

T2K NEUTRINO OSCILLATION RESULTS AND HYPER-K FUTURE PROSPECTS

Arturo Fiorentini York University July 1, 2015

FLASY 2015 @ Colima, Mexico

Outline

- Introduction to neutrino oscillations
- The T2K experiment
 - Result from neutrino running
 - New results from anti-neutrino running
- The Hyper-Kamiokande experiment
 - Neutrino oscillation parameter sensitivities

Neutrino mixing and oscillations

- 3
 - Neutrino production and detection is determined by flavor eigenstates
 - They propagate in mass eigenstates so flavor can change with time and position
 - Neutrinos can therefore oscillate between flavor eigenstates

Neutrino oscillation parameters

The T2K (Tokai to Kamioka) experiment

- Long-baseline neutrino oscillation experiment using a v_µ beam produced at J-PARC
- Designed to measure v_e appearance and v_µ disappearance
 - $\blacksquare~\Theta_{_{23}}$, $\Theta_{_{13}}$, $\Delta m^2_{_{32}}$ and sensitivity to $\delta_{_{CP}}$

Neutrino production & off-axis beam

Reduces high energy background

Near detectors at 280 m

- 7
- ND280 (off-axis)
- Several sub-detectors in 0.2 T magnetic field
 - 2 FGDs: Scintillator (C) and water (O) targets
 - 3 TPCs: Particle identification (μ/e misidentification < 0.2%)
- Neutrino interaction rates before oscillations

- $\hfill\square$ Intrinsic v_e contamination in beam
- Neutrino cross sections

- INGRID (on-axis)
- 16 iron/scintillator modules as tracking calorimeters
 - 1 scintillator-only module as active target
- Monitors beam intensity, direction, profile and stability
- Neutrino cross sections

Far detector: Super-Kamiokande (SK)

- 50 kton water Cherenkov detector
 - 22.5 kton fiducial mass
- ~11k 20-inches PMTs in inner detector
- □ ~2k 8-inches PMTs outer detector
 - Veto entering background (cosmic rays, radioactivity) and rejects exiting events

SK detection principle

9

- SK uses Cherenkov ring shape to identify charged current V_µ or V_e interactions
- \square µ/e misidentification is < 1%

Beam delivered to T2K

T2K goal is 78x10²⁰ PoT

Maximum beam power achieved so far 371 kW

T2K started to take v̄-mode beam data in summer 2014

Accumulated Proton on target (PoT) up to June 1st 2015: 11.0×10^{20} (total) = 7.0×10^{20} (v) + 4.0×10^{20} (v)

 □ Data analyzed so far: ND280: 5.8x10²⁰ (v) + 4.3x10¹⁹ (v̄) SK: 5.8x10²⁰ (v) + 2.3x10²⁰ (v̄)

Results presented in this talk use data up to March 12th, 2015

Averaged Beam

50

Released T2K oscillation results

11

T2K goal is 7.8x10²⁰ PoT

Maximum beam power achieved so far 371 kW

T2K started to take \bar{v} -mode beam data in summer 2014

Results presented in this talk use data up to March 12th, 2015

v-mode analyses results (2010-2013 data)

V_e appearance measurement

Phys.Rev.Lett. 112, 061802 (2014)

- □ 28 v_e events were detected at SK
 □ 4.9±0.6 expected without oscillation
- □ Maximum likelihood fit in (p_e, Θ_e) to obtain the oscillation parameters
- Result is consistent with the independent analysis using reconstructed neutrino energy

 $\sin^{2} 2\vartheta_{13} = 0.140^{+0.038}_{-0.032} \text{ (NH)}$ $\sin^{2} 2\vartheta_{13} = 0.170^{+0.045}_{-0.037} \text{ (IH)} \text{ 68\% C.L.}$

7.3 σ significance for non-zero θ_{13}

Discovery of v_e appearance!

v_{μ} disappearance measurement

Phys.Rev.Lett. 112, 181801 (2014)

- $\hfill\square$ Disappearance of v_{μ} events was observed
 - 120 candidates
 - 446.0±22.5 expected without oscillation

 Fit to the reconstructed energy spectrum to determine oscillation parameters

$$\sin^{2} \vartheta_{23} = 0.514^{+0.055}_{-0.056}$$
(NH)

$$\Delta m_{32}^{2} = (2.51 \pm 0.10) \times 10^{-3} eV^{2}/c^{4}$$
(NH)

$$\sin^{2} \vartheta_{23} = 0.511^{+0.055}_{-0.055}$$
(IH)

$$\Delta m_{32}^{2} = (2.48 \pm 0.10) \times 10^{-3} eV^{2}/c^{4}$$
(IH)

$$68\% \text{ C.L.}$$

Most precise measurement of $sin^2\Theta_{23}$!

Joint v_{μ}/v_{e} analysis

Phys.Rev.D 91, 072010 (2014)

- Simultaneous fit to ν_μ and ν_e spectra in far detector
 - Correlations between oscillation parameters properly taken into account
- Included constraint from reactor experiments

 $δ_{CP} ∈ [0.15, 0.83]π$ NH $δ_{CP} ∈ [-0.08, 1.09]π$ IH Excluded at 90% C.L.

Hints to a value of δ_{CP} of $-\pi/2$

First v-mode analysis result (NEW)

Oscillation analysis overview

Arturo Fiorentini - FLASY2015 @ Colima, Mexico July 1, 2015

Flux model predictions

18

Beam simulation is tuned with NA61/SHINE hadron production data

Flux is predicted at ND280 and SK in v and \bar{v} modes

"Wrong sign" background is much higher in v̄ mode

Small intrinsic v_e background

v-mode beam Flux (/cm²/50MeV/10²¹ p.o.t) $_{10}^{10}$ $_{10}^{10}$ $_{10}^{10}$ $_{10}^{10}$ $-\nu_{\mu}$ $-\nu_e$ $-\overline{v}_{..}$ $-\overline{v}_{e}$ @ND280 10^{9} 10^{8} 10 E_v (GeV) Flux (/cm²/50MeV/10²¹p.o.t) 10 $-v_e$ $\overline{\mathbf{v}}_{\mathrm{e}}$ @SK 10 10^{2} 2 10 4 6 8 E_{v} (GeV)

Arturo Fiorentini - FLASY2015 @ Colima, Mexico

July 1, 2015

Near detector fit (v-mode beam)

- Select CC v_{μ} events and classify them based on π content
 - Each sample is sensitive to different V energy ranges and interactions
- Fit the reconstructed (p_{μ} , $\cos \Theta_{\mu}$) distributions
 - Flux and cross section model parameters are adjusted and uncertainties reduced

Near detector fit (v-mode beam)

- Select $\bar{\nu}_{\mu}$ and ν_{μ} candidates and classify them based on number of tracks
 - **Large** v_{μ} contamination
 - Statistics is lower than V-mode beam

Arturo Fiorentini - FLASY2015 @ Colima, Mexico July 1, 2015

SK expectation and uncertainties $(\bar{v}$ -mode beam)

Expected spectrum at SK Events per 0.050 GeV Total \overline{v}_{μ} CCQE \overline{v}_{II} MEC 0.8 \overline{v}_{μ} CCnQE ່ CC 0.6 $\overline{v_e}$, $\overline{v_e}$ CC NC 0.40.20' 0 2 3 5 E_{reco} (GeV)

- SK prediction assuming neutrino oscillation parameters
 - **19.9** \bar{v}_{μ} events with oscillation
 - **59.8** \bar{v}_{μ} events without oscillation
- The ND280 constraint reduces systematics uncertainties in expected events at SK

Fractional uncertainties

		w/o ND measurement	w/ ND measurement	
ν flux and cross section	flux	7.1%	3.5 %	
	cross section cmn to ND280	5.8%	1.4 %	
	(flux) × (cross section cmn to ND280)	9.2%	3.4 %	
	cross section (SK specific)	10.0 %		
	total	13.0%	10.1%	
Final or Secondary Hadronic Interaction		2.1%		
Super-K detector		3.8%		
total		14.4%	11.6%	

$\bar{\mathbf{v}}_{\mu}$ disappearance measurement

Comparison to other results

23

T2K and MINOS are No difference between v_{μ} and \bar{v}_{u} oscillation parameters compatible The \bar{v}_{μ} has much larger contours than v_{μ} analysis due to current limited statistics T2K contour already smaller than MINOS in $sin^2\Theta_{23}$ MINOS 90% MINOS best fit **v** fit: 90% ····· ν fit: 68% 0.0036T2K 90% ----- T2K 68% $\Delta \, \overline{m}^2_{32} \, (eV^2)$ $\overline{m}_{32}^{2} (eV^{2})$ 0.0036 0.0034 \overline{v} fit: Best fit v fit: 68% T2K best fit 0.0034 0.0032 PRELIMINARY 0.0032 v fit: 90% v fit: Best fit 0.003 0.003 0.0028 0.0028 0.0026 0.0026 0.0024 0.0024 0.0022 0.0022 0.002 0.002 0.0018 0.0018 0.3 0.6 0.7 0.40.5 $\sin^2 \overline{\theta}_{23}$ 0.45 0.5 0.55 0.30.35 0.6 0.650.70.4 $\sin^2\theta_{23}$ / $\sin^2\overline{\theta}_{23}$ MINOS data is beam and cosmic combined P. Adamson et al., Phys. Rev. Lett. 110 (2013) 25, 251801

T2K future prospects

24

- T2K goal is 7.8x10²¹ POT
 - 14% already achieved
- 50% v and 50% \bar{v} gives best sensitivity for a wider region of oscillation parameter space

Arturo Fiorentini - FLASY2015 @ Colima, Mexico

July 1, 2015

0.

0.09 0.08

0.07

0.06

0.02

0.01

0.04 Run1-4 0.03 statistics

σ width

 $\sin^2 \theta_{23}^{23} + 50.02^{\pm}$

Expected precision on $\sin^2\theta_{23}$ as a function of accumulated statistics.

 $= 0^{\circ}$ (stat. only) = 0° (stat. + syst.)

 $=90^{\circ}$ (stat. only) $= 90^{\circ}$ (stat.

T2K goal

statistics

T2K near-future prospects

- T2K will continue to collect more data in V-mode and it already has twice the data presented in this talk
 - $\Box \bar{v}_{\mu}$ disappearance will be updated
 - $\blacksquare \bar{\nu}_{e}$ appearance analysis is underway
 - Stay tuned for these results to come soon at 2015 summer conferences

The Hyper-Kamiokande experiment

Hyper-Kamiokande

Letter of Intent arXiv:1412.4673v2[hep-ex]

27

- Next generation Mega-ton water Cherenkov detector
 - Proposed successor to Super-Kamiokande
 - x25 larger fiducial volume than Super-K

(1996 -)

50 (22.5) kton total (fiducial) volume 11k 20-inch PMTs 990 (560) kton total (fiducial) volume 99k 20-inch photosensors

Physics potential of Hyper-K

28

Hyper-K has various physics objectives:

- Long-baseline neutrino oscillation
 - **76%** coverage of δ_{CP} at 3σ
- Atmospheric neutrino oscillation
 - Opportunity to resolve mass hierarchy and ⁰₂₃ octant
- Proton decay sensitivity extended by a factor 10
 - p → $e^+ + \pi^0$: 5.7x10³⁴ years (3 σ)
 - p → v + K⁺: 1.2x10³⁴ years (3σ)
- Astrophysics observations
 - Supernova bursts, supernova relic neutrinos, indirect dark matter
- Focus of this talk is on long-baseline neutrino oscillation

Tokai to Hyper-Kamiokande

- Hyper-K candidate site is Tochibora mine in Kamioka
 - 8km south of Super-K
- Hyper-K will operate with same beam (J-PARC) and same off-axis angle (2.5°) as Super-K
- Current J-PARC beam power is ~350 kW (May 2015) but it will be upgraded to 750 kW in a few years

Hyper-Kamiokande detector

30

- Detector composed of 2 separated tanks
- 2x5 optically separated compartments comparable with Super-K
 - Detector performance of Hyper-K should be effectively the same as Super-K
- Uses well proven water Cherenkov detector technology
 - Many years of experience from Super-K

GEANT4 event displays

Oscillation measurements with Hyper-K

- Assumed 7.5MWx10⁷s $(1.56 \times 10^{22} \text{ PoT})$ exposure
- Equivalent to 10 years with 750 kW beam

- High statistics of neutrino events thanks to:
 - large fiducial mass
 - high power J-PARC neutrino beam
- Systematics errors are already well understood based on Super-K and T2K
- Hyper-K will be one of the most sensitive experiment to probe neutrino CP violation

Uncertainty on the expected number of events at Hyper-K (%)

1.2

	V mode		anti-V mode		(T2K 2014)	
	Ve	νμ	νe	νμ	Ve	νμ
Flux&ND	3.0	2.8	5.6	4.2	3.1	2.7
XSEC model	1.2	1.5	2.0	I.4	4.7	5.0
Far Det. +FSI	0.7	1.0	1.7	1.1	3.7	5.0
Total	3.3	3.3	6.2	4.5	6.8	7.6

Hyper-K sensitivity to δ_{CP}

Sensitivity to Θ_{23}

33

3.0 ^{×10⁻³}

2.8

2.6

2.4

2.2 0.4

0.45

 $\Delta m_{32}^2 [eV^2]$

- Huge improvements in Θ_{23} measurements with nominal 10 year exposure
- For non-maximal Θ_{23} , reactor constraint breaks octant degeneracy

Conclusions

- T2K results in neutrino mode has been presented
 - **\square** 7.3 σ discovery of v_e appearance
 - \blacksquare most precise measurement of Θ_{23} through v_{μ} disappearance
 - **Π** Hints of $\delta_{CP} = -\pi/2$ through the joint $v_{e/}v_{\mu}$ analysis with reactor constraint
- \square Also, T2K's first analysis of \bar{v}_{μ} disappearance
 - Limited by statistics
 - T2K already has more anti-neutrino data that will be released during the summer – stay tuned
- Hyper-Kamiokande is the proposed successor of Super-Kamiokande
- Together with the expected upgrade of the J-PARC neutrino beam can make world-leading measurements of CP violation and other neutrino oscillation parameters

Backups

Japan Proton Accelerator Research Complex

Flux model uncertainties

- Main component comes from hadron interactions model
- SK and ND280 fluxes are highly correlated
 - ND280 analysis can reduce systematic errors in SK

Interaction models

38

T2K uses NEUT to generate neutrino interactions in ND280 and SK

- CC-QE
 - $\mathbf{v}_{\mu}^{-} + \mathbf{n} \rightarrow \mu^{-} + \mathbf{p}$
 - Dominant at T2K energies
 - Neutrino energy reconstruction from muon kinematics only

CC-RES

 $\nabla_{\mu}^{-} + p \rightarrow \mu^{-} + p + \pi^{+}$

Pion could be missing due to intranuclear interactions and misidentified as CC-QE

Multi-nucleon (2p-2h) interactions

 $v_{\mu}^{-} + [np] \rightarrow \mu^{-} + p + p$

CCQE-like but different kinematics

Models are tuned to external data (MiniBoone and MINERvA)

Hyper-K timeline

T2K + Nova

40

- Ability to measure delta CP is greatly enhanced by incorporating data from Nova
 - Mainly because Nova's greater sensitivity to the mass hierarchy through matter effects

Arturo Fiorentini - FLASY2015 @ Colima, Mexico July 1, 2015

SK prediction systematics (v-mode)

		v_{μ} events	v_{e} events
Neutrino flux and	without ND280 comparison	21.8%	26.0%
cross section	with ND280 comparison	2.7%	3.1%
Difference of target material between near and far		5.0%	4.7%
Final or Secondary H	3.0%	2.4%	
Super-Kamiokande o	4.0%	2.7%	
total	without ND280 extrapolation	23.5%	26.8%
	with ND280 extrapolation	7.7%	6.8%

v_e appearance formula

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &= 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\Phi_{31}\left(1 + \frac{2a}{\Delta m_{31}^{2}}\left(1 - 2S_{13}^{2}\right)\right) \\ &+ 8C_{13}^{2}S_{12}S_{13}S_{23}\left(C_{12}C_{23}\cos\delta_{\mathrm{CP}} - S_{12}S_{13}S_{23}\right)\cos\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \\ &- 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta_{\mathrm{CP}}\sin\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \\ &+ 4S_{12}^{2}C_{13}^{2}\left(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta_{\mathrm{CP}}\right)\sin^{2}\Phi_{21} \\ &- 8C_{13}^{2}S_{13}^{2}S_{23}^{2}\left(1 - 2S_{13}^{2}\right)\frac{aL}{4E_{\nu}}\cos\Phi_{32}\sin\Phi_{31}, \end{split}$$

where $\Phi_{ji} = \Delta m_{ji}^2 L/4E_{\nu}$. The terms that include

$$a \equiv 2\sqrt{2}G_{\rm F}n_e E_{\nu} = 7.56 \times 10^{-5} \left[\rm eV^2\right] \left(\frac{\rho}{\rm [g\,cm^{-3}]}\right) \left(\frac{E_{\nu}}{\rm [GeV]}\right)$$

Near detector fit (v-mode beam)

- 43
- $\hfill\square$ Select v_{μ} candidates and classify them based on π content
 - Each sample is sensitive to different V energy ranges and interactions
- \square Fit the reconstructed (p_{μ} , $\cos \Theta_{\mu}$) distributions
 - Flux and cross section model parameters are adjusted and uncertainties reduced

Near detector fit (v-mode beam)

- \Box Select \bar{v}_{μ} and v_{μ} candidates and classify them based on number of tracks
 - **Large** v_{μ} contamination
 - Statistics is lower than V-mode beam
- \Box Fit the reconstructed (p_u , $\cos \Theta_u$) distribution
 - Flux and cross section model parameters are adjusted and uncertainties reduced

