

 Neutrinos, Flavour and

 Neutrinos, Flavour and}

CP violation

Manzanillo,
2nd July, 2015

Lepton Mixing Matrix

Standard Model states
PMNS matrix
Neutrino mass states

$\downarrow=\left(\begin{array}{ccc}1 & 0 & 0 \\
0 & c_{23}^{l} & s_{23}^{l} \\
0 & -s_{23}^{l} & c_{23}^{l}\end{array}\right)\left(\begin{array}{ccc}c_{13}^{l} & 0 & s_{13}^{l} e^{-i \delta^{l}} \\
0 & 1 & 0 \\
-s_{13}^{l} e^{i \delta^{l}} & 0 & c_{13}^{l}\end{array}\right)\left(\begin{array}{ccc}c_{12}^{l} & s_{12}^{l} & 0 \\
-s_{12}^{l} & c_{12}^{l} & 0 \\
0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\
0 & \frac{\alpha_{21}}{2} & 0 \\
0 & 0 & \frac{\alpha_{31}}{2}\end{array}\right)$
$s_{i j}^{l}=\sin \left(\theta_{i j}^{l}\right)$

$c_{i j}^{l}=\cos \left(\theta_{i j}^{l}\right) \quad$ Atmospheric \quad Reactor \quad| solar |
| :---: |
| Majorana |

oscillation phase δ^{l}
majorana phases α_{21}, α_{31}

3 masses +3 angles +3 phases $=$ 9 new parameters for SM

Gonzalez-Garcia et al = Gonzalez-Garcia, Maltoni, Salvado, Schwetz Fogli et al = Capozzi, Fogli, Lisi, Marrone, Montanino, Palazzo Forero et al = Forero, Tortola, Valle

Global Fits 2014 35°

$\theta_{13}=\frac{\theta_{C}}{\sqrt{2}}$
-9.2°

Lepton Mixing Angles (approx.)

Daya bay $\sin ^{2} 2 \theta_{13}=0.084_{-0.005}^{+0.005} \longleftrightarrow \theta_{13}=8.4^{\circ} \pm 0.3^{\circ}$
Note the magic number 8.4!!

- Taking reactor θ_{13} results, CP phase is constrained to be close to $-\pi / 2$
- This is a very lucky value for NOVA and other accelerator experiments
- Mass hierarchy and CP phase will be known soon ?

Hint for $\delta_{C P} \approx-90^{\circ}$ and NH

Seesaw motivates Standard Model with right-handed neutrinos

$$
S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}
$$

Left-handed quarks and leptons (active neutrinos)

Right-handed quarks and leptons (sterile neutrinos)

FLASY2015
Flavor symmetries and consequences in accelerators and cosmology

June 29 - July 2, 2015
see talk by valle
But maybe neutrinos are Dirac...
Aranda, Bonilla, Morisi, Peinado,Valle, arXiv:1307.3553

What is the origin of Quark and Lepton Mixing?

CKM
PMNS

C
t
b

v_{2}
v_{3}-

$$
\begin{array}{ll}
\nu_{\mu} & \square \\
\nu_{\tau} & \square
\end{array}
$$

\square
\square

GUTs and FLASY

FLASY

symmetry of Majorana matrix depends on PMNS

$$
m_{\nu}=S^{T} m_{\nu} S \quad m_{\nu}=U^{T} m_{\nu} U
$$

$\left.\begin{array}{rl}S & =U_{\text {PMNS }}^{*} \operatorname{diag}(+1,-1,-1) U_{\text {PMNS }}^{T} \\ U & =U_{\text {PMNS }}^{*} \operatorname{diag}(-1,+1,-1) U_{\text {PMNS }}^{T} \\ U & =U_{\text {PMNS }}^{*} \operatorname{diag}(-1,-1,+1) U_{\text {PMNS }}^{T}\end{array}\right\}$
Klein symmetry

$$
\begin{aligned}
\mathcal{K}= & \{1, S, U, S U\} \\
& Z_{2} \times Z_{2}
\end{aligned}
$$

Direct Models

Klein symmetry S, U and
T are each identified as subgroups of some family symmetry

$$
\Delta\left(6 n^{2}\right)
$$

is the only viable symmetry class predicts zero Dirac CPV but non-zero Majorana phases

Holthausen, Lim, Lindner;
SK, Neder, Stuart; Lavoura, Ludl; Fonseca, Grimus

Family Symmetry

Klein symmetry and T are partly preserved as subgroups of some family symmetry

Reviews:
S.F.K., Luhn
1301.1340;
S.F.K., Merle, Morisi, Shimizu, Tanimoto, 1402.4271

Antusch, S.F.K. 0506297/0508044
1202.

$\theta_{12} \approx \theta_{12}^{\nu}+\theta_{13} \cos \delta$

$\cos \delta=\frac{t_{23} s_{12}^{2}+s_{13}^{2} c_{12}^{2} / t_{23}-s_{12}^{\nu 2}\left(t_{23}+s_{13}^{2} / t_{23}\right)}{\sin 2 \theta_{12} s_{13}}$. $\cos \delta \sim\left(\theta_{12}-\theta_{12}^{\nu}\right) / \theta_{13} \quad|\Delta(\cos \delta)| \lesssim 0.1$ for TB Ballett, SK, Luhn, Pascoli, Schmidt 1410.7573
Girardi, Petcov, Titov 1410.8056
see talk by Girardi for other references

$-\mathrm{S}_{4}$ and A_{4} models with CP symmetry are constructed, all the possible cases following from the model-independent analysis can be realized. Dirac CP phase is predicted to be trivial or maximal.

Family symmetry

$$
H\left(L . \phi_{\mathrm{atm}}\right) N_{\mathrm{atm}}^{c}+H\left(L . \phi_{\mathrm{sol}}\right) N_{\mathrm{sol}}^{c}+M_{\mathrm{atm}} N_{\mathrm{atm}}^{c} N_{\mathrm{atm}}^{c}+M_{\mathrm{sol}} N_{\mathrm{sol}}^{c} N_{\mathrm{sol}}^{c}
$$

$$
\left\langle\phi_{\mathrm{atm}}\right\rangle=v_{\mathrm{atm}}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), \quad\left\langle\phi_{\mathrm{sol}}\right\rangle=v_{\mathrm{sol}}\left(\begin{array}{c}
1 \\
n \\
n-2
\end{array}\right)
$$

$$
\operatorname{CSD}(\mathrm{n})
$$

("predictive")

$$
\lambda^{\nu}=\left(\begin{array}{cc}
0 & b \\
a & n b \\
a & (n-2) b
\end{array}\right), \quad \begin{gathered}
M^{c} \\
\text { PMNS fixed by } \\
\text { one free phase }
\end{gathered},\left(\begin{array}{cc}
M_{1} & 0 \\
0 & M_{2}
\end{array}\right) \quad \begin{aligned}
& \text { Seesaw } \\
& \text { matrices }
\end{aligned}
$$

$$
m_{(n)}^{\nu}=m_{a}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)+m_{b} e^{\text {in }}\left(\begin{array}{ccc}
1 & n & n-2 \\
n & n^{2} & n(n-2) \\
n-2 & n(n-2) & (n-2)^{2}
\end{array}\right) \begin{gathered}
\text { Neutrino } \\
\text { mass } \\
\text { matrix }
\end{gathered}
$$

(a) $\operatorname{CSD}(3)$

60

(b) $\operatorname{CSD}(4)$

60

(c) $\operatorname{CSD}(5)$

Minimum χ^{2} predictions

n	m_{a} (meV)	m_{b} (meV)	η (rad)	θ_{12} $\left({ }^{\circ}\right)$	θ_{13} $\left({ }^{\circ}\right)$	θ_{23} $\left({ }^{\circ}\right)$	$\left\|\delta_{\mathrm{CP}}\right\|$ $\left({ }^{\circ}\right)$	m_{2} (meV)	m_{3} (meV)	χ^{2}
1	24.8	2.89	3.14	35.3	0	45.0	0	8.66	49.6	485
2	19.7	3.66	0	34.5	7.65	56.0	0	8.85	48.8	95.1
3	27.3	2.62	2.17	34.4	8.39	44.5	92.2	8.69	49.5	3.98
4	36.6	1.95	2.63	34.3	8.72	38.4	120	8.61	49.8	8.82
5	45.9	1.55	2.88	34.2	9.03	34.4	142	8.53	50.0	33.8
6	55.0	1.29	3.13	34.2	9.30	31.6	179	8.46	50.2	65.2
7	63.0	1.12	3.14	34.1	9.68	31.0	180	8.35	50.6	100
8	71.0	0.984	3.14	34.0	9.96	30.6	180	8.25	50.8	135
9	79.0	0.880	3.14	33.9	10.2	30.3	180	8.17	51.0	168

Note: if eta is positive then delta_CP is negative (consistent with the -90 deg hint!)

3 inputs 6 outputs (incl. CP phase)

n	m_{a} (meV)	m_{b} (meV)	η (rad)	θ_{12} $\left({ }^{\circ}\right)$	θ_{13} $\left({ }^{\circ}\right)$	θ_{23} $\left({ }^{\circ}\right)$	δ_{CP} $\left({ }^{\circ}\right)$	m_{2} (meV)	m_{3} (meV)	χ^{2}
3	27.3	2.62	2.17	34.4	8.39	44.5	-92.2	8.69	49.5	3.98
4	36.6	1.95	2.63	34.3	8.72	38.4	-120	8.61	49.8	8.82
5	45.9	1.55	2.88	34.2	9.03	34.4	-142	8.53	50.0	33.8

BAL $\quad Y_{B}=\frac{675}{31 \pi^{5} g_{*}} \frac{M_{1} m_{b}}{v_{u}^{2}} \eta_{1, \mu}(n-1)^{2} \sin (\eta)$ Washouts depend on m_{a} $\operatorname{CSD}(3): \quad Y_{B} \sim 2.2 \times 10^{-11}\left[\frac{M_{1}}{10^{10} \mathrm{GeV}}\right] \quad \Rightarrow \quad M_{1} \sim 4.0 \times 10^{10} \mathrm{GeV}$
$\operatorname{CSD}(4): \quad Y_{B} \sim 1.5 \times 10^{-11}\left[\frac{M_{1}}{10^{10} \mathrm{GeV}}\right] \Rightarrow \quad M_{1} \sim 5.8 \times 10^{10} \mathrm{GeV}$
$\operatorname{CSD}(5): \quad Y_{B} \sim 0.86 \times 10^{-11}\left[\frac{M_{1}}{10^{10} \mathrm{GeV}}\right] \Rightarrow \quad M_{1} \sim 10 \times 10^{10} \mathrm{GeV}$

Note the correlations:
Positive BAU
\& positive lepto phase
\& negative CP phase

Björkeroth, de Anda, de Medieoros Varzielas and S.F.K. 1503.03306

$\mathrm{A}_{4} \times S U(5)$ SUSY GUT
 Quite complete model!

- Renormalisable at GUT scale, $\operatorname{SU}(5)$ breaking potential, spontaneously broken CP.
- The MSSM is reproduced with R-parity emerging from a discrete $Z_{4}{ }^{R}$.
- Doublet-triplet splitting is achieved through the Missing Partner mechanism.
- mu term is generated at the correct scale.
- Proton decay is sufficiently suppressed.
- It solves the strong CP problem through the Nelson-Barr mechanism .
- Explains quark mass hierarchies, mixing angles and the CP phase.
- Reproduces minimal predictive seesaw model via A4 vacuum alignments with CSD(3).

Left-handed quarks and leptons triplets of A_{4}
 Right-handed quarks and leptons distinguished by Z_{5}

A to Z of Flavour with Pati-Salam

$$
\begin{aligned}
& Y^{u}=Y^{\nu}=\left(\begin{array}{ccc}
0 & e^{-i 3 \pi / 5} & \epsilon c \\
a e^{-i 33 \pi / 5} & 4 b e^{-i 3 \pi / 5} & 0 \\
a e^{-i 3 \pi / 5} & 2 b e^{-i 3 \pi / 5} & c
\end{array}\right) \quad Y^{d}=\left(\begin{array}{ccc}
y_{d}^{0} e^{-i 2 \pi / 5} & 0 & A y_{d}^{0} e^{-i 2 \pi / 5} \\
B y_{d}^{0} e^{-i 3 \pi / 5} & y_{s}^{0} e^{-i 2 \pi / 5} & C y_{d}^{0} e^{-i 3 \pi / 5} \\
B y_{d}^{d} e^{-i 3 \pi / 5} & 0 & y_{b}^{0}+C y_{d}^{0} e^{-i 3 \pi / 5}
\end{array}\right) \\
& M_{R} \approx\left(\begin{array}{cccc}
M_{1} e^{8 i \pi / 5} & 0 & 0 \\
0 & M_{2} e^{4 i \pi / 5} & 0 \\
0 & 0 & M_{3}
\end{array}\right) \quad Y^{e}=\left(\begin{array}{cccc}
-\left(y_{d}^{0} / 3\right) e^{-i 2 \pi / 5} & 0 & A y_{d}^{0} e^{-i 2 \pi / 5} \\
B y_{e}^{0} e^{-i 3 \pi / 5} & -4.5 y_{s}^{0} e^{-i 2 \pi / 5} & -y_{d}^{0} y_{d}^{0} e^{-i 3 \pi / 5} \\
B y_{d}^{0} e^{-i 3 \pi / 5} & 0 & y_{b}^{0}-3 C y_{d}^{0} e^{-i 3 \pi / 5}
\end{array}\right)
\end{aligned}
$$

SO (10)-like diagonal RHN masses $M_{1}: M_{2}: M_{3} \sim m_{u}^{2}: m_{c}^{2}: m_{t}^{2}$ Physical neutrino masses in a normal hierarchy CSD (4) Explains the cabibbo angle $\theta_{C} \approx 1 / 4$ or $\theta_{C} \approx 14^{\circ}$

All CP phases are fifth roots of unity due to Z_{5}

A to Z of Flavour with Pati-Salam

15 inputs $\quad 20$ outputs $\quad \chi^{2}=12.7$

I. M-theory \rightarrow 11d SUGRA $\rightarrow 4 d N=1$ SUGRA

- compactified $7 d \rightarrow G_{12}$ manifold

Witten, Acharya, Kane,...

- Gauge fields on dominant volume 3 d submanifold
- su(5) GUT
- SO(10) GUT
- main prediction: extra 16+16bar at TeV scale

F-theory

 SU(5)$E_{8} \rightarrow S U(5)_{\text {GUT }} \times S U(5)_{\perp}$ conventionally $\begin{gathered}\text { Hackman } \\ \text { and data }\end{gathered}$ $S U(5)_{\perp} \rightarrow U(1)_{\perp}^{4}$ New possibílitiées Antoniadis and

- The origin of discrete symmetries in F-theory models,' ' arXiv:1501.06499 [hep-th].

$$
\mathrm{B}_{3} \sim \text { gravity }
$$

Testing SUSY flavour models

semi direct mode	Matter fields				Higgs fields			Flavon fields								
	T_{3}	T	F	ν^{c}	H_{5}	H_{5}	H_{45}	ϕ_{2}^{u}	$\widetilde{\phi}_{2}^{u}$	ϕ_{3}^{d}	$\widetilde{\phi}_{3}^{d}$	ϕ_{2}^{d}	$\phi^{\prime}{ }^{\prime}$	ϕ_{2}^{ν}	ϕ_{1}^{ν}	η
$S U(5)$	10	10	$\overline{5}$	1	5	$\overline{5}$	$\overline{45}$	1	1	1	1	1	1	1	1	1
S_{4}	1	2	3	3	1	1	1	2	2	3	3	2	3^{\prime}	2	1	1
$U(1)$	0	5	4	-4	0	0	1	-10	0	-4	-11	1	8	8	8	7

$$
\begin{gathered}
\delta_{L L}^{u} \sim\left(\begin{array}{ccc}
1 & \lambda^{4} \lambda^{6} \\
\cdot & 1 & \lambda^{5} \\
\cdot & \cdot & 1
\end{array}\right), \quad \delta_{R R}^{u} \sim\left(\begin{array}{ccc}
1 & \lambda^{4} & \lambda^{6} \\
\cdot & 1 & \lambda^{5} \\
\cdot & \cdot & 1
\end{array}\right), \quad \delta_{L R}^{u} \sim\left(\begin{array}{ccc}
\lambda^{8} & 0 & \lambda^{7} \\
0 & \lambda^{4} & \lambda^{6} \\
0 & \lambda^{7} & 1
\end{array}\right), \\
\begin{array}{c}
\text { Mimics Minimal Flavour } \\
\text { violation (MFV) due to high }
\end{array} \\
\text { powers of } \lambda \approx 0.22
\end{gathered}
$$

Testing SUSY flavour models

B_{s}

Parameter	Our naive expectation	Our range	Exp. bound
$\left\|\left(\delta_{L L}^{d}\right)_{23}\right\|$	$\mathcal{O}\left(\frac{2 R_{q} \eta \lambda^{2}}{1+6.5 v^{2}} b_{01}=b_{02} \approx 4 \times 10^{-3}\right)$	$\mathcal{O}\left(10^{-5}, 5 \times 10^{-2}\right)$	$\mathcal{O}\left(10^{-2}, 10^{-1}\right)$
$\left\|\left(\delta_{R R}^{d}\right)_{23}\right\|$	$\mathcal{O}\left(\frac{\lambda^{4}}{1+1.6 .1 x} \approx 4 \times 10^{-4}\right)$	$\mathcal{O}\left(10^{-5}, 10^{-2}\right)$	$\mathcal{O}\left(10^{-1}, 1\right)$
$\left\|\left(\delta_{L R}^{d}\right)_{23}\right\|$	$\mathcal{O}\left(\frac{v_{0} A_{0} \lambda^{4}}{m_{0}^{2}(1+6 x)} \approx 10^{-6}\right)$	$\mathcal{O}\left(10^{-9}, 5 \times 10^{-4}\right)$	$\mathcal{O}\left(10^{-3}, 10^{-2}\right)$
$\left\|\left(\delta_{R L}^{d}\right)_{33}\right\|$	$\mathcal{O}\left(\frac{v_{L} A_{0} \lambda^{6}}{m_{0}^{2}(1+6 x)} \approx 5 \times 10^{-8}\right)$	$\mathcal{O}\left(10^{-11}, 5 \times 10^{-6}\right)$	$\mathcal{O}\left(10^{-2}\right)$

$$
\mu \rightarrow e \gamma
$$

Parameter	Our naive expectation	Our range	Exp. bound
$\left\|\left(\delta_{L L}^{e}\right)_{12}\right\|$	$\mathcal{O}\left(\frac{1+\frac{2 R_{n+n}}{1+0.5 x}}{1+0.5 x} \lambda^{4} \approx 10^{-3}\right)$	$\mathcal{O}\left(10^{-6}, 5 \times 10^{-2}\right)$	$\mathcal{O}\left(10^{-5}, 10^{-4}\right)$
$\left.\mid \delta_{L L}\right)_{23,13} \mid$	$\mathcal{O}\left(10^{-2}, 10^{-1}\right)$		
$\left\|\left(\delta_{R R}^{e}\right)_{12}\right\|$	$\mathcal{O}\left(\frac{2}{3} \frac{\lambda^{3}}{1+0.15 x} \approx 6 \times 10^{-3}\right)$	$\mathcal{O}\left(10^{-5}, 5 \times 10^{-2}\right)$	$\mathcal{O}\left(10^{-3}, 10^{-2}\right)$
$\left\|\left(\delta_{R R}^{e}\right)_{23}\right\|$	$\mathcal{O}\left(3 \frac{\lambda^{2}}{1+0.15 x} \approx 10^{-1}\right)$	$\mathcal{O}\left(10^{-3}, 10^{-1}\right)$	$\mathcal{O}\left(10^{-1}, 1\right)$

Conclusions

- GUT X Discrete Family symmetry very predictive framework
- Direct models: Klein and T from Delta $\left(6 n^{2}\right)$, zero Dirac phase
- Semi-direct models: partial symmetry sor su, allows smaller groups, lepton mixing sum rules, possible CP phase predictions
- Indirect models: allows A_{4} with CSD alignments, gives minimal predictive seesaw with CSD (3) being most successful
- A4xSU(5) SUSY GUT based on CSD (3), quite complete
- A to Z Pati-Salam based on CSD (4), unifies RH neutrinos
- Good motivation for discrete symmetries from string/F-theory
- SUSY flavour models mimic MFV but with testable deviations

