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Minimal Flavor Violation



Motivation, rationale, MFV

• New physics is required to explain the fine tuning puzzle.

• It must involve new dynamics that become relevant at an energy scale Λ. This new 
dynamics likely involves new fields, new particles and  new interactions.

• The new dynamics scale Λ must not be much higher than the electroweak scale (the 
higher the scale the more severe the fine tuning).

• Quarks and leptons contribute to quadratic divergence in higgs mass

• divergences depend on quark/lepton masses

• new dynamics must have flavor dependence

• New flavor dependent dynamics at a scale ΛF not far above the electroweak scale  is a 
disaster: either

• ΛF ∼106-7 GeV, or

• fine tune coefficients of dangerous operators (those giving large flavor changing 
neutral “currents”)

• Unless: avoid large FCNC automatically “⇒” Minimal Flavor Violation 



• MFV is NOT the only possibility

• e.g.,  NMFV and generally theories with quark mass suppression

• But MFV is fairly minimal

• good if you want to estimate the minimal effect of this new physics in flavor changing processes

• more predictive, patterns 

• Let’ s gain some understanding by example. Consider KL → πνν
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• Premise: Unique source of flavor braking

• Quark sector in SM, in absence of masses has large flavor (global) symmetry: 

• In SM, symmetry is only broken by Yukawa interactions, parametrized by couplings 
YU and YD

Normalize:  
Breaking of U(1)2 characterized by ϵU, ϵD 

• MFV: all  breaking of GF  must transform as these

• When going to mass eigenstate basis, all mixing is parametrized by CKM and GIM is 
automatic

• Approach: via effective field theory: at low energies only SM fields

Minimal Flavor Violation (MFV)

tr(Ŷ †
U ŶU ) = tr(Ŷ †

DŶD) = 1

�LYuk = Hq̄LYUuR + H̃q̄LYDdR

= ✏UHq̄LŶUuR + ✏DH̃q̄LŶDdR

GF = SU(3)3 ⇥ U(1)3

Chivukula and Georgi, Phys.Lett. B188 (1987) 99
D'Ambrosio et al Nucl.Phys. B645 (2002) 155-187



How does this work?
Consider KL � ⇥��̄

Recall, GF breaking from:

Implications of GF? use spurion method:

Effective lagrangian

among the operators have, for example

In mass basis
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Digression:

Minimal Lepton Flavor Violation
and

Lepton (non)-universality



Minimal Lepton Flavor Violation
• Extension of MFV to lepton sector

• Need assumption on origin of neutrino masses: Dirac vs Majorana

• In charged lepton sector 

• Ignoring neutrino masses (small!), a symmetry transformation

 

• Unbroken symmetry

Flavor conservation without universality! (caveat, up to neutrino “Yukawas”)

`L ! ei✓`V``L

eR ! ei✓eVeeR

ŶE ! V`ŶEV
†
e
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GF = SU(3)2 ⇥ U(1)2
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†
e =

p
2

v|✏E |
diag(me,mµ,m⌧ )

U(3)2 ! U(1)e ⇥ U(1)µ ⇥ U(1)⌧



Application: RK anomaly:

predictivity in quark flavor space increases:
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u ⌦ Ŷe. (3.8)

where with our normalization |"d|2 = y2d + y2s + y2b and |"u|2 = y2u + y2c + y2t . Note that the

symmetry argument dictating insertions of " naturally suppresses scalar operators with

respect to the current-current type of 4 fermion operators. On the other hand note that the

operator’sQed, Q`d contributions to b ! s transitions, whose quark-flavor coe�cients would

be Ŷ †
d ŶuŶ

†
u Ŷd, are suppressed with respect to operators with left-handed quark currents

by a factor ms/mb. Finally we shall also note that the operators Q`q do induce neutrino

flavor violation, this however is much less constrained than charged lepton flavor violation,

specially for a four fermion operator that involves the b quark.

4 Experimental data

We describe in this section the experimental data that is useful for the discussion of the

scenarios with LUV in the MFV benchmarks described above.

4.1 Rare exclusive Bd,s (semi-)leptonic decays

4.1.1 The RK anomaly

The LHCb measured the following lepton-universality ratio of the B+ ! K+`` decay in

the bin q2 2 [1, 6]GeV2,

RK ⌘ B (B+ ! K+µµ)

B (B+ ! K+ee)
= 0.745+0.090

�0.074(stat)± 0.036(syst). (4.1)

The hadronic matrix elements cancel almost exactly in this ratio and RK is predicted to

be approximately equal to 1 in the SM [2]. Therefore, a confirmation of this observation,

which currently poses a 2.6� discrepancy with the SM, would imply a clear manifestation

of NP and LUV. Di↵erent theoretical analyses show that this e↵ect must be contained in

the semileptonic operators O(0)
9,10 of the low-energy Lagrangian [23–27]. In the context of

the SMEFT, the (pseudo)scalar ones are ruled out by the branching fraction of Bs ! ``

(see below) while tensor operators of dimension 6 mediating down-type quark transitions

are forbidden by the SU(2)L ⇥ U(1)Y symmetry [23].

In the absence of the (pseudo)scalar and tensor contributions and neglecting, for the
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where f
+

is a (q2-dependent) hadronic form factor and TK is a q2-dependent function

accounting for the (lepton universal) contribution of a virtual photon to the decay [2, 70].
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†
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LHCb:

There are claims that violation to lepton universality implies
(unacceptably large) lepton flavor violation

Glashow, Guadagnoli & Lane, PRL114, 091801 (2015) 

With MLFV lepton flavor violation is controlled by neutrino “Yukawas” (much as in SM+neutrinos)
while lepton flavor violation is controlled by charged lepton Yukawas

LHCb: PRL113, 151601 (2014) 

Alonso, BG, Martin Camalich, arXiv:1505.05164

4-fermion operators inducing b → sll 

quantify deviations from the SM. The Lagrangian in eq. (2.5) together with that in eq. (2.1)

with the addition of the operators in eqs. (2.3-2.4) constitute the most general low energy

Lagrangian that describes B-meson (semi-)leptonic decays with left-handed neutrinos. 1

2.2 The SM e↵ective field theory

If the relevant mass scale of NP, ⇤, is larger than the electroweak vev, we can integrate out

the new particles in the unbroken phase and obtain operators explicitly invariant under the

SM gauge group: SU(3)c⇥SU(2)L⇥U(1)Y . The e↵ective field theory built with the most

general set of operators will be referred to as the E↵ective Field Theory of the Standard

Model (SMEFT) and relies on the expansion on the ratio of the weak scale v over the high

energy scale ⇤. The first terms in this expansion are dimension five [51] and dimension

six operators [52, 53]. A particular advantage of the SMEFT is that it allows to treat a

wide variety of phenomena spanning di↵erent energy regimes, from Higgs physics to kaon

decays, in a systematic and model-independent fashion. In the following, we assume that

the electro-weak symmetry breaking is linearly realized, meaning that the Higgs doublet

is treated as an elementary set of scalar fields. The non-linear realization would imply a

larger set of operators at leading order [54], breaking the SU(2)L⇥U(1)Y relations of [23].

The contributions that preserve lepton number are, at leading order, operators of

dimension six, L
NP

= 1

⇤

2

P
iCiQi, and the operators contributing to (semi-)leptonic

processes at low energies are of the Higgs-current times fermion-current or four-fermion

type [53]. Those containing a Higgs current nonetheless induce, at the B-meson scale and

for neutral-current decays either QFV or LUV but not both in the same operator at lead-

ing order, so we will neglect them here. The four-fermion operators inducing B-meson

(semi-)leptonic rare decays are:

Q
(1)

`q =(q�µqL)(¯̀�µ`L) Q
(3)

`q =(q~⌧�µqL) · (¯̀~⌧�µ`L)
Q`d =(d̄�µdR)(¯̀�µ`L) Qqe =(q�µqL)(e�

µeR)

Qed =(d̄R�
µdR)(e�µeR) Q`edq =(¯̀LeR)(dRq)+h.c. (2.6)

where color and weak-isospin indices are omitted, ⌧ I stand for the Pauli matrices in SU(2)L-

space, q and ` are the quark and lepton doublets respectively, q = (uL, dL) and ` = (⌫L, lL)

and eR and dR are the right-handed charged leptons and down-type quarks. Contributions

to charged-current or up-quark flavor-neutral decays can also be generated by:

Q
(1)

lequ =(¯̀eR)(qLuR) + h.c. Q
(3)

lequ =(¯̀�µ⌫eR)(qL�
µ⌫uR) + h.c.

Qeu =(e�µeR)(ū�
µuR) Q`u =(¯̀�µ`)(ū�

µuR) (2.7)

where uR stands for up-type right-handed quarks and flavor indices have also been omitted

for brevity. In general we will use greek letters for lepton flavor indices and latin letters

for quark flavor indices, using the notation: (Q(1)

`q )↵�,ij = (qj�µqiL)(
¯̀↵�µ`�). Each operator

1Note that similar operators with right-handed neutrinos do not interfere with the SM in the total decay

rate (summed over final lepton polarizations). Therefore, in this case, the dependence on the corresponding

NP Wilson coe�cients is quadratic instead of linear [50].
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†
u ⌦ ŶeŶ

†
e , C

(3)

`q =c
(3)

`q ŶuŶ
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Coefficients constrained by MFV+MFLV

Scalar operator additionally suppressed! More details  → Jorge Martin Camalich tomorrow 

http://arxiv.org/abs/1505.05164
http://arxiv.org/abs/1505.05164


Gauging Flavor



• Black holes: No global symmetry (other than accidental)

• If we insist: how do we make sense of transforming Yukawas?

• Spurions: VEVs of fields:

under 

and Yukawa coupling constants are 

• New Problems

1.Goldstone’ s theorem ⇒ 8+8+8 Nambu-Goldstone Bosons ⇒ FCNC disaster

2.Renormalizability?                                          are operators of dimension 5

• Solution to problem 1: gauge GF

• New Problems:

i. Anomalies: GF3 and GF2 × U(1)Y

ii. Invisibility (high scale):  next slide 

iii.Renormalizability (problem 2) still

Issues

YU = (3̄, 3, 1)

YD = (3̄, 1, 3)

hYU i, hYDi,

Hq̄LYUuR, H̃q̄LYDdR,

GF = SU(3)q ⇥ SU(3)u ⇥ SU(3)d introduce new fields

12/14 Unnamed Doc (12/14)2014-02-23 17:25:00



“Invisibility”

Massive vector bosons mediate FCNC

Masses: MV ⇠ ghYU,Di

12/14 Unnamed Doc (12/14)2014-02-23 17:25:00

K0-mixing:

⇠ 1

hYU,Di2 (s̄d)(s̄d)

) hYU,Di & 105 TeV

And this is for the light generations. Expect much higher scales for heavy generations!

Hence “invisible.”



And then a miracle happens...

The minimal anomaly free extension of the SM gives

1.Renormalizable couplings

2.Inverted hierarchy MV ⇠ 1

yU,D

where yU,D are the usual Yukawa couplings 

so that if                              for mediators among light generations, we can haveMV ⇠ 105 TeV

MV ⇠ mu

mt
105 TeV ⇠ few TeV

for mediators among heaviest generations



I am going to show you a model as a table of fields and their transformation properties
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When I see this in talks it induces this response 
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I am going to show you a model as a table of fields and their transformation properties

When I see this in talks it induces this response 

I promise it is not so bad... 



In the rest of the paper we give the details on how the mechanism works, we will discuss where the

strongest bounds on the model come from and possible signatures at hadron colliders. For definiteness

we will focus on the quark sector, gauging the full flavor group and considering mainly the minimal

set of flavon fields, although the same mechanism can easily be applied to more general situations.

2 Inverted Hierarchies From Anomaly Cancellation

In the absence of Yukawas, focusing on the quark sector, the SM enjoys at the classical level the global

symmetry

U(3)QL ⌦ U(3)UR ⌦ U(3)DR , (2.1)

where QL, UR and DR transform as fundamentals.

We assume this to be an exact symmetry of nature. In order to allow Yukawa couplings the flavor

symmetry should be broken spontaneously by the vacuum. This can be most simply realized by the

VEVs of two bifundamentals flavon fields transforming as

Yu = (3̄, 3, 1) ,

Yd = (3̄, 1, 3) .
(2.2)

In general the VEVs of these fields, while related, should not be confused with the Yukawa matrices,

as functions of Yu,d may have equal transformation properties. Indeed this will be the crucial feature

of our model. To avoid problematic flavor violating GBs, the symmetry should be gauged. Within the

SM the gauging of the SM flavor symmetry (2.1) is anomalous due to cubic and mixed hypercharge

anomalies. The simplest option to cancel the cubic non-abelian anomalies is to add two right-handed

colored fermions in the fundamental of SU(3)QL , one left handed fundamental of SU(3)UR and one

left-handed fundamental of SU(3)DR . In this way the fermions are vector-like with respect to the

flavor gauge group but remain chiral with respect to the SM gauge symmetry. The other possibility,

with the two right-handed triplets in an SU(2)L doublet is an uninteresting, non-chiral model. We

are therefore led rather uniquely to the following model:

SU(3)QL SU(3)UR SU(3)DR SU(3)c SU(2)L U(1)Y

QL 3 1 1 3 2 1/6

UR 1 3 1 3 1 2/3

DR 1 1 3 3 1 -1/3

 uR 3 1 1 3 1 2/3

 dR 3 1 1 3 1 -1/3

 u 1 3 1 3 1 2/3

 d 1 1 3 3 1 -1/3

Yu 3 3 1 1 1 0

Yd 3 1 3 1 1 0

H 1 1 1 1 2 1/2

3

Remarkably, with the above matter content all the anomalies except U(1)QL ⇥SU(2)2L and U(1)QL ⇥
U(1)2Y automatically cancel. When, as required by cancellation of SM anomalies, the leptons are

introduced U(1)B�L remains anomaly free, so that U(1)QL could also be gauged by gauging the B�L

combination. The VEVs of Yu and Yd break U(1)QL ⇥U(1)UR ⇥U(1)DR to the diagonal U(1) and an

additional scalar field must be introduced in order to break also U(1)B�L spontaneously. From now

on we will focus on the gauging of SU(3)3⇥U(1)2 which is the largest symmetry group broken by the

SM Yukawa, other gaugings will be considered later.

The most general renormalizable Lagrangian reads,

L =Lkin � V (Yu, Yd, H)+
�
�uQLH̃ uR + �0

u uYu uR +Mu uUR+

�dQLH dR + �0
d dYd dR +Md dDR + h.c.

�
,

(2.3)

where Mu,d are universal mass parameters and �(0)
u,d are universal coupling constants. By a rotation

of  u and  uR these parameters can be chosen to be real. The kinetic terms are built from covariant

derivatives, which in our conventions are given by

DQL = @QL + igQAQQL + ig3AcQL + igWQL + ig0 16BQL (2.4)

and similarly for the other fields.

In general, the VEVs of Yu,d break the flavor symmetry to baryon number.2 By a flavor transfor-

mation we can take Yd = Ŷd diagonal and Yu = ŶuV where V is a unitary matrix. Integrating out the

heavy fermions generates Yukawa interactions for the SM fields. At leading order for Yu,d � Mu,d one

immediately finds that the Yukawa couplings of the SM are

yu = V †�uMu

�0
uŶu

,

yd =
�dMd

�0
dŶd

.
(2.5)

Importantly the masses of the SM fermions follow an inverted hierarchy controlled by the inverse

of Ŷu,d (see also [9,10] for related works implementing the inverted hierarchy mechanism with models

where the chiral diagonal SU(3) flavor symmetry is gauged). On the other hand, the exotic fermions

have a mass proportional to Ŷu,d so that the lightest partner is the one associated to the top quark. As

we will see this kind of see-saw mechanism is a general feature of the model through which all flavor

and electroweak precision bounds can be easily avoided. The unitary matrix V plays the role of the

CKM matrix of the SM. The formulas above receive important corrections for the third family since

in this case the condition Yu,d � Mu,d is not satisfied, particularly for the top quark. As we will see

in the next section once this is properly accounted for it modifies the SM couplings. This produces

important corrections to precision observables, in particular to the electroweak oblique parameters

and the Zbb̄ coupling, which impose the most stringent bounds on the model.
2
We use the same notation both for the fields Yu,d and their VEVs, except when the meaning is not immediate from

the context.

4

Note: all λ‘s and M’s are 1×1 matrices
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5 Examples

The details of a particular realization of the mechanism described in Sec. 2 depend strongly on the

actual model and parameters chosen. Depending on the gauge group (U(3)3, SU(3)3⇥U(1)2, SU(3)3,

SU(3), U(1)n,. . . ), the number and representations of scalar flavon fields and the di↵erent parameters

of the Lagrangian, the spectrum of the new particles and their couplings may vary substantially. Still

there are some features that are rather model independent and characterize the model.

As shown before, with the exception of the top quark sector, the structure of the fermionic part

of the model is quite rigid, depending only on the two scales Mu and Md, the rest being fixed by

the SM Yukawa couplings. Once the gauge group and the scalar content has been chosen so is the

basic structure of the spin-1 sector. But as a result of the larger number of parameters connecting

its spectrum and couplings to the SM Yukawa terms, such as the gauge couplings and extra Yukawa

couplings (�u,d, �0
u,d), it is far from being specified in detail.

In the following we will provide two explicit examples where all the parameters have been fixed,

in order to demonstrate how easy it is to build explicit models with O(1) couplings, new flavor non-

universal states at the TeV scale and compatibility with all existing experimental bounds. In fact,

depending on the choice of the parameters the strongest bounds may come from di↵erent sources, such

as EWPT, Z ! bb̄, single top production at Tevatron, Z 0 searches and other direct bounds for spin-1

and spin-1/2 particles, �MK , etc...

The two examples below correspond to the two di↵erent flavor gaugings SU(3)3 and SU(3)3⇥U(1)2,

respectively. For definiteness in both cases the flavon content have been chosen to be minimal: just

the two Yu and Yd fields of Sec. 2. The couplings have been chosen to be O(1) and the two mass scales

Mu and Md to be low enough to produce interesting physics for high-energy colliders and possibly for

next generation flavor experiments.

5.1 First example: An SU(3)

3 model

In the first example we choose the following parameters:

Mu (GeV) Md (GeV) �u �0
u �d �0

d gQ gU gD

400 100 1 0.5 0.25 0.3 0.4 0.3 0.5

Given the parameters above the entries of the flavon VEVs are fixed by requiring the right SM Yukawa

couplings be reproduced, this gives6:

Yu ⇡ Diag
�
1 · 105 , 2 · 102 , 8 · 10�2

� · V TeV ,

Yd ⇡ Diag
�
5 · 103 , 3 · 102 , 6

�
TeV ,

(5.1)

6
The values of the Yu,d VEVs (and the the results that follow) have been calculated taking into account the running

of the Yukawa couplings only up to the TeV scale. The e↵ects coming from the running from the TeV scale up to the

flavor breaking scales are more model dependent and a↵ect mainly the value of the highest Yu,d VEVs, which we do not

need to know with high accuracy. In fact the knowledge of the order of magnitude for these quantities is enough for our

purposes.
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Figure 3: Spectrum of the flavor spin-1 (left) and spin-1/2 (right) fields for the first example (see text for

details). Each vector fields is represented by a set of three 3⇥ 3 matrices representing the associated generators

to the three gauged SU(3) groups (SU(3)Q, SU(3)U , SU(3)D respectively), the intensity of the color (from white

to red) correspond to the size of each entry in the generators (from 0 to 1). The position in the vertical axis

represent instead the corresponding mass in TeV, analogously for the masses of the heavy quark partners, on

the right.

where V is the unitary experimental CKM matrix [12].

The couplings are chosen to be smaller than 1 to avoid possible problems with early Landau-poles

except for �u, which must be larger than yt =
p
2mt/v ' 1 (or slightly smaller when mt0 < mt; see

Sec. 3). For �u = 1, as in this example, the mixing of the left doublet is small and the lowest eigenvalue

of Yu approaches zero.

Given the parameters above we can calculate both the spectrum and couplings of the spin-1 and

spin-1/2 sectors of the theory. The spectrum is summarized in Fig. 3.

The masses of the four lightest spin-1 states are 2.8, 53, 53, and 66 TeV. The lightest state, which

is one order of magnitude lighter than the next to lightest one, couples to fermions through the �8

flavor generator and with equal strength to left/right up/down type fermions (the unequal intensity of

shading in Fig. 3 is compensated by the di↵erent values of the gauge couplings). Although its coupling
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Figure 2: Allowed region of parameter space in the �u vs Mu plane. The shaded grey region is

unphysical. The thick green line labeled EWPT shows the region allowed at 95% CL by the EW

oblique parameters for mH = 115 GeV. For mH = 350 GeV the allowed region becomes the one

between the green dashed lines. The thin green line labeled Vtb shows the 95% CL limit from direct

single top production while the green short-dashed line shows the 95% CL bound from b ! s�. Of

the region allowed by EWPT, Vtb and b ! s� we have distinguished mt0 > 335 GeV shaded in green

from 45 GeV < mt0 < 335 GeV, shaded in yellow. For the latter direct mass bounds may (or not)

apply, depending on the Higgs mass and other model parameters. Contours of constant mt0(GeV) in

red dashed lines and contours of fixed �0
uŶt(GeV) in black dash-dot lines. The black circle and cross

show the choice of parameters in the examples of Sec. 5.

of custodial symmetry generates a correction to the T -parameter.4 For simplicity we only consider

the contributions of the third family, which are the dominant ones. In the limit mb ! 0 the exact one

4
This was also studied recently in [14] in a model with vector like top partners. For the third generation fermions our

model reduces to theirs.
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Excluded/allowed regions of parameter space

Figure 1: Allowed region of parameter space in the �d vs Md plane. The yellow and green shaded

regions are allowed by Rb, the thick green line labeled Z ! bb̄ corresponding to the 95% CL limit. The

green one corresponds to mb0 > 385 GeV, while the yellow one to 45 GeV < mb0 < 385 GeV. Contours

of constant mb0(GeV) are shown in red dashed lines and contours of fixed �0
dŶb(GeV) in black dash-dot

lines. The black circle and cross show the choice of parameters in the examples of Sec. 5.

and writing �Rb/RSM
b = (1�RSM

b )(��bb̄/�
SM
bb̄

) ⇡ 0.78(��bb̄/�
SM
bb̄

) we have

�Rb

RSM
b

⇡ �1.8s2dL3
, (3.13)

to be compared to the current bound �Rb/RSM
b 2 [�4, 8] · 10�3 at 95% CL [12].

Additional contributions to �Rb from couplings to light quarks are negligible. The virtual t and

t0 contributions deviate from the SM’s virtual t contribution by an amount that vanishes both with

mt0 �mt and with s2uL3
. The resulting bound on these parameters is weaker than bounds presented

below from Vtb (and the direct limit on mt0).

Fig. 1 shows the 95% CL bound from �Rb in the �d/yb vs Md/mb plane, where yb =
p
2mb/v.
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Can minimizing a GF-invariant potential give the desired values of Yukawas?
See: R. Alonso et al,  JHEP 1311 (2013) 187  arXiv:1306.5927

Figure 1: Manifold M of the SU(3) invariants constructed from x=octet=hermitian, 3 ⇥ 3, traceless

matrix (green region). Each point of M represents the orbit of x, namely the set of points in octet space

given by: xg = gxg

�1
, when g runs over SU(3). Boundaries of M are represented by Eq. (3.1). The little

groups of the elements of different boundaries are indicated.

3 Natural extrema of an invariant potential

We summarize here the elements to identify the natural extrema of an invariant potential
V (x), that is those extrema that are less or not at all dependent from specific tuning of
the coefficients in the potential, compared to the generic extrema. We do not make any
assumption about the convergence of the expansion of the potential in powers of higher-
dimensional invariants, as done e.g. in Ref. [24, 25].

The variables x are the field components, transforming as given representations of the
invariance group G. In order to be invariant, V (x) = V [Ii(x)], where Ii are the independent
invariants one can construct out of x. The crucial point is that the space of the x has no
boundary, while the manifold M, spanned by Ii(x), does have boundaries. The situation
is exemplified in Fig. 1, with G = SU(3), and x=octet=hermitian, 3⇥ 3, traceless matrix.
Defining the invariants I1 = Tr(x2) and I2 = Det(x), the boundary is

I1 � (54 I22 )
1/3 , �1 < I2 < +1 . (3.1)

In general, let N be the number of algebraically independent invariants. One sees easily
that [12, 13]:

• each point of M represents the orbit of x, namely the set of points in octet space
given by: xg = gxg�1, when g runs over G;

• points on each boundary admit little (i.e. invariance) groups , which are the same up
to a G conjugation.

The boundaries of M are characterized by the rank of the Jacobian matrix being less
than maximum [13]:

J =

@(I1, I2, · · · )
@(x1, x2, · · · ) , Rank(J) = R < N . (3.2)

– 5 –

Orbit of enhanced symmetry are always extrema. 
So the natural outcome would be not fully broken GF.

Example: SU(3) with scalar field in adjoint, A. Two independent invariants, Tr(A2) and det(A)

Dirty laundry:



Summary and Conclusions
• MFV

• Works very well when the SM Yukawas are the unique source of flavor breaking

• Need not be spurions (VEVs of fields), ie, spurions as accounting device

• Example: MSSM

• But SM Yukawas may be derived from more fundamental source of GF breaking

• Then Flavor breaking matrices are proportional (but not equal) to SM Yukawas

• This can give interesting phenomenology. Examples (Martin Camalich tomorrow):

• MLFV can give breaking to lepton universality

• RK

• τ in B decays

• Taking spurions seriously: gauge flavor (or some subgroup!)

• Minimal anomaly free model gives inverted hierarchy of vector bosons

• Can give interesting low energy phenomenology for heavier generations

• Does not give an MFV model, but safe by small quark masses (not by angles) 

• MLFV version in progress. Open questions: other subgroups, GUTs, ...



The End


