The shape of (new) physics in *B* decays

J. Martin Camalich

FLASY2015

June 30, 2015

The flavor puzzle of the Standard Model

Standard Model $\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i \overline{\psi} \mathcal{B} \psi + hc.$ + $\psi_i \psi_i \psi_i \phi + hc. + D_i \phi$

The standard model explains very successfully flavor transitions

However it does not explain ...

- 3 families
- Hierarchy of the masses of the fermions
- Hierarchy in the mixing of the quark flavor
- Anarchy in the mixing of the lepton flavor

Answering these questions require physics beyond the SM

Approaches to the New Physics Flavor Puzzle

No New Physics at colliders (yet?) (Similar plots for ATLAS)

https://twiki.cern.ch/twiki/bin/view/CMSPublic/

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/

Lepton universality violation in B decays?

• " R_K anomaly" in $B \rightarrow K\ell\ell$ (FCNC)! LHCb PRL113(2014)151601

- Tension with SM ${\sim}2.6\sigma$
- Other anomalies in $b \rightarrow s \mu \mu$
 - Branching fractions $B \rightarrow K \mu \mu$, $B_s \rightarrow \phi \mu \mu$
 - Angular analysis $B \rightarrow K^* \mu \mu$
- Up to 4σ in global fits

Altmannshofer and Straub '14

- $R_K = 0.745^{+0.090}_{-0.074}$ (stat) ± 0.036 (syst)
- " $R_{D^{(*)}}$ anomaly" in $B \rightarrow D^{(*)}\ell\nu!$ (CC)

• **Excesses** observed at more than 4σ

	R(D)	$R(D^*)$
BaBar	$0.440 \pm 0.058 \pm 0.042$	$0.332 \pm 0.024 \pm 0.018$
Belle	$0.375^{+0.064}_{-0.063}\pm0.026$	$0.293^{+0.039}_{-0.037} \pm 0.015$
LHCb		$0.336 \pm 0.027 \pm 0.030$
Exp. average	0.388 ± 0.047	0.321 ± 0.021
SM expectation	0.300 ± 0.010	0.252 ± 0.005
Belle II, 50 ab^{-1}	± 0.010	± 0.005

T. Freytsis et al. 1506.08896

J. Martin Camalich (UCSD)

T. Kuhr (Belle) @ FPCP2015

(News) in *B*-physics

Effective field theory approach to $b \rightarrow s\ell\ell$ decays

• CC (Fermi theory):

• Wilson coefficients $C_k(\mu)$ calculated in P.T. at $\mu = m_W$ and rescaled to $\mu = m_b$

- Light fields active at long distances Nonperturbative QCD!
 - Factorization of scales m_b vs. Λ_{QCD} HQEFT, QCDF, SCET,...

Effective field theories: Bottom-up approach to new physics

Guiding principle

Construct the most general effective operators \mathcal{O}_k made of $\phi \in u, d, s, c, b, l, \nu, F_{\mu\nu}$ and subject to the strictures of $SU(3)_c \times U(1)_{em}$

- New physics manifest at the operator level through...
 - Different values of the Wilson coefficients $C_i^{\text{expt.}} = C_i^{\text{SM}} + \delta C_i$
 - New operators absent or very suppressed in the SM
 - * New chirally-flipped operators

$$\mathcal{O}_{7}^{\prime} = \frac{4G_{F}}{\sqrt{2}} \frac{e}{4\pi^{2}} \,\hat{m}_{b} \,\bar{s}\sigma_{\mu\nu} P_{L} F^{\mu\nu} b; \qquad \mathcal{O}_{\vartheta(10)}^{\prime} = \frac{4G_{F}}{\sqrt{2}} \frac{\alpha}{4\pi} \,\bar{s}\gamma^{\mu} P_{R} b \,\bar{\ell}\gamma_{\mu}(\gamma_{5})\ell$$

* 4 new scalar and pseudoscalar operators

$$\mathcal{O}_{\mathcal{S}}^{(\prime)} = \frac{4G_F}{\sqrt{2}} \frac{\alpha}{4\pi} \left(\bar{s} \mathcal{P}_{\mathcal{R},L} b \right) \left(\bar{\ell} \, \ell \right); \qquad \mathcal{O}_{\mathcal{P}}^{(\prime)} = \frac{4G_F}{\sqrt{2}} \frac{\alpha}{4\pi} \left(\bar{s} \mathcal{P}_{\mathcal{R},L} b \right) \left(\bar{\ell} \, \gamma_5 \, \ell \right)$$

* 2 new tensor operators

$$\mathcal{O}_{T(5)} = rac{4G_F}{\sqrt{2}} rac{lpha}{4\pi} \left(ar{s} \sigma^{\mu
u} b
ight) (ar{\ell} \, \sigma_{\mu
u} (\gamma_5) \ell).$$

► The Wilson coefficients can be complex and introduce new sources of CP

- But hold on...
 - ▶ No evidence of new-particles *on-shell* at colliders up to *E* ≃ 1 TeV...
 - \ldots except a scalar at $s \simeq$ 125 GeV that very much resembles the SM Higgs

Guiding principle (rewritten)

Construct the most general effective operators \mathcal{O}_k built with **all** the SM fields and subject to the strictures of $SU(3)_c \times SU(2)_L \times U(1)_Y$

Buchmuller et al.'86,Grzadkowski et al.'10

• For scalar and tensor operators $\Gamma = \mathbb{I}, \sigma_{\mu\nu}$ we only have:

$$\frac{1}{\Lambda^2} \underbrace{(\bar{e}_R \, \Gamma \, \ell_L^a)}_{Y=1/2} \underbrace{(\bar{q}_L^a \, \Gamma \, d_R)}_{Y=-1/2} \qquad \qquad \frac{1}{\Lambda^2} \varepsilon^{ab} \underbrace{(\bar{\ell}_L^b \, \Gamma \, e_R)}_{Y=-1/2} \underbrace{(\bar{q}_L^a \, \Gamma \, u_R)}_{Y=1/2}$$

• Furthermore:

$$(\bar{d}_j \sigma_{\mu\nu} P_R d_i)(\bar{\ell} \sigma^{\mu\nu} P_L \ell) = 0$$

Constraints in $b \rightarrow s\ell\ell$ up to $\mathcal{O}(v^2/\Lambda^2)$

- From 4 scalar operators to only 2!
- From 2 tensor operators to none!

Alonso, Grinstein, JMC, PRL113(2014)241802

$$\mathcal{B}_{sl} \simeq rac{G_F^2}{64\pi^3} au_{B_s} m_{B_s}^3 f_{B_s} |V_{tb}V_{ts}^*|^2 imes \left\{ |C_S - C_S'|^2 + |C_P - C_P' + 2rac{m_l}{m_{B_s}} (C_{10} - C_{10}')|^2
ight\}$$

- Decay is chirally suppressed: Very sensitive to (pseudo)scalar operators!
- Semileptonic decay constants f_{Ba} can be calculated in LQCD

FLAG averages Eur.Phys.J. C74 (2014) 2890

Updated predictions:

Bobeth et al. PRL112(2014)101801

$$\overline{\mathcal{B}}_{s\mu}^{\rm SM} = 3.65(23) \times 10^{-9} \ \overline{\mathcal{B}}_{s\mu}^{\rm expt} = 2.9(7) \times 10^{-9}$$

Phenomenological consequences $B_q \rightarrow \ell \ell$

$$\overline{R}_{ql} = \frac{\overline{\mathcal{B}}_{ql}}{\left(\overline{\mathcal{B}}_{ql}\right)_{\mathrm{SM}}} = \frac{1 + \mathcal{A}_{\Delta\Gamma}^{ll} y_q}{1 + y_q} \left(|\mathcal{S}|^2 + |\mathcal{P}|^2 \right),$$

De Bruyn et al. '12

$$S = \sqrt{1 - \frac{4m_l^2}{m_{B_q}^2}} \frac{m_{B_q}^2}{2m_l} \frac{C_s - C'_s}{(m_b + m_q)C_{10}^{SM}}, \qquad P = \frac{C_{10} - C'_{10}}{C_{10}^{SM}} + \frac{m_{B_q}^2}{2m_l} \frac{C_P - C'_P}{(m_b + m_q)C_{10}^{SM}}$$

• $B_q \rightarrow \ell \ell$ blind to the orthogonal combinations $C_S + C'_S$ and $C_P + C'_P$ Scalar operators unconstrained!

Phenomenological consequences $B_q \rightarrow \ell \ell$

$$\overline{R}_{ql} = \frac{\overline{\mathcal{B}}_{ql}}{\left(\overline{\mathcal{B}}_{ql}\right)_{\rm SM}} = \frac{1 + \mathcal{A}_{\Delta\Gamma}^{ll} \, y_q}{1 + y_q} \left(|\mathcal{S}|^2 + |\mathcal{P}|^2 \right),$$

$$S = \sqrt{1 - rac{4m_l^2}{m_{B_q}^2}} rac{m_{B_q}^2}{2m_l} rac{C_S - C_S'}{(m_b + m_q)C_{10}^{
m SM}}, \hspace{1cm} P = rac{C_{10} - C_{10}'}{C_{10}^{
m SM}} - rac{m_{B_q}^2}{2m_l} rac{C_S + C_S'}{(m_b + m_q)C_{10}^{
m SM}}$$

Λ_{NP} (95%C.L.) RGE of QCD+EW+Yukawas

Channels	${old s}\mu$	$d\mu$	se	de
$C_S^{(\prime)}(m_W)$	0.1	0.15	0.6	1.5
∧ [TeV]	79	130	36	49

Alonso, Grinstein, JMC, PRL113(2014)241802

Phenomenological consequences: $B \rightarrow K \ell \ell$

LHCb JHEP06(2014)133, JHEP05(2014)082, PRL111 (2013)112003,...

- Phenomenologically richer (3-body decay)
 - ▶ Decay rate is a function of dilepton invariant mass $q^2 \in [4m_{\ell}^2, (m_B m_K)^2]$
 - 1 angle: Angular analysis sensitive only to scalar and tensor operators Bobeth et al., JHEP 0712 (2007) 040
- However: Very complicated nonperturbative problem
 - ► **3** hadronic form factors (*q*²-dependent functions)
 - "Non-factorizable" contribution of 4-quark operators+EM current

Phenomenological consequences: $B \rightarrow K \ell \ell$

• Then in the SM for $q^2 \gtrsim 1 \ {
m GeV}^2$

$$R_{\mathcal{K}} \equiv \frac{\mathrm{Br}\left(B^+ \to \mathcal{K}^+ \mu^+ \mu^-\right)}{\mathrm{Br}\left(B^+ \to \mathcal{K}^+ e^+ e^-\right)} = 1 + \mathcal{O}(10^{-4})$$

The R_K anomaly

$$\langle R_K \rangle_{[1,6]} = 0.745^{+0.090}_{-0.074}(\text{stat}) \pm 0.036(\text{syst})$$

LHCb, Phys.Rev.Lett.113(2014)151601

- 2.6 σ discrepancy with the SM $\langle R_K \rangle_{[1,6]} = 1.0003(1)$ • $SU(2)_L \times U(1)_Y$:
 - No tensors
 - Scalar operators constrained by $B_s \rightarrow \ell \ell$ alone:

 $\textit{R}_{\textit{K}} \in [0.982, 1.007]$ at 95% CL

The effect must come from
$$\mathcal{O}_{9,10}^{(\prime)}$$

$${\it R_K}\simeq 0.75$$
 for $\delta C_9^\mu = -\delta C_{10}^\mu = -0.5$

Alonso, Grinstein, JMC, PRL113(2014)241802

 $ar{B}
ightarrow ar{K}^* \ell^+ \ell^-$

CDF	100 PRL106(2011)161801
BaBar	150 PRD86(2012)032012
Belle	200 PRL103(2009)171801
CMS	400 PLB727(2013)77
ATLAS	500 arXiv:1310.4213
LHCb (µ)	3000 (3 fb ⁻¹) LHCb-CONF-2015-002
LHCb (<i>e</i>)	128 ([0.0004, 1] GeV²) JHEP 1504(2015)064

• 4-body decay

$$\frac{d^{(4)}\Gamma}{dq^2 d(\cos \theta_l) d(\cos \theta_k) d\phi} = \frac{9}{32\pi} (l_1^8 \sin^2 \theta_k + l_1^c \cos^2 \theta_k)$$

$$+ (l_2^8 \sin^2 \theta_k + l_2^c \cos^2 \theta_k) \cos 2\theta_l + l_3 \sin^2 \theta_k \sin^2 \theta_l \cos 2\phi$$

$$+ l_4 \sin 2\theta_k \sin 2\theta_l \cos \phi + l_5 \sin 2\theta_k \sin \theta_l \cos \phi + l_6 \sin^2 \theta_k \cos \theta_l$$

$$+ l_7 \sin 2\theta_k \sin \theta_l \sin \phi + l_6 \sin 2\theta_k \sin 2\theta_l \sin \phi + l_9 \sin^2 \theta_k \sin^2 \theta_l \sin 2\phi_l$$

• Large-recoil region (low q^2)

- ► Heavy to collinear light quark ⇒ QCDf or SCET (power-corrections)
- Dominant effect of the photon pole

Charmonium region

- Dominated by long-distance (hadronic) effects
- Starting at the perturbative $c\bar{c}$ threshold $q^2 \simeq 6 7 \text{ GeV}^2$

• Low-recoil region (high q^2)

- Heavy quark EFT + Operator Product Expansion (OPE) (duality violation)
- Dominated by semileptonic operators

The P'_5 anomaly at low q^2 (1 fb⁻¹)

J. Martin Camalich (UCSD)

(News) in B-physics

The P'_5 anomaly: New Physics?

CERN COURIER

Nov 20, 2013

LHCb and theorists chart a course for discovery

QUESTION: Do we really understand the hadronic effects?

Connecting theory to experiment: The helicity amplitudes

• Helicity amplitudes $\lambda = \pm 1, 0$

$$H_V(\lambda) = -iN\Big\{C_9 \tilde{V}_{L\lambda} - \frac{m_B^2}{q^2}\Big[\frac{2 \hat{m}_b}{m_B}C_7 \tilde{T}_{L\lambda} - 16\pi^2 h_\lambda\Big]\Big\},$$

$$H_{A}(\lambda) = -iNC_{10}\tilde{V}_{L\lambda}, \qquad H_{P} = iN\frac{2m_{l}\hat{m}_{b}}{q^{2}}C_{10}\left(\tilde{S}_{L} + \frac{m_{s}}{m_{b}}\tilde{S}_{R}\right)$$

 C_9 is exposed to various hadronic backgrounds

Hadronic form factors

7 independent q^2 -dependent nonperturbative functions

Bharucha et al.JHEP 1009 (2010) 090, Jäeger and JMC JHEP1305(2013)043

• "Non factorizable" contribution

$$h_\lambda \propto \int {m d}^4 {m y} e^{i q \cdot {m y}} \langle ar K^* | j^{ ext{em,had},\mu}({m y}) {m \mathcal H}^{ ext{had}}(0) | ar B
angle \epsilon^*_\mu$$

Calculable in QCDf at $q^2 \lesssim 6 \ {
m GeV}^2$

Beneke et al.'01

J. Martin Camalich (UCSD)

(News) in *B*-physics

- Analysis of the angular observables of $B \to K^* \mu \mu$ with 1 fb⁻¹
- Use only EFT for QCD (SCET)+model independent constraints

Jäger and JMC, arXiv:1412.3183

• LHCb just released preliminar angular analysis with 3 fb⁻¹ LHCb-CONF-2015-002

- 3.6σ using "QCD form factors" (LCSRs)
- Ongoing (QCD) model-independent analysis
- Effect depends on *q*²? Straub at Moriond'15 Stay tuned! Turbulences ahead!

The shape of the (new) physics

Let's assume R_K and P'_5 are NP $\delta C_9^\mu = -\delta C_{10}^\mu = -0.5$ $\delta C_9^\varrho = \delta C_{10}^\varrho = 0$ Hiller and Schmaltz'14, Straub *et al*'14'15, Ghosh *et al*'14,...

• Only 2 dim-6 $SU(2)_L \times U(1)_Y$ -invariant operators

$$Q^{(1)}_{\ell q} = rac{1}{\Lambda^2} (ar q_L \gamma^\mu q_L) (ar \ell_L \gamma_\mu \ell_L) \qquad \qquad Q^{(3)}_{\ell q} = rac{1}{\Lambda^2} (ar q_L \gamma^\mu ec q_L) \cdot (ar \ell_L \gamma_\mu ec \ell_L)$$

Lepton Universality Violation ⇒ Lepton flavor Violation?

Operators with *SU*(2)_{*L*} **quark doublets**

- FCNC with neutrinos and/or up quarks
- V A Contributions CC $(b \rightarrow c \ell \bar{\nu}, t \rightarrow b \bar{\ell} \nu ...)$

Lepton flavor symmetries in the SM

$$SU(3)_{\ell} \times SU(3)_{e} \times U(1)_{L} \times U(1)_{e-\ell}$$
, $\ell_{L} \sim (3,1)_{1,-1}$, $e_{R} \sim (1,3)_{1,1}$

Broken **only** by the Yukawas in the SM

$$-\mathcal{L}_{Y} \supset \epsilon_{e} \, \bar{\ell}_{L} \, \hat{Y}_{e} e_{R} H + h.c., \qquad (Y_{e} = \epsilon_{e} \, \hat{Y}_{e}, \, \operatorname{tr}(\hat{Y}_{e} \, \hat{Y}_{e}^{\dagger}) = 1)$$

 $U(1)_{\tau} \times U(1)_{\mu} \times U(1)_{e}$ survives

However: Any new source of flavor violation will lead to LF violation...

Glashow et al. PRL114(2015)091801, Bhattacharya et al. arXiv:1505.04692, Lee et al. arXiv:1505.04692

Lepton flavor symmetries in the SM

$$SU(3)_{\ell} imes SU(3)_{e} imes U(1)_{L} imes U(1)_{e-\ell}, \qquad \ell_{L} \sim (3,1)_{1,-1}, \qquad e_{R} \sim (1,3)_{1,1}$$

Broken only by the Yukawas in the SM

$$-\mathcal{L}_{Y} \supset \epsilon_{e} \, \bar{\ell}_{L} \, \hat{Y}_{e} e_{R} H + h.c., \qquad (Y_{e} = \epsilon_{e} \, \hat{Y}_{e}, \, \operatorname{tr}(\hat{Y}_{e} \, \hat{Y}_{e}^{\dagger}) = 1)$$

 $U(1)_{\tau} \times U(1)_{\mu} \times U(1)_{e}$ survives

However: Any new source of flavor violation will lead to LF violation...

Glashow et al. PRL114(2015)091801, Bhattacharya et al. arXiv:1505.04692, Lee et al. arXiv:1505.04692

Lepton flavor symmetries in the SM

$$SU(3)_{\ell} \times SU(3)_{e} \times U(1)_{L} \times U(1)_{e-\ell}$$
, $\ell_{L} \sim (3,1)_{1,-1}$, $e_{R} \sim (1,3)_{1,1}$

Broken only by the Yukawas in the SM

$$-\mathcal{L}_{\mathsf{Y}} \supset \epsilon_{e} \, \bar{\ell}_{L} \, \hat{Y}_{e} e_{R} H + h.c., \qquad (Y_{e} = \epsilon_{e} \, \hat{Y}_{e}, \, \operatorname{tr}(\hat{Y}_{e} \, \hat{Y}_{e}^{\dagger}) = 1)$$

 $U(1)_{\tau} \times U(1)_{\mu} \times U(1)_{e}$ survives

However: Any new source of flavor violation will lead to LF violation...

Glashow et al. PRL114(2015)091801, Bhattacharya et al. arXiv:1505.04692, Lee et al. arXiv:1505.04692

• ... unless it is "aligned" with the Yukawas (e.g. Crivellin et al. PRL114(2015)151801, Celis et al. arXiv:1505.03079)

Minimal flavor violation

 The only source of lepton flavor structure in the new physics are the Yukawas

 Chivukula et al87s, D'Ambrosio et al02, Cirigliano et al05

 Introduce spurions
$$\hat{Y}_e \sim (3, \overline{3})$$
 and $\epsilon_e \sim (-1, 1)$

Alonso, Grinstein and JMC arXiv:1505.05164

$$\mathcal{L}^{\mathrm{NP}} = \frac{1}{\Lambda^2} \left[(\bar{q}'_L C_q^{(1)} \gamma^{\mu} q'_L) (\bar{\ell}'_L \hat{\gamma}_e \hat{\gamma}_e^{\dagger} \gamma_{\mu} \ell'_L) + (\bar{q}'_L C_q^{(3)} \gamma^{\mu} \vec{\tau} q'_L) \cdot (\bar{\ell}'_L \hat{\gamma}_e \hat{\gamma}_e^{\dagger} \gamma_{\mu} \vec{\tau} \ell'_L) \right]$$

Hierarchic leptonic couplings (no LFV) Interactions $\sim \delta_{\alpha\beta} m_{\alpha}^2/m_{\tau}^2$

O Boost of 10^3 in $b \rightarrow s \tau \tau$!

$$\mathcal{B}(B
ightarrow K au^- au^+) \simeq 2 imes 10^{-4}, \qquad \mathcal{B}(B^+
ightarrow K^+ au au)^{ ext{expt}} < 3.3 imes 10^{-3}$$

1

2 Very strong constraint from $b \rightarrow s \nu_{\tau} \nu_{\tau}$

Sizable effects in CC tauonic *B* decays!

$$\mathsf{R}_{D^{(*)}} = \frac{\mathcal{B}(\bar{B} \to D^{(*)} \tau \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^{(*)} \mu \bar{\nu}_{\mu})}$$

Excess observed at more than 4σ

	SM	Expt.		
R_D	0.300(10)	0.388(47)		
R_{D^*}	0.252(5)	0.321(21)		

Alonso et al. arXiv:1505.05164

Survey of leptoquark models

• Scalar LQ • '

$$\begin{split} \mathcal{L}_{\Delta} &= \left(y_{\ell u} \, \bar{\ell}_L \, u_R + y_{eq} \, \bar{\mathbf{e}}_R \, i \tau_2 \, q_L \right) \Delta_{-7/6} \\ &+ y_{\ell d} \, \bar{\ell}_L \, d_R \, \Delta_{-1/6} + \left(y_{\ell q} \, \bar{\ell}_L^C i \tau_2 \, q_L + y_{eu} \bar{\mathbf{e}}_R^c \, u_R \right) \Delta_{1/3} \\ &+ y_{ed} \bar{\mathbf{e}}_R^c \, d_R \, \Delta_{4/3} + y_{\ell q}' \, \bar{\ell}_L^C i \tau_2 \, \vec{\tau} q_L \cdot \vec{\Delta}_{1/3}' \end{split}$$

$$\begin{split} \mathcal{L}_{V} &= \left(g_{\ell q} \, \bar{\ell}_{L} \gamma_{\mu} q_{L} + g_{ed} \, \bar{e}_{R} \gamma_{\mu} d_{R} \right) \, V_{-2/3}^{\mu} \\ &+ g_{eu} \, \bar{e}_{R} \gamma_{\mu} u_{R} \, V_{5/3}^{\mu} + g_{\ell q}^{\mu} \, \bar{\ell}_{L} \gamma_{\mu} \, \vec{\tau} q_{L} \cdot \vec{V}_{-2/3}^{\prime \mu} \\ &+ \left(g_{\ell d} \, \bar{\ell}_{L} \gamma_{\mu} d_{R}^{\rho} + g_{eq} \, \bar{e}_{R} \gamma_{\mu} q_{L}^{c} \right) \, V_{-5/6}^{\mu} + g_{\ell u} \, \bar{\ell}_{L} \gamma_{\mu} u_{R}^{\rho} \, V_{1/6}^{\mu} \end{split}$$

Büchmuller and Wyler'87, Davidson et al.'94,...

• Assume $M_{LQ} \gg v$: Only $V^{\mu}_{-2/3}$ can work with (our) MFV! Alonso *et al.* arXiv:1505.05164

LQ	$C_{\ell q}^{(1)}$	$C_{\ell q}^{(3)}$	$C_{\ell d}$	C_{qe}	C_{ed}	$C_{\ell edq}$	$C_{lequ}^{(1)}$	$C_{lequ}^{(3)}$	C_{eu}	$C_{\ell u}$
$\Delta_{1/3}$	$\frac{y_{\ell q}^{\beta i, A}(y_{\ell q}^{\alpha j, A})^*}{4M_{\ell q}^2}$	$-\frac{y_{\ell q}^{\beta i,A}(y_{\ell q}^{\alpha j,A})^*}{4M_{-1}^2}$	0	0	0	0	$-\frac{y_{eu}^{\beta i,A}(y_{\ell q}^{\alpha j,A})^{*}}{2M^{2}}$	$\frac{y_{eu}^{\beta i,A}(y_{\ell q}^{\dot{\alpha} j,A})^*}{8M^2}$	$\frac{y_{eu}^{\beta i,A}(y_{eu}^{\alpha j,A})^*}{2M^2}$	0
$\vec{\Delta}_{1/3}$	$\frac{3y_{\ell q}^{(j)\ell_{\ell},\Lambda}(y_{\ell q}^{(0,j,\Lambda})^{*})}{4M^{2}}$	$\frac{y_{\ell q}^{,,,\alpha}(y_{\ell q}^{,\alpha,j,\alpha})^*}{4M^2}$	0	0	0	0	0	0	0	0
$\Delta_{7/6}$	0	0	0	$-\frac{y_{eq}^{\alpha i,A}(y_{eq}^{\beta j,A})^{*}}{2M^{2}}$	0	0	$-\frac{y_{\ell u}^{\alpha i,A}(y_{eq}^{\beta j,A})^{*}}{2M^{2}}$	$-\frac{y_{\ell u}^{\alpha t,A}(y_{eq}^{\beta j,A})^{*}}{8M^{2}}$	0	$-\frac{y_{\ell_{u}}^{\alpha i, A}(y_{\ell_{u}}^{\beta j, A})^{*}}{2M^{2}}$
$\Delta_{1/6}$	0	0	$-\frac{y_{\ell d}^{\alpha_l A}(y_{\ell d}^{\rho_J,A})^*}{2M^2}$	0	0	0	0	0	0	0
$\Delta_{4/3}$	0	0	0	0	$\frac{y_{ed}^{\beta i A}(y_{ed}^{\alpha j, A})^*}{2M^2}$	0	0	0	0	0
$V_{2/3}^{\mu}$	$-\frac{g_{\ell q}^{\alpha i,A}(g_{\ell q}^{\beta j,A})^*}{2M^2}$	$-\frac{g_{\ell q}^{\alpha i,A}(g_{\ell q}^{\beta j,A})^*}{2M^2}$	0	0	$-\frac{g_{ed}^{\alpha i,A}(g_{ed}^{\beta j,A})^*}{M^2}$	$\frac{2g_{\ell q}^{\alpha i,A}(g_{ed}^{\beta j,A})^*}{M^2}$	0	0	0	0
$\vec{V}^{\mu}_{2/3}$	$-\frac{3g_{\ell q}^{\prime \alpha i, A}(g_{\ell q}^{\prime \beta j, A})^{*}}{2M^{2}}$	$\frac{g_{\ell q}^{\prime \alpha i, A} (g_{\ell q}^{\prime \beta j, A})^*}{2M^2}$	0	0	0	0	0	0	0	0
$V^{\mu}_{5/6}$	0	0	$\frac{g_{\ell d}^{\beta i,A}(g_{\ell d}^{\alpha j,A})^*}{M^2}$	$\frac{g_{eq}^{\beta i,A}(g_{eq}^{\alpha j,A})^*}{M^2}$	$\frac{2g_{\ell d}^{\alpha j,A}(g_{eq}^{\beta i,A})^*}{M^2}$	0	0	0	0	0
$V^{\mu}_{5/3}$	0	0	0	0	0	0	0	0	$-\frac{g_{eu}^{\alpha iA}(g_{eu}^{\beta j,A})^*}{M^2}$	0
$V^{\mu}_{1/6}$	0	0	0	0	0	0	0	0	0	$\frac{g_{\ell u}^{\alpha i \ A}(g_{\ell u}^{\beta j})^*}{M^2}$

TABLE I: Matching of the tree-level LQ contributions to the sixth-dimensional four-fermion operators of the SMEFT.

Dressing the chosen one ...

$$\Delta \mathcal{L}_{V} = \left(g_{q} \bar{\ell}_{L} \hat{Y}_{e} \gamma_{\mu} q_{L} + g_{d} \varepsilon_{e}^{*} \bar{e}_{R} \gamma_{\mu} d_{R} \right) V_{-2/3}^{\mu} + \text{h.c.}$$

Davidson et al. JHEP 1011 (2010) 073, Grinstein et al. JHEP 1011 (2010) 067, Alonso et al. arXiv:1505.05164

- $V^{\mu}_{-2/3}$ flavored under $SU(3)_{\ell} \times SU(3)_{e} \times U(1)_{L} \times U(1)_{\ell-e}$
 - $V^{\mu}_{-2/3} \sim (3,1)_{1,-1}$
 - g_{q}^{i} , $i \equiv d$, s, b vector in quark-flavor space
 - g_d contribution naturally suppressed by $|\varepsilon_e|$
 - $b \rightarrow s \mu \mu$ anomalies

$$\frac{\alpha_{e}}{\pi}\lambda_{ts}\delta C_{9}^{\mu}=-\frac{v^{2}}{M^{2}}\left(\frac{m_{\mu}}{m_{\tau}}\right)^{2}(g_{q}^{s})^{*}g_{q}^{t}$$

Hiller et al. PRD90(2014)054014, Gripaios

et al. JHEP1505(2015)006, Sahoo et al. PRD91(2015)094019,

Medeiros Varzielas et al arXiv:1503.01084, Becirevic

et al. arXiv:1503.09024

Tauonic charged currents

$$\epsilon_{L}^{kj, au} = rac{1}{2} rac{V^2}{M^2} \sum_{k} rac{V_{ik}}{V_{ij}} (g_q^k)^* g_q^j$$

Sakaki et al. PRD88(2013)9,094012, arXiv:1412.3761

Collider constraints

ATLAS Exotics Searches* - 95% CL Exclusion

Status: March 2015

~	Scalar LQ 1 st gen	2 e	≥ 2 j	-	1.0	LQ mass	660 GeV
2	Scalar LQ 2 rd gen	2μ	≥2j		1.0	LQ mass	685 GeV
	Scalar LQ 3 rd gen	1 е, µ, 1 т	1 b, 1 j	-	4.7	LQ mass	534 GeV

PRL110(2013)081801, PLBB739 (2014)229 ...

JHEP 1306 (2013) 033, ...

• CMS Searched for vector (scalar) LQs using 4.8 fb⁻¹ (19.7 fb⁻¹)

• Vector LQs with 1/2 coupling to τ b: $M_{LQ} \gtrsim 600$ GeV at 95% CL

- LQ mass set at M_{LQ} = 750 GeV
- Perturbativity bound: $g_q^i \leqslant \sqrt{4\pi}$
- Interplay between LHC searches, FCNC and CC *b* decays

Can be tested model-independently with top decays

$$\mathcal{L}_{\text{c.c.}} \supset -\frac{G_F V_{lb}}{\sqrt{2}} (1 + \epsilon_L^{tb}) (\bar{b} \gamma^{\mu} t_L) (\bar{\nu}_L \gamma_{\mu} \tau) \quad \text{with} \quad \epsilon_L^{tb,\tau} \simeq \frac{1}{2} \frac{v^2}{M^2} |g_q^b|^2$$

• CDF measured $R_{t\tau} = \frac{\Gamma(t \to \tau \nu q)}{\Gamma(t \to \tau \nu q)^{SM}} < 5.2$ at 95% C.L. PLB639(2006)172

Semileptonic top decays correlated with LUV anomalies!

Discussion of Z' models: Avelino's talk

Conclusions

EFT approach very efficient method to investigate anomalies

- Connect low- and high-energy information in a systematic fashion
- Constraints between low-energy operators
 - * 2 out of 4 independent scalar operators and no tensors in $d_i \rightarrow d_j \ell \ell$
- 2 The $b \rightarrow s\ell\ell$ anomalies
 - ▶ $B_q \rightarrow \ell \ell$
 - R_K in $B \to K\ell\ell$
 - The P'_5 anomaly in $B \to K^* \mu \mu$

The shape of new physics

- Left-handed-left-handed scenario seems favored
- LFV or MLFV? Both scenarios have testable consequences
- Impact on charged current tauonic B decays: The R_{D(*)} anomalies

With the LHC run2 very exciting times ahead!