Southampton

School of Physics and Astronomy invisibles neutrinos, dark matter & dark energy physics

Unified Models of Neutrinos, Flavour and CP violation Steve King Manzanilo, 2015

Lepton Mixing Matrix

Oscillation phase δ^l Majorana phases $lpha_{21}, lpha_{31}$

з masses + з angles + з phases = 9 new parameters for SM

Lepton Mixing Angles (approx.)

Note the magic number 8.4!!

CP Phase is known?

- Taking reactor θ_{13} results, CP phase is constrained to be close to $-\pi/2$
- This is a very lucky value for NOVA and other accelerator experiments
- Mass hierarchy and CP phase will be known soon ?

Hint for $\,\delta_{CP}\approx-90^\circ$ and NH

Seesaw motivates Standard Model with right-handed neutrinos $SU(3)_C \times SU(2)_L \times U(1)_Y$

Left-handed quarks and leptons (active neutrinos) Ríght-handed quarks and leptons (steríle neutrínos)

What is the origin of quark and charged lepton masses?

What is the origin of Quark and Lepton Mixing? **CKM PMNS** d b S v_2 v_1 V_{z} u v_{e} С v_{μ} t v_{τ}

Flavour Symmetry (FLASY)

The Klein Symmetry

Phase symmetry of diagonal charged lepton mass matrix $T^{\dagger}(M_e^{\dagger}M_e)T = M_e^{\dagger}M_e$ $T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix}$

Symmetry of Majorana matrix depends on PMNS

$$m_{\nu} = S^T m_{\nu} S \qquad m_{\nu} = U^T m_{\nu} U$$

$$\begin{split} S &= U_{\rm PMNS}^* \, \operatorname{diag}(+1, -1, -1) \, U_{\rm PMNS}^T \\ U &= U_{\rm PMNS}^* \, \operatorname{diag}(-1, +1, -1) \, U_{\rm PMNS}^T \\ SU &= U_{\rm PMNS}^* \, \operatorname{diag}(-1, -1, +1) \, U_{\rm PMNS}^T \end{split}$$

Kléín Symmetry $\mathcal{K} = \{1, S, U, SU\}$

Felix Klein

 $\omega = e^{2i\pi/n}$

 $Z_2 \times Z_2$

Direct Models

Klein symmetry S,U and T are each identified as subgroups of some family symmetry

$$\Delta(6n^2)$$

is the only viable symmetry class predicts zero Dirac CPV but non-zero Majorana phases

Holthausen,Lim, Lindner; SK,Neder,Stuart; Lavoura,Ludl; Fonseca,Grimus

Semi-Direct Models

G

S4

Family

Symmetry

 Δ (96)

Generators

S,T,U

A5

Klein symmetry and T are partly preserved as subgroups of some family symmetry

TB	=	tri-bimaximal
BM	=	bimaximal
GR	=	golden ratio
BT	=	bi-trimaximal
TM	=	trimaximal

	$\theta_{13}^{ u}$	$\theta_{23}^{\ \nu}$	θ_{12}^{ν} .
TB	0°	45°	35.3°
BM	0°	45°	45°
GR	0°	45°	31.7°
BT	12.2°	36.2°	36.2°
TM	$\neq 0^{\circ}$	$\neq 45^{\circ}$	35.3°

Reviews: S.F.K.,Luhn

Orde

Solar Sum Rule

 $\cos \delta = \frac{t_{23}s_{12}^2 + s_{13}^2c_{12}^2/t_{23} - s_{12}^{\nu 2}(t_{23} + s_{13}^2/t_{23})}{\sin 2\theta_{12}s_{13}}.$

 $\cos \delta \sim (\theta_{12} - \theta_{12}^{\nu})/\theta_{13} \quad |\Delta(\cos \delta)| \lesssim 0.1 \text{ for TB}$

Ballett,SK,Luhn,Pascoli,Schmidt 1410.7573 Girardi,Petcov,Titov 1410.8056

See talk by Girardí for other references

• S_4 and A_4 models with CP symmetry are constructed, all the possible cases following from the model-independent analysis can be realized. Dirac CP phase is predicted to be trivial or maximal.

Feruglio,Hagedorn; Holthausen,Lindner Schmidt; Ding,SFK,Luhn,Stuart; Nishi,Xing; Hagedorn,Meroni, Molinaro; Ding,SFK,Neder; see also talk by Chen

Indirect Models

Minimal Predictive $\begin{array}{l} \text{S.F.K. 1304.6264,1305.4846} \\ \text{Björkeroth and S.F.K. 1412.6996} \\ \text{Two right-handed} \\ \text{neutrinos ("minimal")} \\ M_1 = M_{\text{atm}} \text{ and } M_2 = M_{\text{sol}} \end{array}$

 $H(L.\phi_{\rm atm})N_{\rm atm}^c + H(L.\phi_{\rm sol})N_{\rm sol}^c + M_{\rm atm}N_{\rm atm}^c N_{\rm atm}^c + M_{\rm sol}N_{\rm sol}^c N_{\rm sol}^c$

$$\langle \phi_{\text{atm}} \rangle = v_{\text{atm}} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \langle \phi_{\text{sol}} \rangle = v_{\text{sol}} \begin{pmatrix} 1 \\ n \\ n-2 \end{pmatrix}, \quad \begin{array}{l} \text{CSD(n)} \\ \text{("predictive")} \\ \text{("predictive")} \\ \text{Seesaw} \\ \text{matrices} \\ \text{matrices} \\ m_{(n)}^{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \quad \begin{array}{l} M^c = \begin{pmatrix} M_1 & 0 \\ 0 & M_2 \end{pmatrix}, \quad \begin{array}{l} \text{Seesaw} \\ \text{matrices} \\ m_{n-2} & n(n-2) \\ n-2 & n(n-2) & (n-2)^2 \end{pmatrix}, \quad \begin{array}{l} \text{Neutrino} \\ \text{mass} \\ \text{matrix} \\ \text{matrix} \\ \end{array}$$

n	m_a (meV)	m_b (meV)	η (rad)	θ ₁₂ (°)	θ ₁₃ (°)	θ ₂₃ (°)	$ert \delta_{ ext{CP}} ert$ (°)	m_2 (meV)	m_3 (meV)	χ^2
1	24.8	2.89	3.14	35.3	0	45.0	0	8.66	49.6	485
2	19.7	3.66	0	34.5	7.65	56.0	0	8.85	48.8	95.1
3	27.3	2.62	2.17	34.4	8.39	44.5	92.2	8.69	49.5	3.98
4	36.6	1.95	2.63	34.3	8.72	38.4	120	8.61	49.8	8.82
5	45.9	1.55	2.88	34.2	9.03	34.4	142	8.53	50.0	33.8
6	55.0	1.29	3.13	34.2	9.30	31.6	179	8.46	50.2	65.2
7	63.0	1.12	3.14	34.1	9.68	31.0	180	8.35	50.6	100
8	71.0	0.984	3.14	34.0	9.96	30.6	180	8.25	50.8	135
9	79.0	0.880	3.14	33.9	10.2	30.3	180	8.17	51.0	168

Note: if eta is positive then delta_CP is negative (consistent with the -90 deg hint!)

				Björke	eroth,	de And	a, de 1	Medeiro	s Varzi	elas and	S.F.K.	1505.05504
		Le	pto	ge	ene	esi	S II	n N	/IIN	Ima	al	
		Pre	edi	cti	ve	S	ee	sav	v n	noc	lel	S
		зі	input	ts.	60	outp	uts	(incl	CP	phase	2)	
	n	m_a (meV)	m_b (meV)	$ \begin{pmatrix} \eta \\ (rad) \end{pmatrix} $	θ ₁₂ (°)	θ ₁₃ (°)	θ ₂₃ (°)	$\delta_{ m CP}$ (°)	m_2 (meV)	m_3 (meV)	χ^2	
	3	27.3	2.62	2.17	34.4	8.39	44.5	-92.2	8.69	49.5	3.98	
	4	36.6	1.95	2.63	34.3	8.72	38.4	-120	8.61	49.8	8.82	
	5	45.9	1.55	2.88	34.2	9.03	34.4	-142	8.53	50.0	33.8	
P	AL	$\checkmark Y_E$	$_{3}=\frac{6}{317}$	$\frac{75}{\pi^5 g_*} \frac{M}{\pi^5 g_*}$	$rac{v_1m_b}{v_u^2}\eta_1$	∟,μ(n – togene	$(-1)^2 { m s}^2$	in∕n V ase	Vash $\eta_{1,\mu} =$	outs c (0.0236,	depe i 0.0166,	nd on ma 0.0126)
$\operatorname{CSD}($	(3): Y	$T_B \sim 2.2 \times$	$10^{-11} \left[\frac{10^{-11}}{10^{-11}} \right]$	$\frac{M_1}{0 \text{ GeV}} brace$	$\Rightarrow M_1$	$\sim 4.0 \times$	$10^{10} { m Ge}^{10}$	V	Pote Po	the co sitive	BA	itions:
$\operatorname{CSD}(4)$	(4): Y	$f_B \sim 1.5 \times$	$10^{-11} \left[\frac{10^{-11}}{10^{-11}} \right]$	$\left[\frac{M_1}{0 \text{ GeV}}\right]$	$\Rightarrow M_1$	$\sim 5.8 \times$	$10^{10} { m Ge}^{10}$	V	S po	sitive	lept	ophase
CSD((5): Y	$V_B \sim 0.86 \times$	$\lesssim 10^{-11} \left[\frac{10}{10} \right]$	$\left[\frac{M_1}{10 \text{ GeV}}\right]$	$\Rightarrow M_1$	$\sim 10 \times$	$10^{10} { m GeV}$	7	Şne	egatív	ie CP	phase

Björkeroth, de Anda, de Medieoros Varzielas and S.F.K. 1503.03306

Towards a complete See talk by de Anda for full discussion A4XSU(5) SUSY GUT Quite complete model!

Renormalisable at GUT scale, SU(5) breaking potential, spontaneously broken CP.

- The MSSM is reproduced with R-parity emerging from a discrete Z4^R.
- Doublet-triplet splitting is achieved through the Missing Partner mechanism.
- mu term is generated at the correct scale.
- Proton decay is sufficiently suppressed.
- It solves the strong CP problem through the Nelson-Barr mechanism.
- Explains quark mass hierarchies, mixing angles and the CP phase.
- Reproduces minimal predictive seesaw model via A4 vacuum alignments with CSD(3).

A to Z of Flavour with Pati-Salam $A_4 \times Z_5 \times SU(4)_C \times SU(2)_L \times SU(2)_R$ Left-handed quarks and leptons triplets of A_4

S.F.K. 1406.7005

A to Z of Flavour with Pati-Salam

$$Y^{u} = Y^{\nu} = \begin{pmatrix} 0 & be^{-i3\pi/5} & \epsilon c \\ ae^{-i3\pi/5} & 4be^{-i3\pi/5} & 0 \\ ae^{-i3\pi/5} & 2be^{-i3\pi/5} & c \end{pmatrix} \qquad Y^{d} = \begin{pmatrix} y_{d}^{0}e^{-i2\pi/5} & 0 & Ay_{d}^{0}e^{-i2\pi/5} \\ By_{d}^{0}e^{-i3\pi/5} & y_{s}^{0}e^{-i2\pi/5} & Cy_{d}^{0}e^{-i3\pi/5} \\ By_{d}^{0}e^{-i3\pi/5} & 0 & y_{b}^{0} + Cy_{d}^{0}e^{-i3\pi/5} \end{pmatrix}$$
$$M_{R} \approx \begin{pmatrix} M_{1}e^{8i\pi/5} & 0 & 0 \\ 0 & M_{2}e^{4i\pi/5} & 0 \\ 0 & 0 & M_{3} \end{pmatrix} \qquad Y^{e} = \begin{pmatrix} -(y_{d}^{0}/3)e^{-i2\pi/5} & 0 & Ay_{d}^{0}e^{-i3\pi/5} \\ By_{d}^{0}e^{-i3\pi/5} & -4.5y_{s}^{0}e^{-i2\pi/5} & -3Cy_{d}^{0}e^{-i3\pi/5} \\ By_{d}^{0}e^{-i3\pi/5} & 0 & y_{b}^{0} - 3Cy_{d}^{0}e^{-i3\pi/5} \end{pmatrix}$$

SO (10)-like diagonal RHN masses $M_1: M_2: M_3 \sim m_u^2: m_c^2: m_t^2$ Physical neutrino masses in a normal hierarchy CSD (4) Explains the Cabibbo angle $\theta_C \approx 1/4$ or $\theta_C \approx 14^\circ$ All CP phases are fifth roots of unity due to Z_5

A to Z of Flavour with Pati-Salam

Björkeroth, S.F.K.

15 inputs

20 outputs $\chi^2 = 12.7$ (to appear) $\tan\beta$ Input Output 4.528×10^{-6} 2.88×10^{-6} θ_{12}^q 13.027° \boldsymbol{a} y_u θ_{13}^q 3.446×10^{-4} 1.41×10^{-3} 0.1802° b y_c 5.20×10^{-1} θ_{23}^q 5.229×10^{-1} 2.054° \boldsymbol{C} y_t y_d^0 5.690×10^{-5} 4.85×10^{-6} δ^q 69.21° y_d y_s^0 8.864×10^{-4} 9.60×10^{-5} y_s y_b^0 -7.345×10^{-2} 7.38×10^{-3} y_b $7.50 \times 10^{-5} \text{ eV}^2$ 34.3° Δm^2_{21} θ_{12}^l M_1 1.793×10^{4} 10 PMNS $2.46 \times 10^{-3} \text{ eV}^2$ θ_{13}^l 1.793×10^{9} Δm^{2}_{31} 8.67° M_2 θ_{23}^l predictions 2.436×10^{16} 45.8° M_3 δ^l -86.7° -2.221×10^{-3} 1.98×10^{-6} ϵ y_e 11.5 4.19×10^{-4} A y_{μ} 7.15×10^{-3} B6.93 y_{τ} C46.2 $m_1 \approx 0$ 4.76x

M-theory GUTs

- □ M-theory → 11d SUGRA → 4d N=1 SUGRA
- □ compactified 7d → G2 manifold

Witten, Acharya, Kane,...

- Gauge fields on dominant volume 3d submanifold
- 0 SU(5) GUT
- 0 SO(10) GUT

main prediction: extra 16+16bar at TeV scale

Acharya, Bozek, M.C.Romao, S.F.K. and Pongkitivanichkul 1502.01727

F-theory SU(5)

 $E_8 \to SU(5)_{\rm GUT} \times SU(5)_{\perp}$ Conventionally Heckman and Vafa $SU(5)_{\perp} \rightarrow U(1)^4_{\perp}$

New possibilities Antoniadis and Leontaris

G.K.Leontaris, ``The origin of discrete SU(5)symmetries in F-theory models, '' arXiv:1501.06499 [hep-th]. $B_3 \sim \text{gravity}$ Σ_{matter} Yukawa $\mathcal{N}=1$ $SU(5)_{GUT}$

Karozas, S.F.K., Leontaris $SU(5)_{\perp} \rightarrow S_4 \times U(1)_{\perp}$ S_4, A_4, D_4 and Meadowcroft, 1505.00937, 1406.6290 $SU(5)_{\perp} \to A_4 \times U(1)_{\perp}$ Identified as discrete $SU(5)_{\perp} \rightarrow D_4 \times U(1)_{\perp}$ famíly symmetries

Dimou, Hagedorn, S.F.K., Luhn (to appear) Testing SUSY flavour models

semi	Ν	Matter	fiel	ds	Hi	iggs fie	elds				Flavon	fields		5.7		
direct model	T_3	Т	F	ν^c	H_5	$H_{\overline{5}}$	$H_{\overline{45}}$	$\overline{\phi^u_2}$	$\widetilde{\phi}_2^{\scriptscriptstyle u}$	ϕ_3^d	$\widetilde{\phi}^d_{oldsymbol{3}}$	ϕ^d_2	$\phi^{ u}_{3'}$	$\phi_2^{ u}$	$\phi_1^{ u}$	$-\eta$
$SU(5)$ S_4 $U(1)$	10 1 0	10 2 5	5 3 4	1 3 -4	5 1 0	5 1 0	45 1 1	1 2 -10	1 2 0	1 3 -4	1 3 -11	1 2 1	1 3' 8	1 2 8	1 1 8	1 1 7
δ^u_{LL}	$\sim \begin{pmatrix} 1 \\ \cdot \\ \cdot \\ \cdot \end{pmatrix}$	$\lambda^4 \lambda^6$ 1 λ^4 \cdot 1	$\begin{pmatrix} 6\\5\\ \end{pmatrix}$,	δ^u_{RR} ,	$\sim \begin{pmatrix} 1 \\ \cdot \\ \cdot \\ \cdot \end{pmatrix}$	$egin{array}{ccc} \lambda^4 & \lambda^6 \ 1 & \lambda^5 \ \cdot & 1 \end{array}$	$\Big), \delta$	$\tilde{b}^u_{LR} \sim \left($	$egin{pmatrix} \lambda^8 & 0 \ 0 & \lambda^4 \ 0 & \lambda^7 \ \end{pmatrix}$	$egin{array}{c} \lambda^7 \ \lambda^6 \ 1 \ \end{pmatrix},$	Mím Víolati	ics M ion (r pc	íním NFV) owers d	al Fla due t of λ ?	vour o hígl ≈ 0.2	h 22
$\delta^d_{LL} \sim$	$\left(egin{array}{ccc} 1 \ \lambda^3 \ \cdot \ 1 \ \cdot \ \cdot \end{array} ight)$	$\begin{pmatrix} 3 & \lambda^4 \\ \lambda^2 \\ 1 \end{pmatrix}$,	$\delta^d_{RR} \sim$	$\begin{pmatrix} 1 \ \lambda^4 \\ \cdot \ 1 \\ \cdot \ \cdot \end{pmatrix}$	$\begin{pmatrix} \lambda^4 \\ \lambda^4 \\ 1 \end{pmatrix}$	$, \delta^d_{LR}$	$\sim \begin{pmatrix} \lambda^6 \\ \lambda^5 \\ \lambda^6 \end{pmatrix}$	$egin{array}{ccc} \lambda^5 & \lambda^5 \ \lambda^4 & \lambda^4 \ \lambda^6 & \lambda^2 \end{array}$		$(\delta^f_{LL}$	$)_{ij} = -$	$\frac{(m_{\tilde{f}_{LL}}^2)}{\langle m_{\tilde{f}} \rangle_L^2}$ $(m_{\tilde{f}_{RR}}^2)$	$\frac{ij}{L}$ ij		
$\delta^e_{LL} \sim$	$\left(egin{array}{ccc} 1 \ \lambda^4 \ \cdot \ 1 \ \cdot \ \cdot \end{array} ight)$	$\begin{pmatrix} 4 & \lambda^4 \\ \lambda^4 \\ 1 \end{pmatrix}$,	$\delta^e_{RR} \sim$	$ \begin{pmatrix} 1 & \lambda^3 \\ \cdot & 1 \\ \cdot & \cdot \end{pmatrix} $	$\begin{pmatrix} \lambda^4 \\ \lambda^2 \\ 1 \end{pmatrix}$	$, \delta^e_{LR}$	$\sim \begin{pmatrix} \lambda^6 \\ \lambda^5 \\ \lambda^5 \end{pmatrix}$	$\lambda^5 \ \lambda^6 \ \lambda^4 \ \lambda^6 \ \lambda^4 \ \lambda^2$		(δ^f_{LR})	$(j)_{ij} = -$	$\frac{\langle m_{\tilde{f}} \rangle_{RI}^2}{(m_{\tilde{f}_{LR}}^2)}$ $\frac{\langle m_{\tilde{f}} \rangle_{L}^2}{\langle m_{\tilde{f}} \rangle_{L}^2}$	$\frac{1}{R}$		

Dimou, Hagedorn, S.F.K., Luhn (to appear)

Testing SUSY flavour models

			\mathcal{L}_{S}
Parameter	Our naive expectation	Our range	Exp. bound
$ (\delta^d_{LL})_{23} $	$\mathcal{O}\left(\frac{2R_q \eta \lambda^2}{1+6.5x} _{b_{01}=b_{02}} \approx 4 \times 10^{-3}\right)$	$\mathcal{O}(10^{-5}, 5 \times 10^{-2})$	$\mathcal{O}(10^{-2}, 10^{-1})$
$ (\delta^d_{RR})_{23} $	$\mathcal{O}\left(\frac{\lambda^4}{1+6.1x}\approx 4\times 10^{-4}\right)$	$\mathcal{O}(10^{-5}, 10^{-2})$	$\mathcal{O}(10^{-1},1)$
$ (\delta^d_{LR})_{23} $	$\mathcal{O}\left(\frac{\upsilon_d A_0 \lambda^4}{m_0^2(1+6x)} \approx 10^{-6}\right)$	$\mathcal{O}(10^{-9}, 5 \times 10^{-4})$	$\mathcal{O}(10^{-3}, 10^{-2})$
$ (\delta^d_{RL})_{23} $	$\mathcal{O}\left(\frac{\upsilon_d A_0 \lambda^6}{m_0^2(1+6x)} \approx 5 \times 10^{-8}\right)$	$\mathcal{O}(10^{-11}, 5 \times 10^{-6})$	$O(10^{-2})$

 $\mu \to e\gamma$

R

Parameter	Our naive expectation	Our range	Exp. bound
$ (\delta^e_{LL})_{12} $	$\mathcal{O}\left(\frac{1+\frac{2R_l\eta_N}{1+0.5x}}{\lambda^4} \sim 10^{-3}\right)$	$O(10^{-6} 5 \times 10^{-2})$	$\mathcal{O}(10^{-5}, 10^{-4})$
$ (\delta^e_{LL})_{23,13} $	$\bigcup_{n=1+0.5x} x \sim 10$		$\mathcal{O}(10^{-2}, 10^{-1})$
$ (\delta^e_{RR})_{12} $	$\mathcal{O}\left(\frac{2}{3}\frac{\lambda^3}{1+0.15x}\approx 6\times 10^{-3}\right)$	$\mathcal{O}(10^{-5}, 5 \times 10^{-2})$	$\mathcal{O}(10^{-3}, 10^{-2})$
$ (\delta^e_{RR})_{23} $	$\mathcal{O}\left(3\frac{\lambda^2}{1+0.15x}\approx10^{-1}\right)$	$\mathcal{O}(10^{-3}, 10^{-1})$	$\mathcal{O}(10^{-1},1)$
			$ au o \mu\gamma$

- GUT x Discrete Family Symmetry very predictive framework
- Dírect models: Klein and T from Delta (Gn²), zero Dírac phase
- □ <u>Semi-direct models</u>: partial symmetry S or SU, allows smaller groups, lepton mixing sum rules, possible CP phase predictions
- Indirect models: allows A₄ with CSD alignments, gives minimal predictive seesaw with CSD(3) being most successful
- □ A4XSU(5) SUSY GUT based on CSD(3), quite complete
- Ato Z. Patí-Salam based on CSD(4), unifies RH neutrinos
- □ Good motivation for discrete symmetries from string/F-theory
- SUSY flavour models mímic MFV but with testable deviations