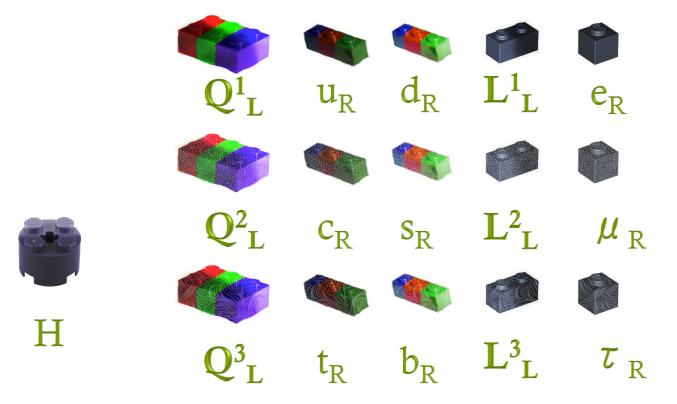
Towards a complete A4 X SU(5) SUSY GUT

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King

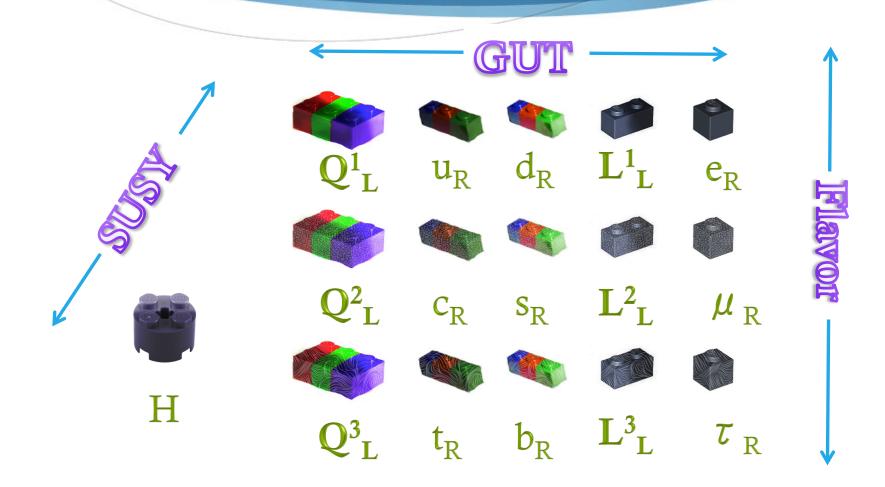
arXiv:1503.03306


FLASY

2015

Standard Model

Gauge theory SU(3)_C X SU(2)_L X U(1)_Y



Standard Model

Gauge theory SU(3)_C X SU(2)_L X U(1)_Y

SM: Problems to solve

- Free gauge couplings.
- Free masses and mixings.
- Hierarchy problem.
- Not enough baryon asymmetry.
- Arbitrary charge quantization.
- No dark matter.
- No neutrino mass mechanism.
- Strong CP problem.

SM: Problems to solve

- Free gauge couplings.
- Free masses and mixings.
- Hierarchy problem.
- Not enough baryon asymmetry.
- Arbitrary charge quantization.
- No dark matter.
- No neutrino mass mechanism.
- Strong CP problem.

SUSY GUT FLAVOR

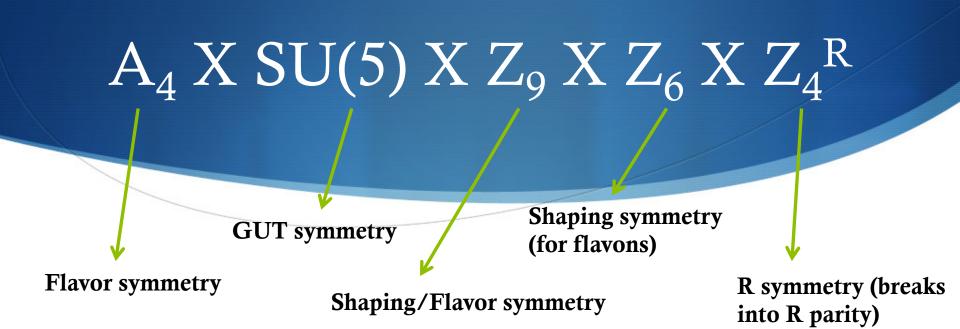
- GUT breaking mechanism.
- Flavor symmetry breaking mechanism (alignment).
- FCNCs.
- Missing new particles (heavy masses, doublet-triplet splitting).
- SUSY breaking.
- μ problem.
- Proton decay.
- Harder to obtain correct masses.

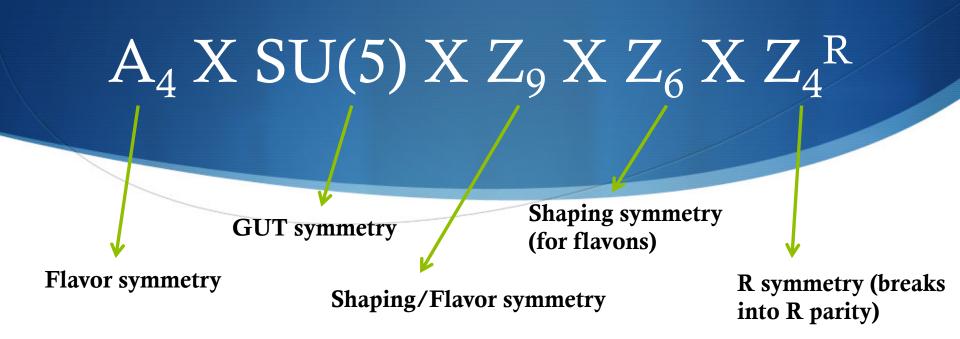
- GUT breaking mechanism.
- Flavor symmetry breaking mechanism (alignment).
- FCNCs.
- -5/. now to fix them now? Missing new particles (heavy masses, doublet-triplet splitting).
- SUSY breaking.
- μ problem.
- Proton decay.
- Harder to obtain correct masses.

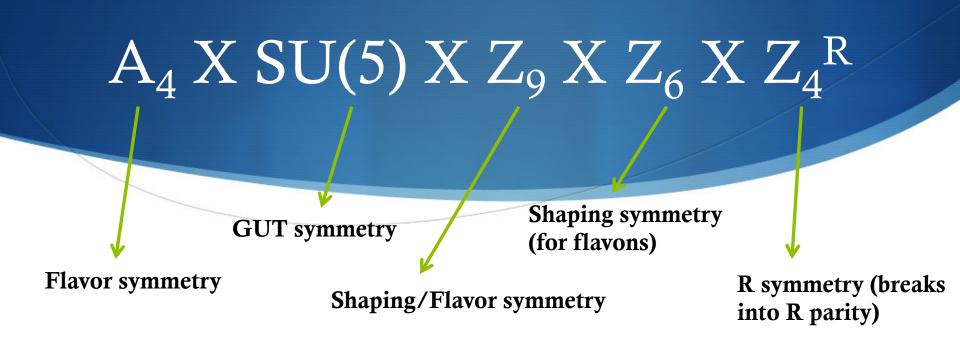
There at's fixed.

- GUT breaking med
- **Entry br**

- SUSY breaking.
- *μ* problem.
- Proton decay.


lignment).


ting).


$A_4 X SU(5)$ based theory

- No doublet-triplet splitting, μ problem nor proton decay.
- CP spontaneosly broken and no strong CP violation.
- Renormalizable at GUT scale.
- Correct baryon asymmetry.
- Neutrino mass mechanism (with right handed neutrinos).
- Reduces to MSSM at low energies (with R parity to have DM and no FCNC).
- All O(1) free parameters.
- Explicit GUT breaking.
- Explicit flavor breaking and alignment.

- Superfields containing MSSM superfields (EW scale masses).
- Symmetry breaking superfields (masses around the GUT scale).
- Messenger superfields (renormalizable masses).

- Superfields containing MSSM superfields (EW scale masses).
- Symmetry breaking superfields (masses around the GUT scale).
- Messenger superfields (renormalizable masses).

102 superfields in total.

MSSM containing superfields

	Field	Representation				
		A_4	SU(5)	\mathbb{Z}_9	\mathbb{Z}_6	\mathbb{Z}_4^R
L_L, d_R	F	3	$\overline{5}$	0	0	1
	T_1	1	10	5	0	1
$Q_R, \ u_R, \ e_R$	T_2	1	10	7	0	1
	T_{3}	1	10	0	0	1
$2 \text{ RH } \nu$'s	$N^c_{ m atm}$	1	1	7	3	1
	$N_{ m sol}^c$	1	1	8	3	1
H_u	H_{5}	1	5	0	0	0
$egin{array}{c} H_u \ H_d \end{array}$	$H_{ar{5}}$	1	$5 \overline{5}$	2	0	0
	ξ	1	1	2	0	0
Flavons	ϕ_i	3	1	$ \alpha_i$	β_i	0

New superfields A's (A_4 triplets) and O's (A_4 singlets) whose **F term** determine the flavon VEV alignment.

New superfields A's (A_4 triplets) and O's (A_4 singlets) whose **F term** determine the flavon VEV alignment.

$$egin{aligned} W &\sim A \phi_a \phi_a \ \phi_a^1 \phi_a^2 &= 0 \ \phi_a^2 \phi_a^3 &= 0 \ \phi_a^3 \phi_a^1 &= 0 \end{aligned}$$

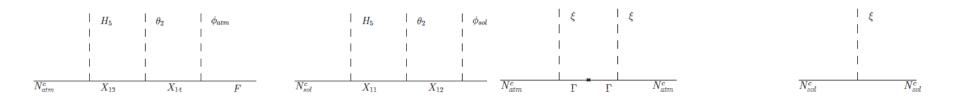
2 components must vanish.

New superfields A's (A_4 triplets) and O's (A_4 singlets) whose **F term** determine the flavon VEV alignment.

2 components must vanish.

They must be orthogonal.

New superfields A's (A_4 triplets) and O's (A_4 singlets) whose **F term** determine the flavon VEV alignment.


$$\begin{split} W_{\text{align}} &\sim A_{\mu} \phi_{\mu} \phi_{\mu} + A_{\tau} \phi_{\tau} \phi_{\tau} + A_{2} (\phi_{2} \phi_{2} + \phi_{2} \theta_{1}) \\ &\quad + O_{e\mu} \phi_{e} \phi_{\mu} + O_{e\tau} \phi_{e} \phi_{\tau} + O_{\mu\tau} \phi_{\mu} \phi_{\tau} \\ &\quad + O_{e3} \phi_{e} \phi_{3} + O_{23} \phi_{2} \phi_{3} + O_{12} \phi_{1} \phi_{2} + O_{13} \phi_{1} \phi_{3} \\ &\quad + O_{\mu 5} \phi_{\mu} \phi_{5} + O_{25} \phi_{2} \phi_{5} + O_{\mu 6} \phi_{\mu} \phi_{6} + O_{56} \phi_{5} \phi_{6} \\ &\quad + O_{64} \phi_{6} \phi_{4} + O_{14} \phi_{1} \phi_{4}. \end{split}$$

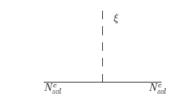
Completely fixed flavon VEV alignments:

$$\begin{split} \langle \phi_e \rangle &= v_e \begin{pmatrix} 1\\0\\0 \end{pmatrix} \qquad \langle \phi_\mu \rangle = v_\mu \begin{pmatrix} 0\\1\\0 \end{pmatrix} \qquad \langle \phi_\tau \rangle = v_\tau \begin{pmatrix} 0\\0\\1 \end{pmatrix} \\ \langle \phi_{\rm atm} \rangle &= v_{\rm atm} \begin{pmatrix} 0\\1\\1 \end{pmatrix} \qquad \quad \langle \phi_{\rm sol} \rangle = v_{\rm sol} \begin{pmatrix} 1\\3\\1 \end{pmatrix} \end{split}$$

CSD(3) alignment for neutrinos

 $W_{\nu} = y_1 H_5 F \frac{\phi_{\rm atm}}{\langle \theta_2 \rangle} N_{\rm atm}^c + y_2 H_5 F \frac{\phi_{\rm sol}}{\langle \theta_2 \rangle} N_{\rm sol}^c + y_3 \frac{\xi^2}{M} N_{\rm atm}^c N_{\rm atm}^c + y_4 \xi N_{\rm sol}^c N_{\rm sol}^c.$

CSD(3) alignment for neutrinos


$$W_{\nu} = y_1 H_5 F \frac{\phi_{\rm atm}}{\langle \theta_2 \rangle} N_{\rm atm}^c + y_2 H_5 F \frac{\phi_{\rm sol}}{\langle \theta_2 \rangle} N_{\rm sol}^c + y_3 \frac{\xi^2}{M} N_{\rm atm}^c N_{\rm atm}^c + y_4 \xi N_{\rm sol}^c N_{\rm sol}^c.$$

- 2 right handed neutrinos with $M_{atm} << M_{sol}$.
- Seesaw mechanism.
- Normal hierachy with one massless neutrino.

Dirac mass matrix:

$$\lambda^{
u} = egin{pmatrix} 0 & b \ a & 3b \ a & b \end{pmatrix}$$

Diagonal RH ν mass matrix.

Neutrino masses

$$m^
u = m_a egin{pmatrix} 0 & 0 & 0 \ 0 & 1 & 1 \ 0 & 1 & 1 \end{pmatrix} + m_b e^{i\eta} egin{pmatrix} 1 & 3 & 1 \ 3 & 9 & 3 \ 1 & 3 & 1 \end{pmatrix}$$

 $\eta = \frac{2\pi n}{9}$, with $n \in \mathbb{Z}$, due to the \mathbb{Z}_9 symmetry. We choose $\eta = 2\pi/3$

We fit the Δm^2 and choose the phase η (1 in 9) and the PMNS matrix is completely fixed.

(Negligible contributions from charged lepons)

Neutrino masses

$$m^
u = m_a egin{pmatrix} 0 & 0 & 0 \ 0 & 1 & 1 \ 0 & 1 & 1 \end{pmatrix} + m_b e^{i\eta} egin{pmatrix} 1 & 3 & 1 \ 3 & 9 & 3 \ 1 & 3 & 1 \end{pmatrix}$$

 $\eta = \frac{2\pi n}{9}$, with $n \in \mathbb{Z}$, due to the \mathbb{Z}_9 symmetry. We choose $\eta = 2\pi/3$

We fit the Δm^2 and choose the phase η (1 in 9) and the PMNS matrix is completely fixed.

(Negligible contributions from charged lepons)

	Experimental	Theory
$ heta_{12}^{l}\left(^{\circ} ight)$	$33.48 {}^{+0.78}_{-0.75}$	34.3
$ heta_{23}^{l}\left(^{\circ} ight)$	$42.3 \ _{-1.6}^{+3.0}$	45.8
$ heta_{13}^{l}\left(^{\circ} ight)$	$8.5 {}^{+0.20}_{-0.21}$	8.67
$\delta^{l}\left(^{\circ} ight)$	$-54 \ ^{+39}_{-70}$	-86.7

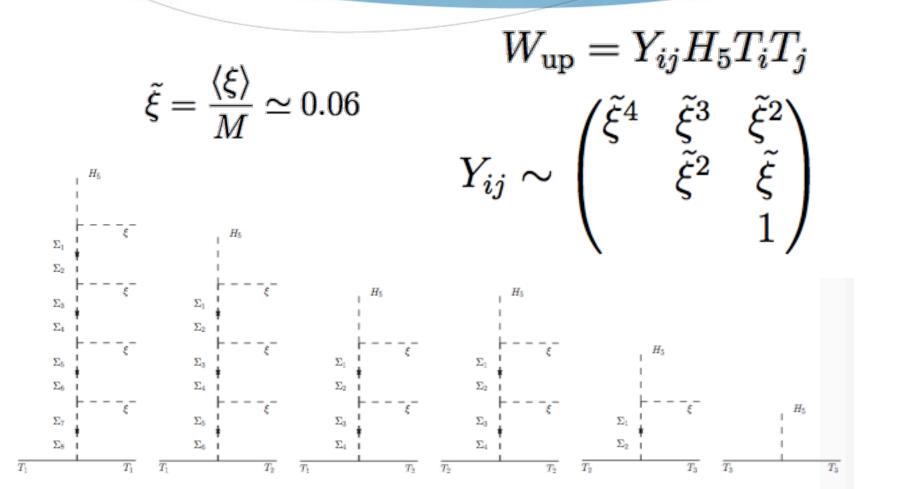
Leptogenesis

- Baryon asymtery of the universe due to CP violation in leptons.
- Generated through decays of N_{atm} (lightests RH neutrino).
- Decay violates lepton number and CP in this model.

arXiv:1505.05504

Leptogenesis

- Baryon asymtery of the universe due to CP violation in leptons.
- Generated through decays of N_{atm} (lightests RH neutrino).
- Decay violates lepton number and CP in this model.
- To obtain correct BAU we fix $M_{atm} = 4 \times 10^{10} \text{ GeV}$.


$$M_{\text{atm}} = y_3 \frac{\langle \xi \rangle^2}{M}$$

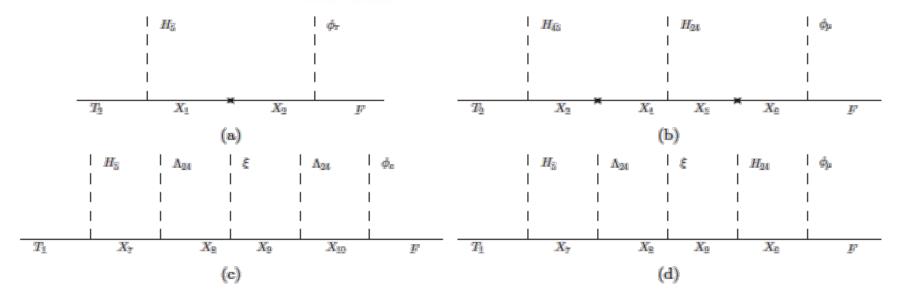
Taking $M \to M_P$ fixes $y_3 \simeq 0.3$.

arXiv:1505.05504

Up-quark masses

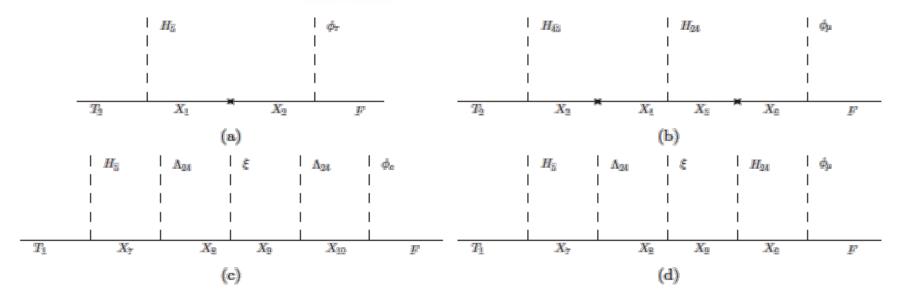
$W_{\rm up} = Y_{ij}H_5T_iT_j$

Up-quark masses



Down-quarks and charged leptons masses $W_{a} = Y_{a}BT$

They come from the same terms so we need Georgi-Jarlskog relations (from a 45 and 24)


Down-quarks and charged leptons masses $W_{a} = Y_{a}BT$

They come from the same terms so we need Georgi-Jarlskog relations (from a 45 and 24)

Down-quarks and charged leptons masses $W_{a} = Y_{a}B_{a}$

They come from the same terms so we need Georgi-Jarlskog relations (from a 45 and 24)

Experimental (at GUT and no threshold c.)

 $\frac{y_{\mu}}{y_s} \approx 4.36 \pm 0.23, \quad \frac{y_e}{y_d} \approx 0.41 \pm 0.06$

Our model $\frac{y_{22}^e}{y_{22}^d} = \frac{9}{2} = 4.5, \quad \frac{y_{11}^e}{y_{11}^d} = \frac{4}{9} \approx 0.44$

Strong CP

CP is only spontaneously broken

$$\theta = \arg \det(Y^u Y^d)$$

Strong CP

CP is only spontaneously broken

$$\begin{aligned} \theta &= \arg \det(Y^u Y^d) \\ Y^u \in \mathbb{R} & Y^d_{LR} \sim \begin{pmatrix} * & * e^{i\zeta} & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{pmatrix} \end{aligned}$$

No strong CP violation: Nelson-Barr mechanism

Parameter fit

18 parameters surviving at low energies.

Parameter fit

18 parameters surviving at low energies.

PMNS fixed.

We fit the CKM, quark and neutrino masses (one massless ν).

Parameter fit

18 parameters surviving at low energies.

PMNS fixed.

We fit the CKM, quark and neutrino masses (one massless ν).

All dimensionless parameters $y \in [0.32, 3.12]$

$$\chi^{2} = \sum_{i=1}^{N} \left(\frac{P_{i}(\{x\}) - \mu_{i}}{\sigma_{i}} \right)^{2} = 7.98$$

More facts

• Doublet-triplet splitting due to the Missing Partner Mechanism.

Adding a 75 with a SM singlet VEV.

Adding a 50 with SU(3) triplets but no SU(2) doublets.

 $W_{DT} \sim H_{\bar{5}}\Omega_{50}\Pi_{75}$

More facts

- Doublet-triplet splitting due to the Missing Partner Mechanism.
- Higgs mixing generates μ term.

$$\begin{split} & W_{\mu} \sim \quad M_{GUT} \begin{pmatrix} 0 & 1 \\ \tilde{\xi}^8 & 1 \end{pmatrix} \begin{pmatrix} 2(H_{45}) \\ 2(H_{5}) \\ 2(H_{45}) \end{pmatrix} \\ & u \sim \tilde{\xi}^8 M_{GUT} \sim 10^{-10} M_{GUT} \end{split}$$

More facts

- Doublet-triplet splitting due to the Missing Partner Mechanism.
- Higgs mixing generates μ term.

 $\mu \sim \tilde{\xi}^8 M_{GUT} \sim 10^{-10} M_{GUT}$

- No dangerous (TTF) proton decay terms allowed.
- There's an explicit symmetry breaking potential.

Not shown, too large :-P

Conclusion

- SUSY Flavor-GUT based on $A_4 X SU(5) X Z_9 X Z_6 X Z_4^R$.
- Reduces to MSSM at LE (Everything has GUT scale masses).
- Fixed PMNS matrix with great precision.
- Gives hierarchy to quark masses and G-J relations.
- Fits quarks and lepton masses and CKM with O(1) parameters.
- Generates BAU through leptogenesis.
- No strong CP violation and controled proton decay.
- Generates doublet-triplet splitting and small μ term.

Conclusion

