{L}_Y = \lambda_Q \overline{Q_R} \phi q_L + \lambda_L \overline{L_R} \phi \ell_L + \text{h.c.}$$

VL – SM mixing

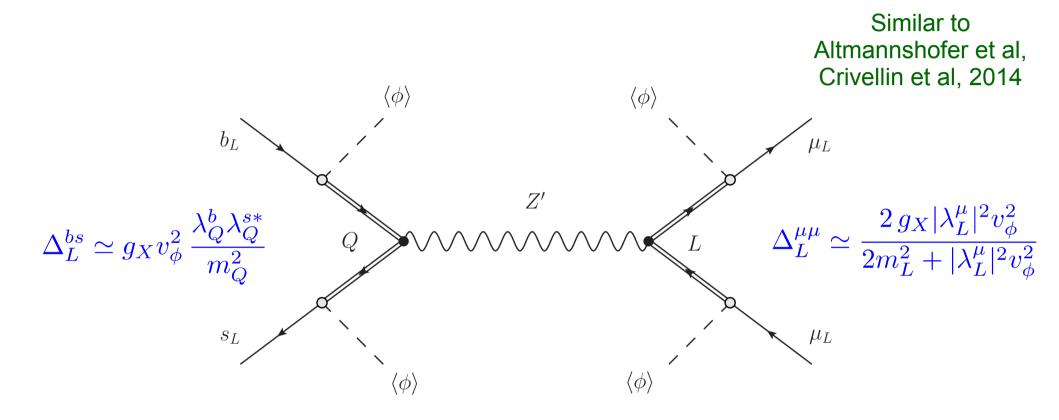
Symmetry breaking and dark matter

[Aristizabal Sierra, Staub, AV, 2015]

$$\langle H^0 \rangle = \frac{v}{\sqrt{2}} \qquad \langle \phi \rangle = \frac{v_\phi}{\sqrt{2}}$$

Massive Z' boson:

$$m_{Z'} = 2g_X v_{\phi}$$

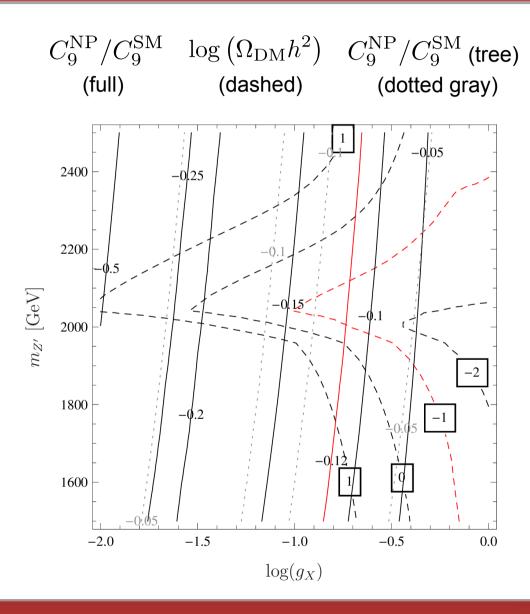

DM candidate: χ

$$\mathcal{V}(\mathbf{\chi}) = m_{\chi}^{2} |\mathbf{\chi}|^{2} + \frac{\lambda_{\chi}}{2} |\mathbf{\chi}|^{4} + \lambda_{H\chi} |H|^{2} |\mathbf{\chi}|^{2} + \lambda_{\phi\chi} |\phi|^{2} |\mathbf{\chi}|^{2} + (\mu \phi \mathbf{\chi}^{2} + \text{h.c.})$$

$$U(1)_X \to \mathbb{Z}_2$$

Automatic DM stability

Solving the LHCb anomalies



$$\mathcal{O} = (\bar{s}\gamma_{\alpha}P_Lb) \ (\bar{\mu}\gamma^{\alpha}P_L\mu)$$

Contributions to $\,\mathcal{O}_{9,10}\,$

$$C_9^{\rm NP} = -C_{10}^{\rm NP}$$

Dark matter and LHCb anomalies

[DM RD Computed with micrOMEGAs]

Parameters:

$$\lambda_Q^b = \lambda_Q^s = 0.025$$

$$\lambda_L^\mu = 0.5$$

$$m_Q = m_L = 1 \text{ TeV}$$

$$m_\chi^2 = 1 \text{ TeV}^2$$

- Compatible with flavor constraints (small quark mixings)
- Resonance required to get the correct DM relic density
- Large loop effects for low g_X

LFV in B meson decays

What about LFV?

LFV in B meson decays

What about LFV?

[Glashow et al, 2014]

Lepton universality violation generically implies lepton flavor violation

Gauge basis

Mass basis

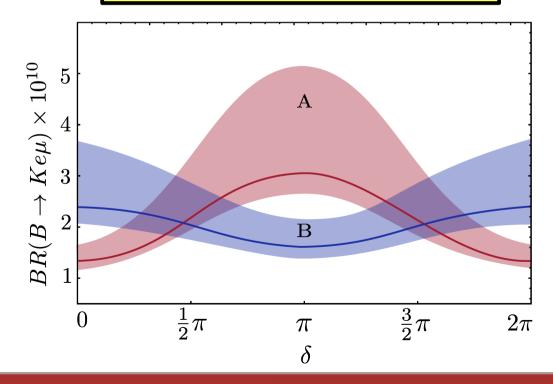
$$\mathcal{O} = \widetilde{C}^{Q} \left(\overline{q}' \gamma_{\alpha} P_{L} q' \right) \widetilde{C}^{L} \left(\overline{\ell}' \gamma^{\alpha} P_{L} \ell' \right) \longrightarrow \mathcal{O} = C^{Q} \left(\overline{q} \gamma_{\alpha} P_{L} q \right) C^{L} \left(\overline{\ell} \gamma^{\alpha} P_{L} \ell \right)$$

$$C^L = U_\ell^\dagger \, \widetilde{C}^L \, U_\ell$$

However: we must have a flavor theory in order to make predictions

Are the LHCb anomalies related to neutrino oscillations?

Working hypothesis: What if $U_\ell = K^\dagger$?


[Boucenna, Valle, AV, 2015]

Neutrino oscillations

Neutrinos B-physics

 ${\rm LHCb \atop sensitivity}$ $\sim 10^{-10}$

Lines: BF

Bands: 1σ

LHCb anomalies and flavor symmetries

[de Medeiros Varzielas, Hiller, 2015]

Flavor symmetries!

$$SU(3)_F \times U(1)_F \qquad \langle \phi_{23} \rangle = (0, b, -b) \qquad \{\Delta\} = -2$$

$$A_4 \times Z_3 \qquad \langle \phi_l \rangle = (u, 0, 0) \qquad 1, \{\Delta\} = 2$$

$$A_4 \times Z_3 \qquad \langle \phi_l \rangle = (u, 0, 0) \qquad 1^n, \{\Delta\} = 2$$

$$1^x, \{\Delta\} = 0$$

$$\lambda = \begin{pmatrix} 0 & \lambda_{d\mu} & 0 \\ 0 & \lambda_{s\mu} & 0 \\ 0 & \lambda_{b\mu} & 0 \end{pmatrix}$$

$$A_4 \times Z_4 \qquad \langle \phi_l \rangle = (0, u, 0), \xi'' \qquad 1^n, \{\Delta\} = 2$$

$$A_4 \times Z_4 \qquad \langle \phi_l \rangle = (0, u, 0), \xi'' \qquad 1^n, \{\Delta\} = 2$$

$$A_4 \times Z_4 \qquad \langle \phi_l \rangle = (0, u, 0), \xi'' \qquad 1^n, \{\Delta\} = 2$$

$$A_4 \times Z_4 \qquad \langle \phi_l \rangle = (0, u, 0), \xi'' \qquad 1^n, \{\Delta\} = 2$$

[Table from de Medeiros Varzielas, Hiller, arXiv:1503.01084]

The rates for the different channels are predicted by the symmetry!

Final remarks

Final remarks

LFV is going to live a golden age

Or perhaps it has already begun?

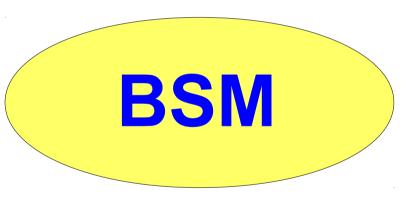
Whether is new physics or not, only time can tell

In the meantime: let's do some physics and try to learn as much as possible!

Backup slides

Experimental projects

Great experimental perspectives!


LFV Process	Present Bound	Future Sensitivity		
$\mu \to e \gamma$	5.7×10^{-13}	$6 \times 10^{-14} \; (MEG)$		
$ au o e \gamma$	3.3×10^{-8}	$\sim 10^{-8} - 10^{-9} \; (B \; factories)$		
$ au o \mu \gamma$	4.4×10^{-8}	$\sim 10^{-8} - 10^{-9} \text{ (B factories)}$		
$\mu \to 3e$	1.0×10^{-12}	$\sim 10^{-16} \; (\text{Mu3e})$		
au o 3e	2.7×10^{-8}	$\sim 10^{-9} - 10^{-10} \text{ (B factories)}$		
$ au o 3\mu$	2.1×10^{-8}	$\sim 10^{-9} - 10^{-10} \text{ (B factories)}$		
$\mu^-, \mathrm{Au} \to e^-, \mathrm{Au}$	7.0×10^{-13}			
μ^- , SiC $\to e^-$, SiC		$2 \times 10^{-14} \text{ (DeeMe)}$		
A = A = A = A = A = A = A = A = A = A =		$10^{-15} - 10^{-17} \text{ (COMET)}$		
$\mu^-, \text{Al} \rightarrow e^-, \text{Al}$		$10^{-17} - 10^{-18} \text{ (Mu2e)}$		
μ^- , Ti $\rightarrow e^-$, Ti	4.3×10^{-12}	$\sim 10^{-18} \; (PRISM/PRIME)$		

LFV: Where to look for?

$$\ell_i \to \ell_j \gamma$$

$$\ell_i \to 3 \, \ell_j$$

 $\mu - e$ conversion in nuclei

$$\ell_i \to \ell_j \ell_k \ell_k$$

$$M \to \ell_i \ell_j$$

FlavorKit

[Porod, Staub, AV, 2014]

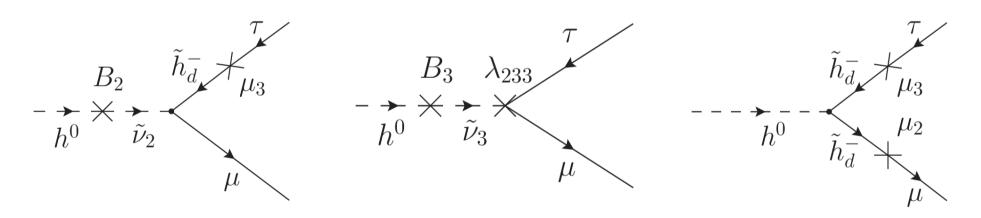
A computer tool that provides automatized analytical and numerical computation of flavor observables. It is based on SARAH, SPheno and FeynArts/FormCalc.

Lepton flavor	Quark flavor		
$\ell_{lpha} ightarrow \ell_{eta} \gamma$	$B^0_{s,d} o \ell^+\ell^-$		
$\ell_lpha o 3\ell_eta$	$ar{B} o X_s \gamma$		
$\mu - e$ conversion in nuclei	$\bar{B} \to X_s \ell^+ \ell^-$		
$ au o P \ell$	$ar{B} o X_{d,s} u ar{ u}$		
$h o \ell_{lpha} \ell_{eta}$	$B \to K \ell^+ \ell^-$		
$Z o \ell_lpha \ell_eta$	$K o \pi u ar{ u}$		
	$\Delta M_{B_{s,d}}$		
	ΔM_K and ε_K		
	$P o \ell u$		

Not limited to a single model: use it for the model of your choice

Easily extendable

Many observables ready to be computed in your favourite model!


Manual: arXiv:1405.1434

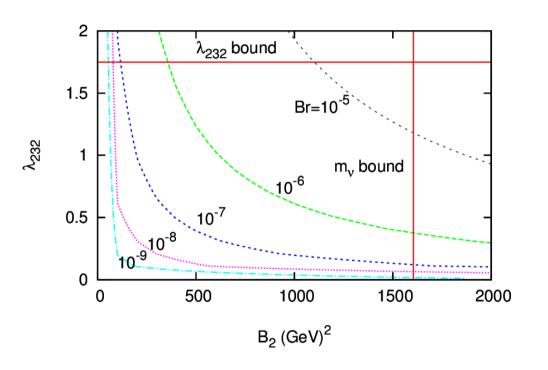
Website: http://sarah.hepforge.org/FlavorKit.html

$H o \mu au$ in RPV

[Arhrib, Cheng, Kong, 2013]

The particles-sparticles mixing induced by RPV lead to tree-level LFV Higgs decays

 $B\epsilon$ contribution

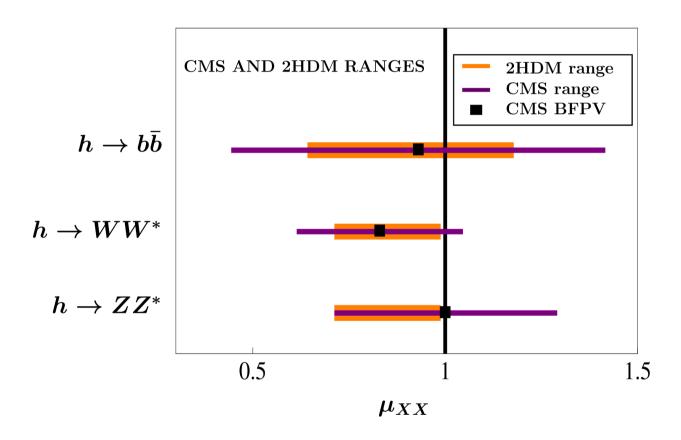

 $B\lambda$ contribution

 ϵ^2 contribution

Note:
$$\mathcal{L}_{soft} \supset \overset{ extbf{P}}{B} \overset{ extbf{L}}{L} H_u$$

$H ightarrow \mu au$ in RPV

[Arhrib, Cheng, Kong, 2013]

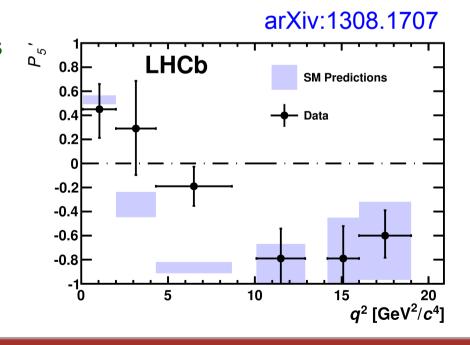

RPV Parameter	Br with Neutrino
Combinations	$\mathrm{Mass} \lesssim 1 \; \mathrm{eV} \; \mathrm{Constraint}$
$B_2 \mu_3$	1×10^{-15}
$B_3\mu_2$	1×10^{-13}
$\overline{B_1 \lambda_{123}}$	1×10^{-5}
$B_1\lambda_{132}$	3×10^{-5}
$B_2\lambda_{232}$	3×10^{-5}
$B_3\lambda_{233}$	3×10^{-5}
$\mu_2 \mu_3$	2×10^{-18}
$\overline{B_1 A_{123}^{\lambda}}$	5×10^{-11}
$B_1A_{132}^{ ilde{\lambda}_{32}}$	5×10^{-11}
$B_{2}A_{232}^{\lambda} \ B_{3}A_{233}^{\lambda}$	5×10^{-11}
$B_3 A_{233}^{\bar{\lambda}_{233}}$	5×10^{-11}

Again... unobservable at the LHC

A new hope: Type-III 2HDM

[Aristizabal Sierra, AV, 2014]

Signal strengths ranges in the 2HDM Compatible with all constraints and the CMS signal for $h \to \tau \mu$

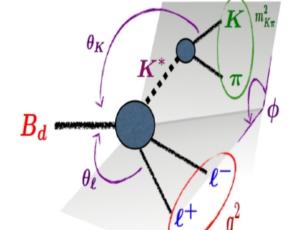

Episode 1

[LHCb, 2013] 1305.2168, 1308.1707, 1403.8044

2013 : First anomalies found by LHCb

- Data collected: 1 fb^{-1} (3 fb⁻¹ in some observables)
- Decrease (w.r.t. the SM) in several branching ratios
- Several anomalies in angular observables

Popular example: P_5' in $B \to K^* \mu^+ \mu^-$


$$B \to K^* \, (\to K\pi) \; \mu^+\mu^- \;$$
 differential angular distribution

$$\frac{d^4\Gamma}{dq^2 d\cos\theta_K d\cos\theta_l d\phi} = \frac{9}{32}$$

$$\frac{d^4\Gamma}{dq^2 d\cos\theta_K d\cos\theta_l d\phi} = \frac{9}{32\pi} \left[J_{1s} \sin^2\theta_K + J_{1c} \cos^2\theta_K + (J_{2s} \sin^2\theta_K + J_{2c} \cos^2\theta_K) \cos 2\theta_l \right]$$

 $+J_3\sin^2\theta_K\sin^2\theta_l\cos2\phi + J_4\sin2\theta_K\sin2\theta_l\cos\phi + J_5\sin2\theta_K\sin\theta_l\cos\phi$ $+(J_{6s}\sin^2\theta_K+J_{6c}\cos^2\theta_K)\cos\theta_l+J_7\sin2\theta_K\sin\theta_l\sin\phi_l$

$$+J_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + J_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi$$

 J_i : functions of q^2 , C_i , FF

Optimized observables

[Descotes-Genon et al, 2012, 2013]

$$P_5' = \frac{J_5}{2\sqrt{-J_{2s}J_{2c}}}$$

[Figure borrowed from Javier Virtol

[LHCb, 2014] arXiv:1406.6482

Episode 2

2014 : Lepton universality violation

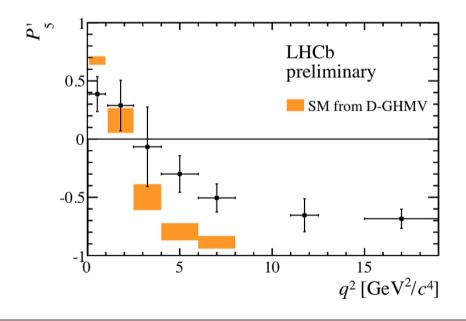
Obtained with 3 fb $^{-1}$

$$R_K = \frac{BR(B \to K\mu^+\mu^-)}{BR(B \to Ke^+e^-)} = 0.745^{+0.090}_{-0.074} \pm 0.036$$

$$R_K^{
m SM} = 1.0003 \pm 0.0001$$
 [Hiller, Kruger, 2004]

 2.6σ away from the SM

Episode 3


[LHCb, 2015] C. Langenbruch, Moriond 2015 March 20th

2015: LHCb confirms first anomalies

All observables updated to 3 fb^{-1}

[Complete LHC Run I dataset]

Errors shrunk...
... anomalies persist

David Straub's talk Moriond 2015

Fit result in the SM

Model-independent analysis

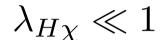
 $\sim \chi^2_{\rm SM} = 116.9$ for 88 measurements (p value 2.14 %)

Including also $b \rightarrow se^+e^-$ processes:

 $\sim \chi^2_{\rm SM} = 125.8$ for 91 measurements (p value 0.92 %)

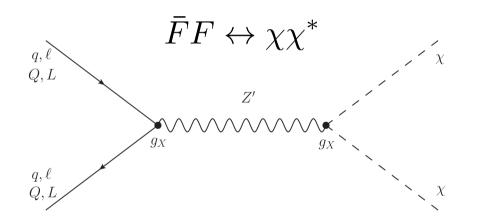
Biggest tensions: (careful, these observables are not independent! E.g. only P_5' or S_5 in fit)

Decay	obs.	q^2 bin	SM pred.	measurem	ent	pull
$ar{\it B}^0 ightarrow ar{\it K}^{*0} \mu^+ \mu^-$	F_L	[2, 4.3]	$\textbf{0.81} \pm \textbf{0.02}$	$\textbf{0.26} \pm \textbf{0.19}$	ATLAS	+2.9
$ar{\it B}^0 ightarrow ar{\it K}^{*0} \mu^+ \mu^-$	F_L	[4, 6]	$\textbf{0.74} \pm \textbf{0.04}$	$\textbf{0.61} \pm \textbf{0.06}$	LHCb	+1.9
$ar{\it B}^0 ightarrow ar{\it K}^{*0} \mu^+ \mu^-$	S_5	[4, 6]	-0.33 ± 0.03	-0.15 ± 0.08	LHCb	-2.2
$ar{\it B}^0 ightarrow ar{\it K}^{*0} \mu^+ \mu^-$	<i>P</i> ₅ '	[1.1, 6]	-0.44 ± 0.08	-0.05 ± 0.11	LHCb	-2.9
$ar{\it B}^0 ightarrow ar{\it K}^{*0} \mu^+ \mu^-$	P_5'	[4, 6]	-0.77 ± 0.06	-0.30 ± 0.16	LHCb	-2.8
${\it B}^- ightarrow {\it K}^{*-} \mu^+ \mu^-$	$10^7 \frac{dBR}{dq^2}$	[4, 6]	$\textbf{0.54} \pm \textbf{0.08}$	$\textbf{0.26} \pm \textbf{0.10}$	LHCb	+2.1
$ar{\it B}^0 ightarrow ar{\it K}^0 \mu^+ \mu^-$	$10^8 \frac{dBR}{dq^2}$	[0.1, 2]	2.71 ± 0.50	$\textbf{1.26} \pm \textbf{0.56}$	LHCb	+1.9
$ar{\it B}^{ m 0} ightarrow ar{\it K}^{ m 0} \mu^+ \mu^-$	$10^8 \frac{dBR}{dq^2}$	[16, 23]	$\textbf{0.93} \pm \textbf{0.12}$	$\textbf{0.37} \pm \textbf{0.22}$	CDF	+2.2
$B_{\rm s} o \phi \mu^+ \mu^-$	$10^7 \frac{dBR}{dq^2}$	[1, 6]	$\textbf{0.48} \pm \textbf{0.06}$	$\textbf{0.23} \pm \textbf{0.05}$	LHCb	+3.1



Some comments on DM

However:


Higgs portal also possible

Assumption:

Interplay between flavor and DM

$$\sigma(s) \sim \left| \Delta^{f_i f_j} \right|^2 g_X^2 \frac{1}{s} \frac{m_{Z'}^4}{\left(m_{Z'}^2 - s \right)^2 - m_{Z'}^2 \Gamma_{Z'}^2} F_{\text{kin}}$$

Favorable conditions

$$m_{\chi} > m_{Q,L}$$

$$m_{Z'} > m_{\chi}$$

$$m_\chi \simeq \frac{m_{Z'}}{2}$$

(resonance)

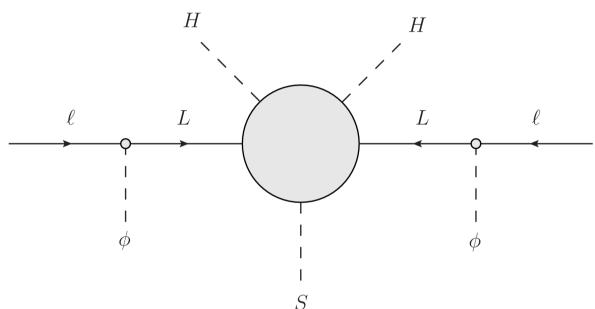
Z-Z' mixing

Nothing prevents U(1) factors from mixing

$$\mathcal{L} \supset \varepsilon F_{\mu\nu}^Y F_X^{\mu\nu}$$

Problem: The Z' would have flavor violating couplings to all SM fermions

However, this is under control in this model:


- Not induced via renormalization group running if it is zero at some high-energy scale
- Suppressed for $m_Q \sim m_L$

$$\varepsilon_{1\text{-loop}} \propto \frac{g_1 g_X}{16\pi^2} \log \left(\frac{m_Q}{m_L}\right)$$

53

Neutrino masses

Non-trivial neutrino mass generation

$$S = (1, 1, 0, -4)$$

[preserves \mathbb{Z}_2]

$$\mathcal{O}_{\nu} = \frac{1}{\Lambda_{\nu}^{5}} \ell \ell H H \phi \phi S$$

Possible UV completion

Vector-like fermion F = (1, 1, 0, 2)

$$\mathcal{L} \supset \lambda_S S \overline{F^c} F + y \overline{L} H F$$

$$B_s o \mu^+ \mu^-$$

$$\mathcal{O} = (\bar{s}\gamma_{\alpha}P_{L}b) \ (\bar{\mu}\gamma^{\alpha}P_{L}\mu) \qquad \Rightarrow \quad \overline{BR}(B_{s} \to \mu^{+}\mu^{-})$$
Contributes to
$$\mathcal{O}_{9} \text{ and } \mathcal{O}_{10}$$

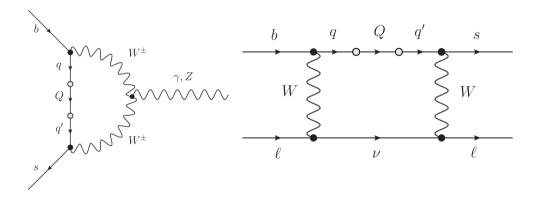
[CMS and LHCb, 2013]

[Bobeth et al, 2013]

$$\overline{BR}(B_s \to \mu^+ \mu^-)_{\text{exp}} = (2.9 \pm 0.7) \times 10^{-9}$$
 $\overline{BR}(B_s \to \mu^+ \mu^-)_{\text{SM}} = (3.65 \pm 0.23) \times 10^{-9}$

$$-0.25 < C_{10}^{\mu,\mathrm{NP}}/C_{10}^{\mu,\mathrm{SM}} < 0.03$$
 (at 1 σ) The model is compatible at 2 σ

$$B_s - ar{B}_s$$
 mixing


[Altmannshofer et al, 2014]

Allowing for a 10% deviation from the SM expectation in the mixing amplitude

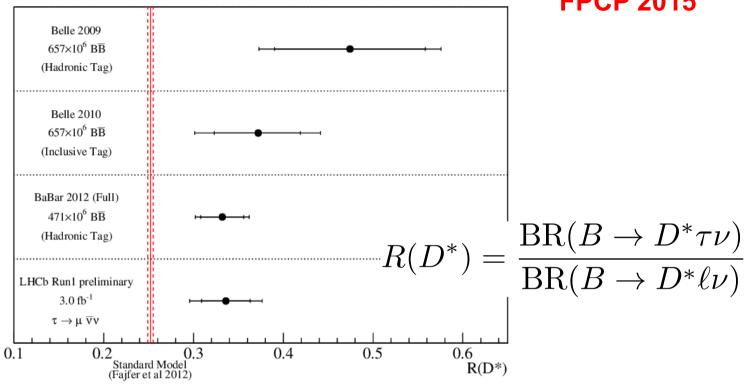
$$\frac{m_{Z'}}{|\Delta_L^{bs}|} \gtrsim 244 \, {\rm TeV}$$

Loop corrections

At 1-loop, the vector-like quarks contribute to all operators

- Non-negligible corrections to C_9
- Unwanted contributions to other Wilson coefficients

However: "Valid" region is safe


$$C_7^{\rm NP}/C_7^{\rm SM} < 1\%$$

[Computed with FlavorKit]

$$C_9^{\mathrm{NP}}/C_9^{\mathrm{SM}}$$
 $C_7^{\mathrm{NP}}/C_7^{\mathrm{SM}}$ (full) (dotted gray)

Result

More anomalies? Greg Ciezarek's talk FPCP 2015

- ullet We measure $\mathcal{R}(D^*) = 0.336 \pm 0.027 \pm 0.030$
 - In good agreement with past measurements
 - Agreement with SM at 2.1σ level
- Measurement will improve with more data: largest systematic uncertainties depend on control samples (or simulation size)
- FLARYARES/(L/HCB-PAPERITZQ15/te025) orters of the lifew weeks