

Gauged Flavor Symmetries

Benjamín Grinstein with M. Redi (Firenze) and G. Villadoro (ICTP, Trieste)

JHEP 1011 (2010) 067

Ernest Ma

Ernest Ma

In his honor I will talk about model building

Outline

1. Minimal Flavor Violation

2. Minimal Lepton Flavor Violation

3. Gauge Flavor (quark sector)

Minimal Flavor Violation

Motivation, rationale, MFV

- New physics is required to explain the fine tuning puzzle.
- It must involve new dynamics that become relevant at an energy scale Λ . This new dynamics likely involves new fields, new particles and new interactions.
- The new dynamics scale Λ must not be much higher than the electroweak scale (the higher the scale the more severe the fine tuning).
- Quarks and leptons contribute to quadratic divergence in higgs mass
 - divergences depend on quark/lepton masses
 - new dynamics must have flavor dependence
- New flavor dependent dynamics at a scale Λ_F not far above the electroweak scale is a disaster: either
 - $\Lambda_{\rm F} \sim 10^{6-7}$ GeV, or
 - fine tune coefficients of dangerous operators (those giving large flavor changing neutral "currents")
- Unless: avoid large FCNC automatically "⇒" Minimal Flavor Violation

- MFV is NOT the only possibility
 - *e.g.*, NMFV and generally theories with quark mass suppression
- But MFV is fairly minimal
 - good if you want to estimate the minimal effect of this new physics in flavor changing processes
 - more predictive, patterns

• Let's gain some understanding by example. Consider $K_L \rightarrow \pi \nu \nu$

$$\mathcal{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} \sum_{\ell=e,\mu,\tau} \mathcal{C}^{\ell} \bar{s}_L \gamma_{\mu} d_L \ \bar{\nu}_L^{\ell} \gamma^{\mu} \nu_L^{\ell} + \text{h.c.}$$

$$\mathcal{C}^{\ell} = \frac{\alpha X(\frac{m_t}{M_W})}{2\pi \sin^2 \theta_W} V_{ts}^* V_{td}$$

$$\mathcal{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} \sum_{\ell=e,\mu,\tau} \mathcal{C}^{\ell} \bar{s}_L \gamma_{\mu} d_L \ \bar{\nu}_L^{\ell} \gamma^{\mu} \nu_L^{\ell} + \text{h.c.}$$
$$\mathcal{C}^{\ell} = \boxed{\frac{\alpha X(\frac{m_t}{M_W})}{2\pi \sin^2 \theta_W}} V_{ts}^* V_{td}$$
$$\overset{1 \text{ loop factor,}}{X \sim 1}$$

$$\mathcal{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} \sum_{\ell=e,\mu,\tau} \mathcal{C}^{\ell} \bar{s}_L \gamma_{\mu} d_L \ \bar{\nu}_L^{\ell} \gamma^{\mu} \nu_L^{\ell} + \text{h.c.}$$
$$\mathcal{C}^{\ell} = \underbrace{\alpha X(\frac{m_t}{M_W})}_{2\pi \sin^2 \theta_W} V_{ts}^* V_{td}$$
CKM factor

$$\mathcal{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} \sum_{\ell=e,\mu,\tau} \mathcal{C}^{\ell} \bar{s}_L \gamma_{\mu} d_L \ \bar{\nu}_L^{\ell} \gamma^{\mu} \nu_L^{\ell} + \text{h.c.}$$
$$\mathcal{C}^{\ell} = \boxed{\frac{\alpha X(\frac{m_t}{M_W})}{2\pi \sin^2 \theta_W}} V_{ts}^* V_{td}$$
CKM factor
$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$$\begin{aligned} \mathcal{H}_{\mathrm{eff}} &= \frac{4G_F}{\sqrt{2}} \sum_{\ell=e,\mu,\tau} \mathcal{C}^{\ell} \bar{s}_L \gamma_{\mu} d_L \ \bar{\nu}_L^{\ell} \gamma^{\mu} \nu_L^{\ell} + \mathrm{h.c.} \\ \mathcal{C}^{\ell} &= \underbrace{\frac{\alpha X(\frac{m_t}{M_W})}{2\pi \sin^2 \theta_W}}_{K^* V_{td}} \\ &\downarrow \\ V_{\mathrm{CKM}} \xrightarrow{} V_{\mathrm{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \\ V_{\mathrm{CKM}} \approx \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\bar{\rho} - i\bar{\eta}) \\ -\lambda(1 + iA^2\lambda^4\bar{\eta}) & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \bar{\rho} - i\bar{\eta}) & -A\lambda^2(1 + i\lambda^2\bar{\eta}) & 1 \end{pmatrix} + \mathcal{O}(\lambda^6). \end{aligned}$$

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= \frac{4G_F}{\sqrt{2}} \sum_{\ell=e,\mu,\tau} \mathcal{C}^{\ell} \bar{s}_L \gamma_{\mu} d_L \ \bar{\nu}_L^{\ell} \gamma^{\mu} \nu_L^{\ell} + \text{h.c.} \\ \mathcal{C}^{\ell} &= \boxed{\frac{\alpha X(\frac{m_t}{M_W})}{2\pi \sin^2 \theta_W}} V_{ts}^* V_{td} \\ \downarrow \\ \nabla_{\text{CKM}} \approx \begin{pmatrix} V_{us} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \\ V_{\text{CKM}} \approx \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\bar{\rho} - i\bar{\eta}) \\ -\lambda(1 + iA^2\lambda^4\bar{\eta}) & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \bar{\rho} - i\bar{\eta}) & -A\lambda^2(1 + i\lambda^2\bar{\eta}) & 1 \end{pmatrix} + \mathcal{O}(\lambda^6). \\ \lambda \simeq 0.22 \qquad |V_{ts}V_{td}| \sim \lambda^5 \end{aligned}$$

$$\mathcal{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} \sum_{\ell=e,\mu,\tau} \mathcal{C}^{\ell} \bar{s}_L \gamma_{\mu} d_L \ \bar{\nu}_L^{\ell} \gamma^{\mu} \nu_L^{\ell} + \text{h.c}$$

New physics

$$\mathcal{H}_{\text{eff}} = \frac{1}{\Lambda_F^2} \sum_{\ell=e,\mu,\tau} \mathcal{C}_{\text{new}}^{\ell} \bar{s}_L \gamma_{\mu} d_L \ \bar{\nu}_L^{\ell} \gamma^{\mu} \nu_L^{\ell} + \text{h.c.}$$

Assume sensitivity to fractional deviation r from SM rate, with $C_{\rm new}^\ell \sim 1$

$$1 + r \sim \left| 1 + \frac{(M_W/\Lambda)^2}{A^2 \lambda^5/(16\pi^2)} \right|^2$$

For example, r = 4% gives sensitivity to $\Lambda_{\rm F} \sim 10^3 \,{\rm TeV}$

$$\mathcal{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} \sum_{\ell=e,\mu,\tau} \mathcal{C}^{\ell} \bar{s}_L \gamma_{\mu} d_L \ \bar{\nu}_L^{\ell} \gamma^{\mu} \nu_L^{\ell} + \text{h.c}$$

New physics

$$\mathcal{H}_{\text{eff}} = \frac{1}{\Lambda_F^2} \sum_{\ell=e,\mu,\tau} \mathcal{C}_{\text{new}}^{\ell} \bar{s}_L \gamma_{\mu} d_L \ \bar{\nu}_L^{\ell} \gamma^{\mu} \nu_L^{\ell} + \text{h.c}$$

Assume sensitivity to fractional deviation r from SM rate, with $C_{\rm new}^{\ell} \sim 1$

$$1 + r \sim \left| 1 + \frac{(M_W/\Lambda)^2}{A^2 \lambda^5 / (16\pi^2)} \right|^2$$

For example, r = 4% gives sensitivity to $\Lambda_{\rm F} \sim 10^3 \,{\rm TeV}$

But if new physics has same CKM factors in $\ensuremath{\mathcal{C}}^\ell_{\mathrm{new}},$ then

$$1 + r \sim \left| 1 + \frac{(M_W/\Lambda)^2}{1/(16\pi^2)} \right|^2$$

And now r = 4% gives sensitivity to $\Lambda_{\rm F} \sim 10^{1-2}$ TeV

Minimal Flavor Violation (MFV)

• Premise: Unique source of flavor braking

Chivukula and Georgi, Phys.Lett. B188 (1987) 99 D'Ambrosio et al Nucl.Phys. B645 (2002) 155-187

• Quark sector in SM, in absence of masses has large flavor (global) symmetry:

$$G_F = SU(3)^3 \times U(1)^3$$

• In SM, symmetry is only broken by Yukawa interactions, parametrized by couplings Y_U and Y_D

$$-\mathcal{L}_{\text{Yuk}} = H\bar{q}_L Y_U u_R + H\bar{q}_L Y_D d_R$$
$$= \epsilon_U H\bar{q}_L \hat{Y}_U u_R + \epsilon_D \tilde{H}\bar{q}_L \hat{Y}_D d_R$$

Normalize: $\operatorname{tr}(\hat{Y}_U^{\dagger}\hat{Y}_U) = \operatorname{tr}(\hat{Y}_D^{\dagger}\hat{Y}_D) = 1$ Breaking of U(1)² characterized by ϵ_U, ϵ_D

- MFV: all breaking of G_F must transform as these
- When going to mass eigenstate basis, all mixing is parametrized by CKM and GIM is automatic
- Approach: via effective field theory: at low energies only SM fields

How does this work? Consider $K_L \rightarrow \pi \nu \bar{\nu}$

Recall, G_F breaking from: $-\mathcal{L}_{Yuk} = \epsilon_U H \bar{q}_L \hat{Y}_U u_R + \epsilon_D \tilde{H} \bar{q}_L \hat{Y}_D d_R$

Implications of G_F ? use *spurion* method:

$$\begin{array}{ll} q_L \to e^{i\theta_q} V_L q_L & \hat{Y}_U \to V_L \hat{Y}_U V_u^{\dagger} & \epsilon_U \to e^{i(\theta_q - \theta_u)} \epsilon_U \\ u_R \to e^{i\theta_u} V_u u_R & \hat{Y}_D \to V_L \hat{Y}_D V_d^{\dagger} & \epsilon_D \to e^{i(\theta_q - \theta_d)} \epsilon_D \\ d_R \to e^{i\theta_d} V_d d_R & \end{array}$$

Effective lagrangian

$$\mathcal{L}_{\text{eff}} = \frac{1}{\Lambda^2} \sum C_i O_i$$

among the operators have, for example

$$O = \bar{q}_L (\hat{Y}_U \hat{Y}_U^{\dagger}) \gamma_\mu q_L \, \bar{\nu}_L \gamma^\mu \nu_L$$

In mass basis $\Rightarrow \left(\sum_{q=u,c,t} V_{qs}^* V_{qd} \frac{m_q^2}{v^2} \right) \bar{s}_L \gamma_\mu d_L \, \bar{\nu}_L \gamma^\mu \nu_L$

As needed it includes the factor

$$|V_{ts}^* V_{td}| m_t^2 / v^2 \approx A^2 \lambda^5 \approx 5 \times 10^{-4}$$

Digression:

Minimal Lepton Flavor Violation and Lepton (non)-universality

Minimal Lepton Flavor Violation

- Extension of MFV to lepton sector
- Need assumption on origin of neutrino masses: Dirac vs Majorana
- In charged lepton sector

$$-\mathcal{L}_{\text{Yuk}} = \epsilon_E \tilde{H} \bar{\ell}_L \hat{Y}_E e_R$$
$$G_F = SU(3)^2 \times U(1)^2$$

$$\ell_L \to e^{i\theta_\ell} V_\ell \ell_L \qquad \hat{Y}_E \to V_\ell \hat{Y}_E V_e^\dagger$$
$$e_R \to e^{i\theta_e} V_e e_R \qquad \epsilon_E \to e^{i(\theta_\ell - \theta_e)} \epsilon_E$$

• Ignoring neutrino masses (small!), a symmetry transformation

$$\hat{Y}_E \to V_\ell \hat{Y}_E V_e^\dagger = \frac{\sqrt{2}}{v |\epsilon_E|} \operatorname{diag}(m_e, m_\mu, m_\tau)$$

• Unbroken symmetry

$$U(3)^2 \to U(1)_e \times U(1)_\mu \times U(1)_\tau$$

Flavor conservation without universality! (caveat, up to neutrino "Yukawas")

Application: *R_K* anomaly:

LHCb:
$$R_K \equiv \frac{\mathcal{B}(B^+ \to K^+ \mu \mu)}{\mathcal{B}(B^+ \to K^+ ee)} = 0.745^{+0.090}_{-0.074} (\text{stat}) \pm 0.036 (\text{syst}).$$
 $q^2 \in [1, 6] \,\text{GeV}^2$.
LHCb: PRL113, 151601 (2014)

There are claims that violation to lepton universality implies (unacceptably large) lepton flavor violation

Glashow, Guadagnoli & Lane, PRL114, 091801 (2015)

With MLFV lepton flavor violation is controlled by neutrino "Yukawas" (much as in SM+neutrinos) while lepton flavor violation is controlled by charged lepton Yukawas

Alonso, BG, Martin Camalich, arXiv:1505.05164

4-fermion operators inducing $b \rightarrow sll$

$$Q_{\ell q}^{(1)} = (\bar{q}\gamma^{\mu}q_{L})(\bar{\ell}\gamma_{\mu}\ell_{L}) \qquad \qquad Q_{\ell q}^{(3)} = (\bar{q}\vec{\tau}\gamma^{\mu}q_{L})\cdot(\bar{\ell}\vec{\tau}\gamma_{\mu}\ell_{L}) Q_{\ell d} = (\bar{d}\gamma^{\mu}d_{R})(\bar{\ell}\gamma_{\mu}\ell_{L}) \qquad \qquad Q_{q e} = (\bar{q}\gamma_{\mu}q_{L})(\bar{e}\gamma^{\mu}e_{R}) Q_{e d} = (\bar{d}_{R}\gamma^{\mu}d_{R})(\bar{e}\gamma_{\mu}e_{R}) \qquad \qquad Q_{\ell e d q} = (\bar{\ell}_{L}e_{R})(\bar{d}_{R}q) + \text{h.c.}$$

Coefficients constrained by MFV+MFLV

$$C_{\ell q}^{(1)} = c_{\ell q}^{(1)} \hat{Y}_{u} \hat{Y}_{u}^{\dagger} \otimes \hat{Y}_{e} \hat{Y}_{e}^{\dagger}, \qquad C_{\ell q}^{(3)} = c_{\ell q}^{(3)} \hat{Y}_{u} \hat{Y}_{u}^{\dagger} \otimes \hat{Y}_{e} \hat{Y}_{e}^{\dagger}, \\ C_{q e} = c_{q e} \hat{Y}_{u} \hat{Y}_{u}^{\dagger} \otimes \hat{Y}_{e}^{\dagger} \hat{Y}_{e}, \qquad C_{\ell e d q} = c_{\ell e q d} \varepsilon_{e} \varepsilon_{d}^{*} \hat{Y}_{d}^{\dagger} \hat{Y}_{u} \hat{Y}_{u}^{\dagger} \otimes \hat{Y}_{e}.$$

Scalar operator additionally suppressed! More details \rightarrow Jorge Martin Camalich tomorrow

Gauging Flavor

Issues

- Black holes: No global symmetry (other than accidental)
- If we insist: how do we make sense of transforming Yukawas?
 - Spurions: VEVs of fields:

under $G_F = SU(3)_q \times SU(3)_u \times SU(3)_d$ introduce new fields $Y_U = (\bar{3}, 3, 1)$ $Y_D = (\bar{3}, 1, 3)$

and Yukawa coupling constants are $\langle Y_U \rangle$, $\langle Y_D \rangle$,

• New Problems

1. Goldstone's theorem \Rightarrow 8+8+8 Nambu-Goldstone Bosons \Rightarrow FCNC disaster

2. Renormalizability? $H\bar{q}_L Y_U u_R$, $\tilde{H}\bar{q}_L Y_D d_R$, are operators of dimension 5

- Solution to problem 1: gauge G_F
 - New Problems:
 - i. Anomalies: G_F^3 and $G_F^2 \times U(1)_Y$
 - ii. Invisibility (high scale): next slide
 - iii.Renormalizability (problem 2) still

"Invisibility"

Massive vector bosons mediate FCNC

Masses:

$$M_V \sim g \langle Y_{U,D} \rangle$$

*K*⁰-mixing:

 $\Rightarrow \langle Y_{U,D} \rangle \gtrsim 10^5 \text{ TeV}$

And this is for the light generations. Expect much higher scales for heavy generations!

Hence "invisible."

And then a miracle happens...

The minimal anomaly free extension of the SM gives

1.Renormalizable couplings

2.Inverted hierarchy $M_V \sim \frac{1}{y_{U,D}}$

where $y_{U,D}$ are the usual Yukawa couplings

so that if $M_V \sim 10^5 \text{ TeV}$ for mediators among light generations, we can have

$$M_V \sim \frac{m_u}{m_t} 10^5 \text{ TeV} \sim \text{few TeV}$$

for mediators among heaviest generations

When I see this in talks it induces this response

When I see this in talks it induces this response

When I see this in talks it induces this response

I promise it is not so bad...

The Model

		$\mathrm{SU}(3)_{Q_L}$	$\mathrm{SU}(3)_{U_R}$	$\mathrm{SU}(3)_{D_R}$	$\mathrm{SU}(3)_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$
_	Q_L	3	1	1	3	2	1/6
	U_R	1	3	1	3	1	2/3
	D_R	1	1	3	3	1	-1/3
	Ψ_{uR}	3	1	1	3	1	2/3
	Ψ_{dR}	3	1	1	3	1	-1/3
	Ψ_u	1	3	1	3	1	2/3
	Ψ_d	1	1	3	3	1	-1/3
	Y_u	$\overline{3}$	3	1	1	1	0
	Y_d	$\overline{3}$	1	3	1	1	0
	H	1	1	1	1	2	1/2

 $\mathcal{L} = \mathcal{L}_{kin} - V(Y_u, Y_d, H) + \left(\lambda_u \overline{Q}_L \tilde{H} \Psi_{uR} + \lambda'_u \overline{\Psi}_u Y_u \Psi_{uR} + M_u \overline{\Psi}_u U_R + \lambda_d \overline{Q}_L H \Psi_{dR} + \lambda'_d \overline{\Psi}_d Y_d \Psi_{dR} + M_d \overline{\Psi}_d D_R + h.c.\right),$

Note: all λ 's and *M*'s are 1×1 matrices

$$\mathcal{L} = \mathcal{L}_{kin} - V(Y_u, Y_d, H) + \left(\lambda_u \overline{Q}_L \tilde{H} \Psi_{uR} + \lambda'_u \overline{\Psi}_u Y_u \Psi_{uR} + M_u \overline{\Psi}_u U_R + \lambda_d \overline{Q}_L H \Psi_{dR} + \lambda'_d \overline{\Psi}_d Y_d \Psi_{dR} + M_d \overline{\Psi}_d D_R + h.c.\right),$$

For example:

and similarly
$$y_d = \frac{\lambda_d M_d}{X_d \langle Y_d \rangle}$$

But still
$$M_v \sim g \langle Y_{u,d} \rangle \Rightarrow M_v \sim \frac{1}{y_{u,d}}$$

Exa

xample			1	1								
Choose	M_u (GeV)	$M_d \; ({\rm GeV})$	λ_u	λ'_u	λ_d	λ'_d	g_Q	g_U	g_D			
Choose	400	100	1	0.5	0.25	0.3	0.4	0.3	0.5			
Compute	$Y_u pprox \mathbf{I}$	$\operatorname{Diag}\left(1\cdot10^{4}\right)$	5, 2	$\cdot 10^2$	$, 8 \cdot 1$	(10^{-2})	$\cdot V$	TeV	,			
	$Y_d \approx \operatorname{Diag}\left(5 \cdot 10^3, \ 3 \cdot 10^2, \ 6\right) \ \mathrm{TeV},$											
Spectrum: 10	6											
10	5											u' —
10	4								⊥⊥⊥J L⊥⊥			
10	3											d' —
10	2										=	<i>c</i> ¦
10) -											
1												b'
10	-1											

Excluded/allowed regions of parameter space

Dirty laundry:

Can minimizing a G_F -invariant potential give the desired values of Yukawas? See: R. Alonso et al, JHEP 1311 (2013) 187 arXiv:1306.5927

Orbit of enhanced symmetry are always extrema. So the natural outcome would be not fully broken G_F .

Example: SU(3) with scalar field in adjoint, A. Two independent invariants, $Tr(A^2)$ and det(A)

Figure 1: Manifold \mathcal{M} of the SU(3) invariants constructed from x=octet=hermitian, 3×3 , traceless matrix (green region). Each point of \mathcal{M} represents the orbit of x, namely the set of points in octet space given by: $x_g = gxg^{-1}$, when g runs over SU(3). Boundaries of \mathcal{M} are represented by Eq. (3.1). The little groups of the elements of different boundaries are indicated.

Summary and Conclusions

- MFV
 - Works very well when the SM Yukawas are the unique source of flavor breaking
 - Need not be spurions (VEVs of fields), ie, spurions as accounting device
 - Example: MSSM
 - But SM Yukawas may be derived from more fundamental source of G_F breaking
 - Then Flavor breaking matrices are proportional (but not equal) to SM Yukawas
 - This can give interesting phenomenology. Examples (Martin Camalich tomorrow):
 - MLFV can give breaking to lepton universality
 - *R*_{*K*}
 - τ in *B* decays
- Taking spurions seriously: gauge flavor (or some subgroup!)
 - Minimal anomaly free model gives inverted hierarchy of vector bosons
 - Can give interesting low energy phenomenology for heavier generations
 - Does not give an MFV model, but safe by small quark masses (not by angles)
 - MLFV version in progress. Open questions: other subgroups, GUTs, ...

The End