Scalar-fermion and vector-fermion vertices connection within spin-extended model

Jaime Besprosvany

Instituto de Física Universidad Nacional Autónoma de México

FLASY 2015. 5th workshop on flavor symmetries and consequences in accelerators and cosmology, June 29-July 2, 2015, Manzanillo, Mexico

International Journal of Modern Physics A Vol. 29 (2014) 1450144 (17 pages) © World Scientific Publishing Company DOI: 10.1142/S0217751X14501449

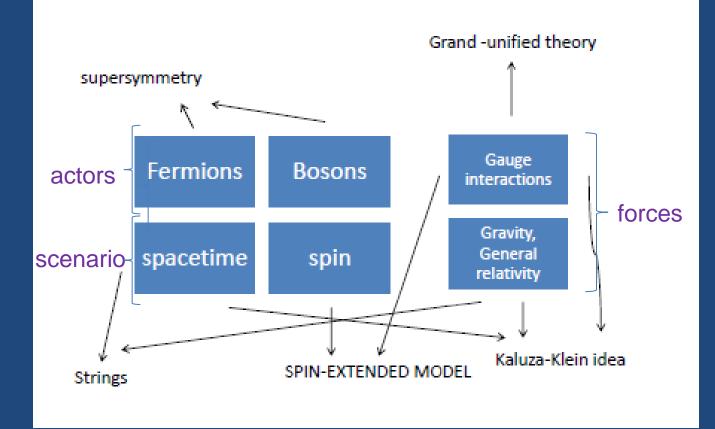
J. Besprosvany^{*} and R. Romero Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México 01000, D.F., México *bespro@fisica.unam.mx

Contents

- Spin-extended model within unification and SM extensions.
- Model's symmetry groups and representations: chiral elements.
- Lagrangian construction.
- fermions and scalars in (7+1)-d, and heavyquark mass hierarchy effect.

Standard-model extensions

Unification examples



LORENTZ AND MAX/MAL SCALAR SYMMETRY AT D DIMENSION 80 81 82 83 84, ... 8 D-1 $V_{\mu\nu} = \frac{1}{2} \left[\delta_{\mu}, \delta_{\nu} \right] + v = 0, -3 \quad \delta_{\alpha} \quad \alpha = \gamma_{\mu\nu} D - 1$ 4-D Lorentz symmetry & Scalar symmetry unitag: U(2^{0-4)/2}) $[T_{\mu\nu}, \gamma_a] = 0$ $[\tilde{Y}_{s}, \tilde{Y}_{a}] = 0$ $\tilde{Y}_{s} = -i \log \delta_{1} \delta_{2} \delta_{3}$ $[H, \delta_{\alpha}] = 0 \quad H = i \delta_{\alpha} \overline{\nabla} \cdot \overline{\delta}$

maximal scalar symmetry $U_R \otimes U_L$ $U_R = \frac{1}{2}(1+\tilde{t}_S) U(2^{(D-4)/2})$ $U_L = \frac{1}{2}(1-\tilde{t}_S) U(2^{(D-4)/2})$ Coleman-Mandula OK

Two physical interpretations

 Kaluza-Klein type of framework, for in higher than (3+1)-dimensions, only the spin component in

$$\mathcal{P}_P\left[\frac{1}{2}\sigma_{\mu\nu} + i(x_\mu\partial_\nu - x_\nu\partial_\mu)\right]$$

$$\mu = 4, \dots, N-1, v = 4, \dots, N-1$$

remains as symmetry operator; thus, spatial componets are frozen.

• Elementary discrete degree-of- freedom matrix construction.

(a) Symmetry groups (b) Representations

J. Besprosvany & R. Romero

Table 1. (a) Shows the arrangement of symmetry operators U in matrix space of arbitrary dimension N, after projection over S_P , with left-handed and right-handed operators subspaces;⁶ (*) represents the matrix subspace containing the projector $1 - \mathcal{P}_S = 1 - \mathcal{P}_P$; its choice within the right-handed symmetry components is arbitrary. (b) Shows the arrangement of matrix solutions Ψ in the extended-spin model which is divided into four $\frac{N}{2} \times \frac{N}{2}$ matrix blocks, containing fermion (F), vector (and axial-) (V), scalar (and pseudo-) and antisymmetric (S, A) terms.

(*)			(*)	F	F
ć	$S_{(N-4)R} \otimes C_4$		F	V	S, A
		$S_{(N-4)L} \bigotimes C_4$	F	<i>S</i> , <i>A</i>	V

(a)

(b)

(5+1)-d spin-extended model

Following the Kaluza-Klein idea, one seeks constraints on symmetries extending the spin space. For example, the Clifford algebra on 5+1 dimensions contains the usual Lorentz generators, and scalar ones.

 $I_3 = -\frac{1}{2}(1 - \gamma_5)\gamma_{\gamma}\gamma_{\gamma}$

Lorentz	$\sigma_{\mu\nu} =$	$\frac{i}{2}[\gamma_{\mu},\gamma_{\nu}]$	$\mu, u=0,,3,$
$\gamma_a, a = 4, \dots, N-1$		L	$= \frac{3}{4} - \frac{i}{4}(1+\tilde{\gamma}_5)\gamma^5\gamma^6 -$
Scalars		Y	$=-1+rac{i}{2}(1+ ilde{\gamma}_5)\gamma^5\gamma^6$
$U_{Le}(1) \times U_{\gamma}(1) \times SU_{L}(2)$)	I_1	$=rac{i}{2}(1- ilde{\gamma}_5)\gamma^5$
		I_2	$=-rac{i}{2}(1- ilde{\gamma}_5)\gamma^6$
		L	$=-\frac{i}{2}(1-\tilde{\alpha}_{r})\alpha^{5}\alpha^{6}$

Standard-model heavy particles

			Weak		Hypercharge		
	Ν	Masses (GeV)	Spin	 ²	Y		
•	W+/-	80.4	1	1	0		
•	Ζ	91.2	1	0	0		
•	Н	126	0	1/2	-1		
•	t	173	1/2	1⁄2 ,0	1/3, 4/3		
•	b	4.6	1⁄2	1⁄2 ,0	1/3, -2/3		

Composite multiplet suggested

INTERACTIVE THEORY FOR FIELDS IN AN EXTENDED SPIN SPACE Keep Polarization basis for fields Vector Ana Yy Ga scalar pa Ga transformation rule $\psi \rightarrow u \overline{\psi} u^{\dagger}$ drop tree-field generalized Drac equation There is an equivalence between a field theory and its formulation in an extended spin space

Spin-extended model equivalent Lagrangian terms

Fermion-vector

$$\frac{1}{N_f} \operatorname{tr} \Psi^{\dagger} \{ [i\partial_{\mu}I_{\mathrm{den}} + gA^a_{\mu}(x)I_a]\gamma_0\gamma^{\mu} - M\gamma_0 \} \Psi P_f ,$$

Projection operator

$$P_f = \frac{1}{\sqrt{2}} (\tilde{\gamma}^5 - \gamma^0 \gamma^1)$$

Projection operator

$$P_{f} = \tilde{g}_{5}\tilde{\gamma}_{5} + g_{I}I + g_{01}\gamma^{0}\gamma^{1} + g_{02}\gamma^{0}\gamma^{2} + g_{03}\gamma^{0}\gamma^{3} + g_{12}\gamma^{1}\gamma^{2} + g_{13}\gamma^{1}\gamma^{3} + g_{23}\gamma^{2}\gamma^{3} + (g_{\tilde{5}56}\tilde{\gamma}_{5} + g_{I56}I + g_{0156}\gamma^{0}\gamma^{1} + g_{0256}\gamma^{0}\gamma^{2} + g_{0356}\gamma^{0}\gamma^{3} + g_{1256}\gamma^{1}\gamma^{2} + g_{1356}\gamma^{1}\gamma^{3} + g_{2356}\gamma^{2}\gamma^{3})\gamma^{5}\gamma^{6}.$$

For the extended-spin model with $\Psi_L^l(x)$, the coefficient of the e_L^1 associated term $(\psi_L^1(x))^2$ is $(A - B)[W_0^3(x) - W_3^3(x)]$ $A = \frac{1}{2}(g_I + g_5 - ig_{556} - ig_{56})$ $B = -\frac{1}{2}(g_{03} - ig_{12} - ig_{0356} - g_{1256}).$

For the conventional term with $\Psi_l(x)$, the e_L^1 coefficient is $\frac{1}{2}[W_0^3(x) - W_3^3(x)].$

We conclude the choice A = 1/2, B = 0

(7+1)-d fermions

momentum along $\pm z$.						
(a)						
Hypercharge 1/3 left-handed doublet			Q	$\frac{3i}{2}B\gamma^1\gamma^2$		
$Q_{L}^{1} = \begin{pmatrix} U_{L}^{1} \\ D_{L}^{1} \end{pmatrix} = \begin{pmatrix} \frac{1}{16} \left(1 - \tilde{\gamma}_{5}\right) \left(\gamma^{5} - i\gamma^{6}\right) \left(\gamma^{7} + i\gamma^{8}\right) \left(\gamma^{0} + \gamma^{3}\right) \\ \frac{1}{16} \left(1 - \tilde{\gamma}_{5}\right) \left(\gamma^{5} - i\gamma^{6}\right) \left(1 - i\gamma^{7}\gamma^{8}\right) \left(\gamma^{0} + \gamma^{3}\right) \end{pmatrix}$		1/2 - 1/2	2/3 -1/3	1/2 1/2		
(b)						
$I_3 = 0$ right-handed singlet	Y	Q		$\frac{3i}{2}B\gamma^1\gamma^2$		
$U_R^1 = \frac{1}{16} \left(1 + \tilde{\gamma}_5\right) \left(\gamma^5 - i\gamma^6\right) \left(\gamma^7 + i\gamma^8\right) \gamma^0 \left(\gamma^0 + \gamma^3\right)$	4/3	2/3		1/2		
$D_R^1 = \frac{1}{16} \left(1 + \tilde{\gamma}_5\right) \left(\gamma^5 - i\gamma^6\right) \left(1 - i\gamma^7 \gamma^8\right) \gamma^0 \left(\gamma^0 + \gamma^3\right) $		-1/3		1/2		

Table 4. Scalar Higgs-like pairs.

0 baryon-number scalar	I_3	Y	Q	$\frac{3i}{2}B\gamma^1\gamma^2$
$\phi_1 = \begin{pmatrix} \phi_1^+ \\ \phi_1^0 \end{pmatrix} = \begin{pmatrix} \frac{1}{8} \left(1 - i\gamma^5\gamma^6\right) \left(\gamma^7 + i\gamma^8\right)\gamma^0 \\ \frac{1}{8} \left(1 - i\gamma^5\gamma^6\right) \left(1 + i\gamma^7\gamma^8\tilde{\gamma}_5\right)\gamma^0 \end{pmatrix}$	1/2 - 1/2	1	1 0	0
$\phi_2 = \begin{pmatrix} \phi_2^+ \\ \phi_2^0 \end{pmatrix} = \begin{pmatrix} \frac{1}{8} \left(1 - i\gamma^5 \gamma^6 \right) \left(\gamma^7 + i\gamma^8 \right) \tilde{\gamma}_5 \gamma^0 \\ \frac{i}{8} \left(1 - i\gamma^5 \gamma^6 \right) \left(1 + i\gamma^7 \gamma^8 \tilde{\gamma}_5 \right) \gamma^7 \gamma^8 \gamma^0 \end{pmatrix}$	1/2 - 1/2	1	1 0	0

(7+1)-d scalars Table 3. (a) Massless left-handed quark weak isospin doublet and (b) right-handed singlets, with momentum along $\pm \hat{z}$.

SU(2)_LxU(1)_Y-invariant term

$$\frac{1}{N_f} \operatorname{tr} \left\{ \left[m_U \Psi_R^{U^{\dagger}}(x) [\phi_1(x) + \phi_2(x)] \Psi_L^Q(x) + m_D \Psi_L^{Q^{\dagger}}(x) [\phi_1(x) - \phi_2(x)] \Psi_R^D(x) \right] P_f \right\} + \left\{ \operatorname{cc} \right\},$$

Higgs mechanism \rightarrow

$$H_v = a\phi_1^0 + b\phi_2^0 + a\phi_1^{0\dagger} + b\phi_2^{0\dagger}$$

$$\begin{aligned} H_v U_M^1 &= m_U U_M^1 \,, & H_v U_M^{c1} &= -m_U U_M^{c1} \\ H_v D_M^1 &= m_D D_m^1 \,, & H_v D_M^{c1} &= -m_D D_M^{c1} \end{aligned}$$

Hierarchy effect:

$$m_U = \frac{(a+b)}{2}, \quad m_D = \frac{(a-b)}{2}$$

Main points

- Spin-extended model provides for a feasible SM extension.
- At given dimension, it constrains groups and representations.
- A Lagrangian construction produces a gauge invariant formulation.
- At (7+1)-d, a predicted Higgs doublet induces a fermion mass hierarchy effect, suggestive of the bottom and top quark mass values.

Composite models

- 1961 Nambu Jona-Lasignio. Superconductivity model in which four-fermion interaction generates both fermion and boson masses.
- 1989 Nambu. Higgs from top quark condensate.
- Bardeen, Hill, Lindner, use fixed point in renormalization.
- Technicolor: Higgs composed of fermions alleviates fine-tuning problem.
- Spin extended model.

Can standard-model bosons be constructed in terms of fermions?

Higgs

$$\Phi \propto \frac{1}{2} \begin{pmatrix} \overline{b^a}(1+\gamma_5)t^a \\ -\overline{t^a}(1+\gamma_5)t^a \end{pmatrix} = i\tau_2(\overline{t_R}\Psi_L)^{\dagger T},$$

$$\tilde{\Phi} \equiv i\tau_2 \Phi^{\dagger T} \propto \overline{t_R}\Psi_L.$$

$$Y = -1 I_3 = 1/2$$
 states: $H_t^0 = t_L^{\dagger} \bar{t}_L^{\dagger} + \bar{t}_R t_R$

W

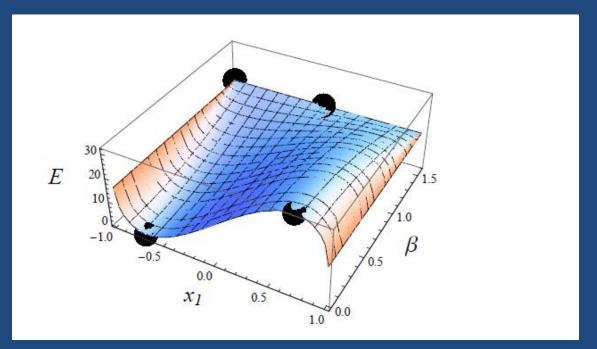
$$W^+_\downarrow = t^\dagger_L \bar{b}^\dagger_R$$

Ζ

left-handed helicity -1 hypercharge carrier is described by $A_L = \frac{2}{3}(t_L^{\dagger} \bar{t}_R^{\dagger} + b_L^{\dagger} \bar{b}_R^{\dagger})$

Hamiltonian model: known mesons

• Fermion Hamiltonian of the form: H=H(ψ_t , ψ_{b,m_t} , m_b); variational calculation



toponium and bottomium: masses 2m_t 2m_b

Standard-model extensions

Phenomenological prediction Conceptual basis