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The PMNS matrix is then given by

UPMNS = UeLU
†
⇥L

. (31)

We use a standard parameterization UPMNS = Rl
23U

l
13R

l
12P

l in terms of slij = sin(⌃lij),
clij = cos(⌃lij), the Dirac CP violating phase ⇤l and further Majorana phases contained

in P l = diag(ei
⇥l1
2 , ei

⇥l2
2 , 1). The standard PDG parameterization [24] di�ers slightly due

to the definition of Majorana phases which are by given by P l
PDG = diag(1, ei

�21
2 , ei

�31
2 ).

Evidently the PDG Majorana phases are related to those in our convention by �21 =
⇥l
2 � ⇥l

1 and �31 = �⇥l
1, after an overall unphysical phase is absorbed by UeL .

Using the see-saw formula in Eq.29, with the neutrino Yukawa matrix Y ⇥ in Eq.15
and the right-handed Majorana mass matrix MR in Eq.22, we find the neutrino mass
matrix m⇥ , up to an overall irrelevant phase which may be taken to be real, can be
written as

m⇥ = ma
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where ma = |a|2v2u/|M̃1|, mb = |b|2v2u/|M̃2|, mc = |c|2v2u/(9|M̃3|) are real parameter com-
binations which determine the three physical neutrino masses m3,m2,m1, respectively.
Note that m1 is suppressed by a factor of 9 compared to the other neutrino masses due
to the Clebsch-Gordan factor of 1/3 in the third family Dirac neutrino mass. We written
the relative phase di�erence between the first two two terms as 2⇧. As shown recently
[7], fixing ⇧ = �2�/5, using the phases of the singlet flavon VEVs ⇤⌥i⌅, then determines
all the lepton mixing angles and phases in terms of the ratio ⌅⇥ = mb/ma. Since this
phase is crucial to the predictions in the lepton sector, it is worthwhile discussing the
origin of this phase in more detail.

In order to understand the origin of phases which enter the neutrino mass matrixm⇥ ,
it is worth recalling that the operators responsible for the neutrino Yukawa and Majorana
masses are those given in Eqs.14 and 21. Implementing the see-saw mechanism, the
e�ective neutrino mass matrix m⇥ in Eq. 32 emerges from the flavon combinations,

m⇥ ⇥ ⇤ atm⌅⇤ atm⌅T

⇤⌥atm⌅
+

⇤ sol⌅⇤ sol⌅T

⇤⌥sol⌅
+

⇤ dec⌅⇤ dec⌅T

⇤⌥dec⌅
. (33)

Notice that the powers of ⌅ cancel in the see-saw mechanism, leading to a rather mild
hierarchy in the neutrino sector. Since we are assuming that the original theory respects
CP, the only source of phases can be the VEVs of flavons. The phase ⇧ = �2�/5 then
must arise from the di�erence between flavon VEVs. The phases of flavon VEVs arise
in the context of spontaneous CP violation from discrete symmetries as discussed in
[26], and we shall follow the strategy outlined there. The basic idea is to impose CP
conservation on the theory so that all couplings and masses are real. Note that the
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Figure 4: The mixing angles obtained from the three global fits [56–58]. The upper three panels
correspond to the results for normal neutrino mass ordering (NO), while the lower three panels are
for an inverted mass ordering (IO). Shown are the best fit values (green) as well as the 1σ (red)
and 3σ (blue) intervals. Note that the solar angle is insensitive to the mass ordering.

A few comments are relevant about these angles. Firstly the errors are not linear, since,

for one thing, the global fits are made in terms of the squares of the sines of the angles.

Having said this, in the case of normal neutrino mass ordering, there is a preference for

the atmospheric angle to be in the first octant (i.e. less than 45◦) and hence not maximal

mixing. Secondly, as already noted, the solar angle is still consistent with trimaximal

mixing (i.e. 35.26◦) but there is a preference for it to be slightly smaller.

3. Patterns of lepton mixing and sum rules

3.1 Simple forms of neutrino mixing

Below we give three examples of simple patterns of mixing in the neutrino sector which all

have s13 = 0 and s23 = c23 = 1/
√
2. Inserting these values in Eq. (2.1) we obtain a PMNS

matrix of the form,

U0 =




c12 s12 0

− s12√
2

c12√
2

1√
2

s12√
2

− c12√
2

1√
2



 , (3.1)

where the zero subscript reminds us that this form has θ13 = 0 (and θ23 = 45◦).

For golden ratio (GR) mixing [59], the solar angle is given by tan θ12 = 1/φ, where

φ = (1 +
√
5)/2 is the golden ratio which implies θ12 = 31.7◦. There is an alternative

version where cos θ12 = φ/2 and θ12 = 36◦ [60], which we refer to as GR′ mixing.
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Lepton Mixing Angles (approx.)

✓23 = 45o ± 3o
✓12 = 34o ± 1o

Recent Results 

 sin2213)/sin2213 ~ 6%, the best 
among all mixing angles 

 M2
ee)/M2

ee~ 5%, similar to that 
of MINOS 

 nH results ~4.5,  independent check 
 

nGd rate+shape nH rate 

Daya bay ✓13 = 8.4o ± 0.3o

✓13 = 8.4o ± 0.3o

Note the magic 
number 8.4!!



CP Phase is known ?  
• Taking reactor 13 results, 

CP phase is constrained to 
be close to –/2 

• This is a very lucky value for 
NOVA and other accelerator 
experiments  

• Mass hierarchy and CP 
phase will be known soon ?  

C. Water@neutrino2014 

T2K

Hint for
and NH           

�CP ⇡ �90�

Daya Bay

Daya Bay 2014



Seesaw motivates Standard Model 
with right-handed neutrinos 

Left-handed quarks and 
leptons (active neutrinos)

Right-handed quarks and 
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Mass 

What is the origin of quark and charged lepton masses?
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What is the origin of 
neutrino mass?

See talk by Valle

But maybe neutrinos are 
Dirac...

Aranda,Bonilla,Morisi,
Peinado,Valle,
  arXiv:1307.3553



What is the origin of Quark 
and Lepton Mixing?

New physics from flavour Sheldon Stone

1. Introduction: Reasons for physics beyond the Standard Model

Although the Standard Model (SM) of particle physics provides an excellent description of
electroweak and strong interactions, there are many reasons that we expect to observe new forces
giving rise to new particles at larger masses than the known fermions or bosons. One oft noted
source of this belief is the observation of dark matter in the cosmos as evidenced by galactic angular
velocity distributions [1], gravitational lensing [2], and galactic collisions [3]. The existence of dark
energy, believed to cause the accelerating expansion of the Universe, is another source of mystery
[4]. The fine tuning of quantum corrections needed to keep, for example, the Higgs boson mass at
the electroweak scale rather than near the Planck scale is another reason habitually mentioned for
new physics (NP) and is usually called “the hierarchy problem” [5].

It is interesting to note that the above cited reasons are all tied in one way or another to
gravity. Dark matter may or may not have purely gravitational interactions, dark energy may be
explained by a cosmological constant or at least be a purely general relativistic phenomena, and the
Planck scale is defined by gravity; other scales may exist at much lower energies, so the quantum
corrections could be much smaller. There are, however, many observations that are not explained
by the SM, and have nothing to do with gravity, as far as we know. Consider the size of the quark
mixing matrix (CKM) elements [6] and also the neutrino mixing matrix (PMNS) elements [7].
These are shown pictorially in Fig. 1. We do not understand the relative sizes of these values or nor
the relationship between quarks and neutrinos.

d            s            b            

u

c

t

ν          ν          ν            

ν

ν

ν

1                   2                   3

e

μ

τ

CKM                             PMNS

Figure 1: (left) Sizes of the the CKM matrix elements for quark mixing, and (right) the PMNS matrix
elements for neutrino mixing. The area of the squares represents the square of the matrix elements.

We also do not understand the masses of the fundamental matter constituents, the quarks and
leptons. Not only are they not predicted, but also the relationships among them are not understood.
These masses, shown in Fig. 2, span 12 orders of magnitude [7]. There may be a connections
between the mass values and the values of the mixing matrix elements, but thus far no connection
besides simple numerology exists.

What we are seeking is a new theoretical explanation of the above mentioned facts. Of course,
any new model must explain all the data, so that any one measurement could confound a model.
It is not a good plan, however, to try and find only one discrepancy; experiment must determine a

2
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Figure 13: Some possible candidate unified gauge groups.

decompose into multiplets of the SM gauge group SU(3)C×SU(2)L×U(1)Y as F = (dc, L),

corresponding to,

5 = (3,1, 1/3) ⊕ (1,2,−1/2), (9.2)

and T = (uc, Q, ec), corresponding to,

10 = (3,1,−2/3) ⊕ (3,2, 1/6) ⊕ (1,1, 1). (9.3)

Thus a complete quark and lepton SM family (Q,uc, dc, L, ec) is accommodated in the

F = 5 and T = 10 representations, with right-handed neutrinos, whose CP conjugates are

denoted as νc, being singlets of SU(5), νc = 1. The Higgs doublets Hu and Hd which break

electroweak symmetry in a two Higgs doublet model are contained in the SU(5) multiplets

H5 and H
5
.

The Yukawa couplings for one family of quarks and leptons are given by,

yuH5iTjkTlmεijklm + yνH5iF
iνc + ydH

i
5
TijF

j , (9.4)

where εijklm is the totally antisymmetric tensor of SU(5) with i, j, j, k, l = 1, . . . , 5, which

decompose into the SM Yukawa couplings

yuHuQuc + yνHuLν
c + yd(HdQdc +Hde

cL). (9.5)

– 61 –
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Flavour Symmetry (FLASY) 
Escobar, Luhn

A5T7 S4

A4

⌃(168) �(96) SO(3)
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SU(3) �(6n2) ⇠= (Zn ⇥ Zn)o S3

�(3n2) ⇠= (Zn ⇥ Zn)o Z3

Luhn, Nasri, Ramond
Ma, Rajasekaran



The Klein Symmetry
Phase symmetry of diagonal charged 

lepton mass matrix

T †(M†
eMe)T = M†

eMe

Symmetry of Majorana matrix depends on PMNS

m⌫ = STm⌫S m⌫ = UTm⌫U
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Figure 8: A sketch of the direct model building approach. The charged lepton sector is (approxi-
mately) diagonal either due to a remnant (approximate) T symmetry or simply by construction.

Z2 factor arises accidentally. The flavons of semi-direct models appear linearly in the

neutrino mass term, similar to Eq. (6.10), and break G down to one of its Z2 subgroups.

An example of such a model is provided by the famous Altarelli-Feruglio A4 model of tri-

bimaximal mixing [30, 103]. A4 is the group of even permutations on four object, and as

such a subgroup of S4. It can be obtained from S4 by simply dropping the U generator.

Not being a part of the underlying family symmetry, it is therefore evident that the U

symmetry of Eq. (6.8) must arise accidentally.

6.4 The indirect model building approach

In the class of indirect models, no Z2 factor of the Klein symmetry of Eq. (6.6) forms a

subgroup of G. Models of this class are typically based on the type I see-saw mechanism

together with the assumption of sequential dominance, see Subsection 4.3. Here, the main

role of the family symmetry consists in relating the Yukawa couplings d, e, f of Eq. (4.21) as

well as a, b, c of Eq. (4.24) by introducing triplet flavon fields which acquire special vacuum

configurations. The directions of the flavon alignments are determined by the G symmetric

operators of the flavon potential [101].

Working in a basis where both the charged leptons as well as the right-handed neutri-

nos are diagonal, the leptonic flavour structure is encoded in the Dirac neutrino Yukawa

operator. The triplet flavons φν
i of indirect models enter linearly in this term,

Lν ∼
∑

i

φν
i

Λ
LνciHu +Miν

c
i ν

c
i , (6.13)

where Λ is a cut-off scale and the sum is over the number of right-handed neutrinos. The

lepton doublet L with hypercharge −1/2 transforms as a triplet of G, while the right-

handed neutrinos νci and the up-type Higgs doublet with hypercharge +1/2 are all singlets

of G. Adopting the notation of Subsection 4.3, extended to include a third right-handed

neutrino νc1, we obtain the Dirac neutrino Yukawa matrix by inserting the flavon VEVs

– 44 –

Direct Models Klein symmetry S,U and 
T are each identified as 

subgroups of some family 
symmetry

�(6n2)

is the only viable 
symmetry class - 

predicts zero Dirac 
CPV but non-zero 
Majorana phases 

Holthausen,Lim, 
Lindner; 
SK,Neder,Stuart; 
Lavoura,Ludl; 
Fonseca,Grimus



Figure 10: Possible strategies for constructing direct models after Daya Bay and RENO. Adopting
small family symmetriesG which predict simple leading order (LO) mixing patters with θ13 = 0 (e.g.
S4, A5), requires higher order (HO) corrections. Larger family symmetries can give rise to richer
LO mixing patterns with non-zero θ13 (e.g. ∆(96)). The A4 family symmetry refers to the semi-
direct case as discussed in the text. In this diagram, we have used the acronyms BT=bi-trimaximal,
TB=tri-bimaximal, BM=bimaximal, GR=golden ratio, TM=trimaximal.

can be perturbed by higher order effects (not shown explicitly in Fig. 10). In general,

higher order corrections are guaranteed to perturb the leading order structure by only

small contributions. The breaking of the leading order structure can happen either in the

charged lepton or the neutrino sector. The former entails charged lepton corrections of the

simple leading order mixing patterns, which give rise to solar mixing sum rules as discussed

in Subsection 3.5. If the breaking occurs in the neutrino sector, it is possible to break either

one or both Z2 factors of the leading order Klein symmetry. As the U symmetry typically

enforces θ13 = 0 in these models, it is necessary to break U in either case. Demanding S

to remain a good symmetry at higher order, gives rise to atmospheric mixing sum rules,

see Subsection 3.6, while breaking also S leads to arbitrary and unpredictive higher order

corrections. In Subsection 10.2 we will present a concrete S4×SU(5) model of tri-bimaximal

mixing at leading order, augmented by higher order corrections which break U but not S.

This model yields the trimaximal neutrino mixing pattern TM2, see Eq. (3.32), which can

accommodate a sizable reactor angle.

The second strategy of constructing direct models compatible with a sizable reactor

angle makes use of larger groups such as ∆(96), see left branch of Fig. 10. Such groups are

capable of predicting richer leading order mixing patterns (e.g. bi-trimaximal mixing [31])

as they contain non-standard Klein symmetries, generated by more complicated forms

of the elements S and/or U [108, 109]. As before, higher order effects can correct these
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Figure 2: The predictions for cos � generated by the solar sum rules for BM and TBM (top
row), GR1 and GR3 (middle row), GR2 and HEX (bottom row). In each plot, the true value
of ✓13 is given by the abscissa, the value of ✓12 is denoted by the colour of the band, and the
width of the band is generated by varying ✓23 over its 3� allowed interval.
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With these definitions, it is simple enough to compute the explicit form of the PMNS matrix.
However, our derivation focuses only on the first two elements of the bottom row of the physical
PMNS matrix, which are found to be

U⌧1 = s⌫12(s⌫23c
e
23 � c⌫23s

e
23e

i�e23),

U⌧2 = �c⌫12(s⌫23c
e
23 � c⌫23s

e
23e

i�e23).
(6)

By comparing Eq. (6) to the PDG parameterization of U [29], we find the relations between
the physical parameters and our internal parameters,

|U⌧1| = |s23s12 � s13c23c12e
i�| = |s⌫12(s⌫23c

e
23 � c⌫23s

e
23e

i�e23)| ,
|U⌧2| = |s23c12 + s13c23s12e

i�| = |c⌫12(s⌫23c
e
23 � c⌫23s

e
23e

i�e23)| .

The ratio of these two equations is independent of the values of the parameters which char-
acterise the charged-lepton corrections, and we are left with a correlation between observable
parameters and the value of the neutrino mixing parameter ✓⌫12,

|U⌧1|
|U⌧2| =

|s23s12 � s13c23c12ei�|
|s23c12 + s13c23s12ei�| = t⌫12. (7)

This correlation will be referred to as the solar mixing sum rule. It can be viewed as a predictive
statement about the physical CP phase: squaring both sides of Eq. (7) and solving for cos �
leads us to the expression in Eq. (4), which we repeat below,

cos � =
t23s2

12 + s2
13c

2
12/t23 � s⌫2

12(t23 + s2
13/t23)

sin 2✓12s13
. (8)

An equivalent correlation has been derived previously using a lengthier argument in Ref. [26].
Understanding its application to specific models, its compatibility with global data and its
potential use as a signature of new physics will be the focus of the rest of this article.
The correlation in Eq. (4) is in fact the full non-linear version of a more familiar first-order

relation. We collect a number of phenomenologically interesting approximations in Appendix A.
If we expand Eq. (4) in a small parameter ", assumed to control the deviation from a leading-
order neutrino mixing pattern with maximal atmospheric mixing,

✓13 ⇠ |✓12 � ✓⌫12| ⇠
���✓23 � ⇡

4

��� ⇠ ", (9)
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See talk by Girardi for other references
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Figure 1: The di↵erence between the linearised expression cos �linear ⌘ (✓12 � ✓⌫12)/✓13 and the solar sum rule
in Eq. (6). These plots assume ✓12 = 33.5� and take ✓23 to be the best-fit value for normal (inverted) ordering
in the left (right) panel. The best-fit values are those of Ref. [2].

The validity of this approximation is dependent upon the severity of the assumptions in Eq. (11).
This can only be assessed on a model dependent basis; however, in Fig. 1 we show the size
of the error �(cos �) ⌘ cos �linear � cos � which is introduced by the linear approximation for
the patterns which we will derive in subsections 2.2 and 2.3. Apart from the patterns denoted
GR3 and BM (which we will argue in the following section are strongly disfavoured by current
data), the error approximately satisfies |�(cos �)| . 0.1. As deviations of this size are expected
to be close to the attainable precision at a next-generation oscillation facility, all subsequent
numerical work will use the full correlations in Eq. (6).3

The solar sum rule derived above is valid for any neutrino mixing pattern with ✓⌫13 = 0 and
for any charged-lepton corrections with ✓e

13 = 0. Our focus in this work is on the predic-
tions of models which apply charged-lepton corrections to neutrino mixing matrices which are
completely fixed by symmetry. In recent work, significant progress has been made in the cate-
gorisation of fully-specified mixing patterns subject to some weak model building assumptions.
In subsection 2.2, we shall identify a set of leading-order predictions with ✓⌫13 = 0 from argu-
ments of symmetry by following two categorisation schemes from the literature [11, 45]. As
we shall explain, strictly speaking, one of these frameworks [11] is a subcase of the other [45];
however, its systematic exploration has not been presented before, and we shall show how this
more restrictive scenario still finds all of the cases of the more comprehensive analysis, while
shedding light on the group structure of the viable solutions.
In subsection 2.3, we shall also comment on some mixing patterns frequently invoked in the

literature which are not found in the systematic derivations. We will discuss these patterns in
the context of an infinite family of neutrino mixing matrices which are partially constrained

3It has been argued [22, 41] that the ratio of leading-order to exact predictions indicate that the linearized
sum rules are not accurate enough for phenomenological use. We believe that for many purposes the linearized
expressions would be adequate: constant errors of �(cos �) = 0.1 induce an error of less than 15� (10�) for 76%
(60%) of the range of �. Therefore the linearized expressions well describe the correlation to the precision of
the first phases of the next-generation of superbeams, which expect a sensitivity of 15–30� [43,44]; however, the
full expressions will be necessary in the subsequent phases, where precisions are expected to be 8–18� [43, 44].
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CP violation  
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Summary
�Combining-the-flavour symmetry-and-generalised CP--
symmetry-can-predicts-both-mixing-angle-and-CP-phases,-
and-consistency-equation-has-to-be-satisfied.

•Flavour and-CP-symmetry-is-broken-by-the-same-flavons;
•The-number-of-free-parameter-is-reduced,-and-different-mixing--parameters---------
are-usually-correlated.

�S4 and-A4 models-with-CP-symmetry-are-constructed,all the--
possible-cases-following-from-the-modelDindependent-analysis-
can-be-realized.-Dirac&CP&phase&is&predicted&to&be&trivial&or&
maximal.
�Theoretical-predictions-can-be-tested-by-near-future-
neutrino-oscillation-experiments,-and-it-is-intriguing-to-extend-
the-present-scheme-to-quark-sector.
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Equivalently use CP invariants of the Lagrangian

2

CP (like the kinetic terms and gauge interactions 1) while
Lrem includes the CP violating non-gauge interactions
such as the Yukawa couplings. Then one considers the
most general CP transformation that leaves LCP invari-
ant and check if invariance under CP restricts Lrem - only
if this is the case can L violate CP .
In the presence of a family symmetry G, one may check

if a given vacuum leads to spontaneous CP violation,
as follows. Consider a Lagrangian invariant under G
and CP , containing a series of scalars which under
CP transform as (CP)φi(CP)−1 = Uijφ

∗
j . In order for the

vacuum to be CP invariant, the following relation has to
be satisfied: < 0|φi|0 >= Uij < 0|φ∗

j |0 >. The pres-
ence of G usually allows for many choices for U . If (and
only if) no choice of U exists which satisfies the previous
condition, will the vacuum violate CP , leading to spon-
taneous CP violation. In order to prove that no choice of
U exists one can construct CP -odd invariants.
As a brief review of how to derive CP -odd invariants,

consider the Lagrangian of the leptonic part of the SM ex-
tended by Majorana neutrino masses. After electroweak
breaking at low energies, the most general mass terms
are:

− Lm = mleLeR + 1
2mννLν

c
L +H.c. , (2)

where L = (eL, νL) stand for the left-handed neutrino
and charged lepton fields in a weak basis and eR for the
right-handed counterpart. Due to the SU(2)L structure,
the most general CP transformation which leaves the lep-
tonic gauge interactions invariant are:

(CP)L(CP)† = iUγ0CL̄T , (CP)eR(CP)† = iV γ0CēTR .
(3)

In order for Lm to be CP invariant, under Eq.(3) the
terms shown in the Eq.(2) go into the respective H.c.
and vice-versa:

U †mνU
∗ = m∗

ν , U †mlV = m∗
l . (4)

From Eq.(4) one can infer how to build combinations of
the mass matrices that will result in equations where U
and V cancel entirely. For 3 generations we have [4]:

I1 ≡ Tr [Hν , Hl]
3 = 0 , (5)

where Hν ≡ mνm
†
ν and Hl ≡ mlm

†
l . This equation is

a necessary condition for CP invariance, encoding hav-
ing no Dirac-type CP violation. It can also be shown to
be sufficient, which we will do when discussing A4 later.
The low-energy limit of the leptonic sector with 3 Majo-
rana neutrinos has also two Majorana-type CP violating
phases, and it turns out there are 3 necessary and suf-
ficient conditions for low energy leptonic CP invariance:
in addition to Eq.(5), two more CP -odd invariants can
be defined [7], which we shall not consider further here.

1 Pure gauge interactions conserve CP [16].

In this Letter we are interested in applying these ideas
to models of leptons involving discrete family symmetry.
The first point we wish to make is that, once a Lagrangian
is specified, which is invariant under a family symmetry
G and some CP transformation, then the consistency re-
lations [11] are automatically satisfied. In order to prove
this it is sufficient to consider some generic Lagrangian
invariant under a family symmetry transformation, in-
volving some mass term m (Dirac or Majorana), then
define H = mm†. Under some G transformation, ρ(g),
the mass term remains unchanged implying:

ρ(g)†Hρ(g) = H. (6)

Invariance of the Lagrangian under CP transformation U
requires the mass term to swap with its H.c., hence:

U †HU = H∗ (7)

Taking the complex conjugate of Eq.(6) we find,

(ρ(g)†)∗H∗ρ(g)∗ = H∗ = U †HU, (8)

using Eq.(7) for the last equality. Using Eq.(7) again:

(ρ(g)†)∗U †HUρ(g)∗ = U †HU. (9)

Hence by using once more Eq.(6) for a g′, we finish with:

U(ρ(g)†)∗U †HUρ(g)∗U † = H = ρ(g′)†Hρ(g′). (10)

By comparing both sides of Eq.(10) we identify:

Uρ(g)∗U † = ρ(g′) (11)

which is just the consistency relation [11]. In other words,
if we consider Eqs.(6) and (7) we do not need to consider
the consistency condition separately since it always fol-
lows.
We now move onto our first illustrative example, based

on G = A4 (see e.g. [17] for the basis choice and conven-
tions). To proceed with the invariant approach we con-
sider the A4 invariant Yukawa Lagrangian of a leptonic
sector containing fields in all possible representations of
A4: lepton doublets L = (νlL, lL) = 3, where l = e, µ, τ ,
charged leptons ec = 1, µc = 1′′, τc = 1′, Higgs flavons
ϕS = 3, ϕT = 3, ξ = 1, ξ′ = 1′, ξ′′ = 1′′.

LA4
= −ye(LϕT )1 ec − yµ(LϕT )1′ µc − yτ (LϕT )1′′ τc

− y1

2 ϕS(LL)3s −
y2

2 ξ(LL)1 −
y′

3

2 ξ
′(LL)1′′ −

y′′

3

2 ξ′′(LL)1′

+H.c. (12)

Here (· · · )r denotes the A4 contraction into representa-
tion r. The only Higgs which can get a VEV without
breaking A4 is 〈ξ〉. It leads to a very simple neutrino
mass matrix, from the (LL)1 contraction:

m0
ν = β





1 0 0
0 0 1
0 1 0



 , β = (y2〈ξ〉)
∗ . (13)

2

CP (like the kinetic terms and gauge interactions 1) while
Lrem includes the CP violating non-gauge interactions
such as the Yukawa couplings. Then one considers the
most general CP transformation that leaves LCP invari-
ant and check if invariance under CP restricts Lrem - only
if this is the case can L violate CP .
In the presence of a family symmetry G, one may check

if a given vacuum leads to spontaneous CP violation,
as follows. Consider a Lagrangian invariant under G
and CP , containing a series of scalars which under
CP transform as (CP)φi(CP)−1 = Uijφ

∗
j . In order for the

vacuum to be CP invariant, the following relation has to
be satisfied: < 0|φi|0 >= Uij < 0|φ∗

j |0 >. The pres-
ence of G usually allows for many choices for U . If (and
only if) no choice of U exists which satisfies the previous
condition, will the vacuum violate CP , leading to spon-
taneous CP violation. In order to prove that no choice of
U exists one can construct CP -odd invariants.
As a brief review of how to derive CP -odd invariants,

consider the Lagrangian of the leptonic part of the SM ex-
tended by Majorana neutrino masses. After electroweak
breaking at low energies, the most general mass terms
are:

− Lm = mleLeR + 1
2mννLν

c
L +H.c. , (2)

where L = (eL, νL) stand for the left-handed neutrino
and charged lepton fields in a weak basis and eR for the
right-handed counterpart. Due to the SU(2)L structure,
the most general CP transformation which leaves the lep-
tonic gauge interactions invariant are:

(CP)L(CP)† = iUγ0CL̄T , (CP)eR(CP)† = iV γ0CēTR .
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volving some mass term m (Dirac or Majorana), then
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Minimal Predictive  
Seesaw models

CSD(n) 
(“predictive”) 

H(L.�
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sol
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+M
atm
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+M
sol
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sol
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sol

the CSD(n) relations in Eq. 2, the Yukawa matrices and (charge conjugated) right-handed
mass matrix in this basis are

�⌫ =

0

@
0 b
a nb
a (n� 2)b

1

A , M c =

 
M

1

0

0 M
2

!
, (5)

where we have written M
1

= M
atm

and M
2

= M
sol

, with M
1

< M
2

, in anticipation of
the result that the lightest right-handed neutrino is the dominant one. This is the basis
used for the leptogenesis calculations, which we now review, following the notation and
procedure in [22].

which turns out to be necessary given that we will conclude that the mass of the lightest
right handed neutrino M

1

< (1+tan2 �)⇥109 GeV. This is only true for large tan beta.

In the MSSM the regime where all flavours in the Boltzmann equations are to be treated
separately corresonds to (1+tan2 �)⇥105 GeV ⌧ M

1

⌧ (1+tan2 �)⇥109 GeV. Assuming
the flavour-dependent treatment for seesaw models with SD [22], it will turn out that for
the models of interest M

1

⇠ (40� 100)⇥ 109 GeV. The results therefore post-justify the
flavour-independent treatment for tan � & 10.

[2 OPTIONS]

[Option 1] We now consider the flavour-dependent treatment for seesaw models with
SD [22], which turns out to be necessary given that we will conclude that for tan� & 3
the mass of the lightest right handed neutrino M

1

. (1 + tan2 �)⇥ 109 GeV.

[Option 2]
We now consider the flavour-dependent treatment for seesaw models with SD [22], which
turns out to be necessary given that we will conclude that the mass of the lightest
right handed neutrino M

1

< 1010 � 1011 GeV , and flavour-dependent treatment should
be applied to cases with M

1

< (1 + tan2 �) ⇥ 109 GeV, which is already verified for
tan � > 3� 10.

Following [22], the total BAU is obtained from the individual lepton flavour contributions:

YB =
10

31

X

↵

Y
�↵ , (6)

which in turn are given by
Y
�↵ = ⌘

1,↵[YN1 + Y
˜N1
]✏

1,↵, (7)

where ⌘
1,↵ are washout factors and ✏

1,↵ are the decay asymmetries. In the Boltzmann
approximation for the MSSM:

YN1 ⇡ Y
˜N1

⇡ 45

⇡4g⇤
, g⇤ = 228.75. (8)

In the MSSM, the expression (per flavour index) for the asymmetries is

✏
1,↵ =

1

8⇡

Im
⇥
(�†

⌫)1↵(�
†
⌫�⌫)12(�T

⌫ )2↵
⇤

(�†
⌫�⌫)11

gMSSM

✓
M2

2

M2

1

◆
, (9)
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where the “+” sign applies to the case M
atm

⌧ M
sol

and the “�” sign holds for the case
M

sol

⌧ M
atm

. Since the observed baryon asymmetry YB is positive, it follows that, for
M

atm

⌧ M
sol

, we must have positive sin ⌘, while for M
sol

⌧ M
atm

we must have negative
sin ⌘. From the analysis in [20], for CSD(n) positive ⌘ is associated with negative �

CP

and vice versa. Although the global fits do not distinguish the sign of ⌘, the present hint
that �

CP

⇠ �⇡/2 would require positive ⌘, then in order to achieve positive YB we require
M

atm

⌧ M
sol

, corresponding to “light sequential dominance”, as considered in the two
right-handed neutrino analysis in [28].

In this paper we estimate the baryon asymmetry arising from leptogenesis within CSD(n)
for two right-handed neutrinos. In the flavour basis, for each n, the neutrino Yukawa ma-
trix is therefore characterised by just two real proportionality constants plus one relative
phase which controls both leptogenesis and the PMNS mixing matrix. The single phase
appearing in the neutrino mass matrix is identified as the leptogenesis phase, providing
a direct link between CP violation in neutrino physics and in cosmology. We use the
observed baryon asymmetry to constrain the mass spectrum of the two right-handed
neutrinos within this class of models. As an example, we apply our results to a successful
A

4

⇥ SU(5) SUSY GUT model based on CSD(3) with two right-handed neutrinos [19].

The layout of the reminder of this paper is as follows. In Section 2 we review how
leptogenesis applies to seesaw models and apply it to CSD(n). In Section 3 we show how
low energy data constrains leptogenesis in these models, and derive bounds on the lightest
RH neutrino mass. In Section 4 review a GUT model that predicts CSD(3) mixing angles
and reinterpret the bound imposed by the baryon asymmetry by expressing it in terms
of the model’s parameters. Finally we conclude in Section 5.

2 Leptogenesis in seesaw models with CSD(n)

In a Supersymmetric (SUSY) model, the relevant terms in the superpotential giving
neutrino masses are, in the diagonal charged lepton basis,

W⌫ = yi
atm

HLiN
c
atm

+ yi
sol

HLiN
c
sol

+ M
atm

N c
atm

N c
atm

+ M
sol

N c
sol

N c
sol

, (4)

where Li are three families of lepton doublets and the (CP conjugated) right-handed
neutrinos N c

atm

and N c
sol

with real positive masses M
atm

and M
sol

do not mix. Assuming
the CSD(n) relations in Eq. 2, the Yukawa matrices and (charge conjugated) right-handed
mass matrix in this basis are

�⌫ =

0
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1

0

0 M
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!
, (5)

where we have M
1

= M
atm

and M
2

= M
sol

, in anticipation of the result that the lightest
right-handed neutrino is the dominant one. This is the basis used for the leptogenesis
calculations.

3

Meanwhile ⌘ is constrained only up to a sign – the two minima then correspond to equal
and opposite values of ⌘. Refining the input parameter space by allowing only ⌘ 2 (0, ⇡)
leaves a single global minimum region. This minimum is well-defined and generally stable,
meaning our �2 statistic is a good test for goodness-of-fit over this space; this is true for all
CSD(n). For more details on the behaviour of �2 near the global minimum, see Appendix
B. Once the single global minimum is confirmed, numerical minimisation is performed in
Mathematica by the method of di↵erential evolution.

4. Results

This section details results for the properties of general CSD(n) vacuum alignments,
wherein we have simplified the analysis by considering only two planes of fixed ⇠, i.e. the
cases where ⇠ = 0 (phase aligned with dominant mass matrix) or ⇠ = ⌘ (phase aligned
with subdominant mass matrix). This simplification is predicated on the underlying
assumption from CSD that the contribution from the mc term in Eq. 2.2 is small; indeed,
a stable minimum of the same order in �2 can be found for any value of ⇠. Such a
constraint on ⇠ may also arise directly from a model, such as in [18].

In all subsequent plots, a thick solid gridline corresponds to a best fit value of a mixing
angle or neutrino mass, while thin solid gridlines show the 1� limits, and thin dashed
gridlines show the 3� range.

4.1. CSD(n) with two right-handed neutrinos

Models with only two right-handed neutrinos are compelling as they are typically highly
predictive. In a CSD(n) framework, the neutrino mass matrix in Eq. 2.4 simplifies in the
two right-handed neutrino case to

m⌫
(n) = ma

0

@
0 0 0
0 1 1
0 1 1

1

A+mbe
i⌘

0

@
1 n n� 2
n n2 n(n� 2)

n� 2 n(n� 2) (n� 2)2

1

A , (4.1)

where we have defined ⌘ = � � ↵ and removed an overall unphysical phase ↵. This case
immediately predicts the lightest physical neutrino mass to be zero, m

1

= 0. For a given
choice of alignment n, there are three real input parameters ma, mb and ⌘ from which
two light physical neutrino masses m

2

, m
3

, three lepton mixing angles, the CP-violating
phase �

CP

and two Majorana phases are derived; a total of nine physical parameters from
three input parameters, i.e. six predictions for each value of n. As the Majorana phases
are not known and �

CP

is only tentatively constrained by experiment, this leaves five
presently measured observables, namely the two neutrino mass squared di↵erences and
the three lepton mixing angles, from only three input parameters.
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Seesaw 
matrices
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mass 
matrix

h�
atm

i = v
atm

0

@
0
1
1

1

A , h�
sol

i = v
sol

0

@
1
n

n� 2

1

A

Two right-handed 
neutrinos (“minimal”)

S.F.K. 1304.6264,1305.4846
Björkeroth and S.F.K. 1412.6996

PMNS fixed by 
one free phase 

parameter

ma and mb are fixed by the neutrino mass squared differences
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of ⌘, yielding a value of |�
CP

| (which is taken to be unconstrained by data) as a genuine
prediction, along with preferred values for the lepton angles.

This is illustrated in Fig. 5 which shows the variation of �2 with ⌘, for CSD(n) with
1  n  9. It is clear that ⌘ is quite strongly constrained, even for CSD(3) and CSD(4),
which can give good fits; with CSD(3), the values (in radians) of ⌘ that give �2 < 10 are
2.08 . ⌘ . 2.27, which is a range of approximately 11�. This range happens to include
the value 2⇡/3. Such a value could be produced in a model with a discrete symmetry
such as Z

3N .

The neutrino masses are also tightly constrained. Recalling the best fit values given in
Table 2, any fit that yields �2 . 50 will correspond to values of ma and mb that are within
±10-15% of their best fit value. This is true for all CSD(n). In other words, the ranges of
acceptable values for the input masses scale with the best fit value. This is also confirmed
for models with three right-handed neutrinos, discussed below, and is discussed further
in Appendix B.

n = 2
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n = 8
n = 9
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1000

�
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Fig. 5: Variation of �2 with phase ⌘ in a model with two right-handed neutrinos.

To make the link between �2 minimisation and physical prediction more concrete, we
examine in Fig. 6 the variation in the three mixing angles with ⌘, for the physically
most interesting cases of CSD(n) with n = 3, 4, 5. We see that although ✓

12

is largely
una↵ected by ⌘, there is a complicated dependence of the other two mixing angles on ⌘,
which is di↵erent for di↵erent n. These plots demonstrate what the �2 value suggests:
for some small set of values ⌘, the predicted mixing angles converge on the experimental
best fit values for CSD(3) and CSD(4). Meanwhile for CSD(5) we begin to see tension
between the fits to ✓

13

and ✓
23

; this tension grows with large n.

11



n
ma

(meV)

mb

(meV)

⌘
(rad)

✓
12

(

�
)

✓
13

(

�
)

✓
23

(

�
)

|�
CP

|
(

�
)

m
2

(meV)

m
3

(meV)

�2

1 24.8 2.89 3.14 35.3 0 45.0 0 8.66 49.6 485

2 19.7 3.66 0 34.5 7.65 56.0 0 8.85 48.8 95.1

3 27.3 2.62 2.17 34.4 8.39 44.5 92.2 8.69 49.5 3.98

4 36.6 1.95 2.63 34.3 8.72 38.4 120 8.61 49.8 8.82

5 45.9 1.55 2.88 34.2 9.03 34.4 142 8.53 50.0 33.8

6 55.0 1.29 3.13 34.2 9.30 31.6 179 8.46 50.2 65.2

7 63.0 1.12 3.14 34.1 9.68 31.0 180 8.35 50.6 100

8 71.0 0.984 3.14 34.0 9.96 30.6 180 8.25 50.8 135

9 79.0 0.880 3.14 33.9 10.2 30.3 180 8.17 51.0 168

Table 2: Table of best fit parameters for two right-handed neutrino CSD(n) model for
1  n  9. The fitted three input parameters ma, mb and ⌘ yield nine physi-
cal predictions, but only six physical outputs are shown. The undisplayed outputs
are m

1

= 0 in each case and the two Majorana phases which are di�cult to measure
for a normal hierarchy.

Fig. 2: Best fit �2 with respect to n.

Table 2 shows all fitted parameters with respect to n. Fig. 2 shows the best fit values of
�2 with respect to vacuum alignment n. Both CSD(3) and CSD(4) have �2 < 10, while
all others have significantly higher values, generally increasing with n. With five values
N fitted to three input parameters NI , this gives us two excess degrees of freedom, i.e.
⌫ ⌘ N �NI = 2. Recalling that in standard �2 analyses, h�2/⌫i = 1 for a good fit, for the
most promising model, CSD(3), we have �2/⌫ = 1.99. We view this as a good fit given
our conservative estimate for the asymmetric ✓

23

error, particularly in light of the fact
that it can naturally predict a CP phase �

CP

close to the current experimental preferred
value of ⇠ �⇡/2. Similarly the fit for CSD(4) shows promise for model-building, with
h�2/⌫i = 4.41 and a prediction |�

CP

| = 120�.

In Fig. 3 and Fig. 4 we show the variation of physical masses and neutrino mixing angles
with respect to n in the two right-handed neutrino CSD(n) model. Note that, in our
conventions defined earlier, a positive value of ⌘, namely ⌘ 2 (0, ⇡), yields a negative
CP-violating angle, i.e. �

CP

2 (0,�⇡), while the mirror global minimum for ⌘ 2 (�⇡, 0)

9

Minimum 𝛘2 predictions

Note: if eta is positive then delta_CP is negative 
(consistent with the -90 deg hint!)



Leptogenesis in Minimal 
Predictive  Seesaw models

with their predictions for the PMNS mixing angles, CP violating phase and neutrino
masses. Furthermore, values of ma, mb and ⌘ that may be characterised as providing
“good” fits (or at least fits with �2 close to the minimal value) lie comfortably within
±10% of their respective best fit values. We are left with an expression for YB that is
linear in M

1

, multiplied by a numerical factor that ultimately depends only on n. Taking
into account the variability of the mass matrix parameters, we estimate that the numerical
factor may also vary by up to ±10% without significantly impacting the fits to neutrino
masses and mixing angles. In terms of placing bounds on M

1

, this far outweighs the
current error on the experimental value for YB, which is approximately ±0.6%. CSD(2)
predicts a best fit with ⌘ = 0, while CSD(n) with n > 5 predict best fits with ⌘ = ⇡, both
giving sin ⌘ = 0, which implies a zero baryon asymmetry. Furthermore, these values of n
give very poor fits to lepton data. As such, they will not be discussed further here.

n
ma

(meV)

mb

(meV)

⌘
(rad)

✓
12

(

�
)

✓
13

(

�
)

✓
23

(

�
)

�
CP

(

�
)

m
2

(meV)

m
3

(meV)

�2

3 27.3 2.62 2.17 34.4 8.39 44.5 -92.2 8.69 49.5 3.98

4 36.6 1.95 2.63 34.3 8.72 38.4 -120 8.61 49.8 8.82

5 45.9 1.55 2.88 34.2 9.03 34.4 -142 8.53 50.0 33.8

Table 1: Table of best fit parameters for two right-handed neutrino CSD(n) model for 3 
n  5. For comparison CSD(2) (not shown) has �2 = 95.1. Note that we have fixed ⌘ to be
positive corresponding to negative �

CP

. We have not displayed the Majorana phases which
are also predicted but practically unobservable since m

1

= 0 in this class of two right-handed
neutrino models. Angles refer to the PDG standard parametrisation [31].

Note that from Eq. 16, we have m̃
1,µ = m̃

1,⌧ = ma, whose best fit values for each CSD(n)
are given in Table 1. This enables us to estimate log

10

(AµµKµ) = log
10

(A⌧⌧K⌧ ), from
the results in Eqs. 14-16, with which we obtain the washout factors from the numerical
solutions to the Boltzmann equations given in [23]. Hence, for n = (3, 4, 5), we obtain the
corresponding washout factors ⌘

1,µ = (0.0236, 0.0166, 0.0126). Inserting numerical values
also for mb and ⌘ from Table 1 into Eq. 25, we arrive at the following predictions9:

CSD(3) : YB ⇠ 2.2 ⇥ 10�11


M

1

1010 GeV

�
) M

1

⇠ 4.0 ⇥ 1010 GeV

CSD(4) : YB ⇠ 1.5 ⇥ 10�11


M

1

1010 GeV

�
) M

1

⇠ 5.8 ⇥ 1010 GeV

CSD(5) : YB ⇠ 0.86 ⇥ 10�11


M

1

1010 GeV

�
) M

1

⇠ 10 ⇥ 1010 GeV

(26)

With M
1

fixed in each case, |a| may be calculated to be of order 10�3 using ma =
v2u|a|2/M1

, since ma is known. On the other hand only the combination mb = v2u|b|2/M2

is fixed by neutrino data and the separate parameters |b| and M
2

are not determined
from leptogenesis.

9We have used sin� ⇡ 1 which is a good approximation for tan� > 3.

8

With these conventions, using the seesaw basis in Eq. 20, integrating out the right-handed
neutrinos leaves an e↵ective left-handed neutrino Majorana mass matrix m⌫ expressed
by the simple formula

m⌫ = �v2

uY ⌫M�1

R Y ⌫T. (21)

This is the reason for introducing the seesaw basis.

There is a simple dictionary between the seesaw basis just introduced and the SUSY basis
in Eq. 4, as follows: Y ⌫ = (�⌫)⇤, while MR = (M c)⇤ = M c. Hence the CSD(n) relations
in Eq. 5 become, in the seesaw basis,

Y ⌫ =

0

@
0 b⇤

a⇤ nb⇤

a⇤ (n � 2)b⇤

1

A , MR =

 
M

1

0

0 M
2

!
. (22)

The seesaw mechanism produces the e↵ective neutrino mass matrix

m⌫ = ma

0

@
0 0 0
0 1 1
0 1 1

1

A+ mbe
i⌘

0

@
1 n (n � 2)
n n2 n(n � 2)

(n � 2) n(n � 2) (n � 2)2

1

A , (23)

where ma = v2

u|a|2/M
1

and mb = v2

u|b|2/M
2

and we have multiplied throughout by an
overall phase which we subsequently drop, keeping only the (physical) relative phase

⌘ ⌘ 2 arg[ab⇤]. (24)

The definition of the phase ⌘ in Eq. 24 is consistent with Eq. 13, providing the link be-
tween leptogenesis and low energy neutrino phenomenology. Clearly the phase ⌘ plays
a dual role, as both the high energy leptogenesis phase in Eq. 19 and as the low energy
neutrino mass matrix phase in Eq. 23. The sign of ⌘ has a low energy phenomenolog-
ical significance, as the neutrino mass matrix phase in Eq. 23 fixes the leptonic Dirac
phase �

CP

. Specifically, a positive ⌘ uniquely leads to negative �
CP

, and vice versa. As
experimental data hints at �

CP

⇠ �⇡/2, the a posteriori preferred solution has positive
⌘ = +2⇡/3. The sign of ⌘ also has high energy cosmological significance since the lep-
togenesis phase in Eq. 19 controls the sign and magnitude of the BAU. For example a
positive ⌘ = +2⇡/3, together with the requirement that the BAU is positive, implies
that the lightest right-handed neutrino should be N c

1

= N c
atm

, while N c
2

= N c
sol

should
be somewhat heavier. In the next section we discuss a SUSY GUT model with CSD(3)
which satisfies this constraint and can lead to successful leptogenesis.

We devote the remainder of this section to the numerical CSD(n) results for both neutrino
phenomenology and leptogenesis. To do this, we recognise that the BAU YB given in
Eq. 19 depends implicitly on ma through ⌘

1,↵ and explicitly on mb: recalling the definition
mb = |b|2v2

u/M
2

, we may rewrite Eq. 19 as

YB =
675

31⇡5g⇤

M
1

mb

v2

u

⌘
1,µ(n � 1)2 sin ⌘. (25)

The best fit values of ma, mb and ⌘ are found to vary with n, and to be largely independent
of one another. They have been calculated in [20] and are reproduced in Table 1, along

7

with their predictions for the PMNS mixing angles, CP violating phase and neutrino
masses. Furthermore, values of ma, mb and ⌘ that may be characterised as providing
“good” fits (or at least fits with �2 close to the minimal value) lie comfortably within
±10% of their respective best fit values. We are left with an expression for YB that is
linear in M

1

, multiplied by a numerical factor that ultimately depends only on n. Taking
into account the variability of the mass matrix parameters, we estimate that the numerical
factor may also vary by up to ±10% without significantly impacting the fits to neutrino
masses and mixing angles. In terms of placing bounds on M

1

, this far outweighs the
current error on the experimental value for YB, which is approximately ±0.6%. CSD(2)
predicts a best fit with ⌘ = 0, while CSD(n) with n > 5 predict best fits with ⌘ = ⇡, both
giving sin ⌘ = 0, which implies a zero baryon asymmetry. Furthermore, these values of n
give very poor fits to lepton data. As such, they will not be discussed further here.

n
ma

(meV)

mb

(meV)

⌘
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✓
12

(

�
)

✓
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(

�
)

✓
23

(

�
)

�
CP

(

�
)

m
2

(meV)

m
3

(meV)

�2

3 27.3 2.62 2.17 34.4 8.39 44.5 -92.2 8.69 49.5 3.98

4 36.6 1.95 2.63 34.3 8.72 38.4 -120 8.61 49.8 8.82

5 45.9 1.55 2.88 34.2 9.03 34.4 -142 8.53 50.0 33.8

Table 1: Table of best fit parameters for two right-handed neutrino CSD(n) model for 3 
n  5. For comparison CSD(2) (not shown) has �2 = 95.1. Note that we have fixed ⌘ to be
positive corresponding to negative �

CP

. We have not displayed the Majorana phases which
are also predicted but practically unobservable since m

1

= 0 in this class of two right-handed
neutrino models. Angles refer to the PDG standard parametrisation [31].

Note that from Eq. 16, we have m̃
1,µ = m̃

1,⌧ = ma, whose best fit values for each CSD(n)
are given in Table 1. This enables us to estimate log

10

(AµµKµ) = log
10

(A⌧⌧K⌧ ), from
the results in Eqs. 14-16, with which we obtain the washout factors from the numerical
solutions to the Boltzmann equations given in [23]. Hence, for n = (3, 4, 5), we obtain the
corresponding washout factors ⌘

1,µ = (0.0236, 0.0166, 0.0126). Inserting numerical values
also for mb and ⌘ from Table 1 into Eq. 25, we arrive at the following predictions9:

CSD(3) : YB ⇠ 2.2 ⇥ 10�11


M

1

1010 GeV

�
) M

1

⇠ 4.0 ⇥ 1010 GeV

CSD(4) : YB ⇠ 1.5 ⇥ 10�11


M

1

1010 GeV

�
) M

1

⇠ 5.8 ⇥ 1010 GeV

CSD(5) : YB ⇠ 0.86 ⇥ 10�11


M

1

1010 GeV

�
) M

1

⇠ 10 ⇥ 1010 GeV

(26)

With M
1

fixed in each case, |a| may be calculated to be of order 10�3 using ma =
v2

u|a|2/M
1

, since ma is known. On the other hand only the combination mb = v2

u|b|2/M
2

is fixed by neutrino data and the separate parameters |b| and M
2

are not determined
from leptogenesis.

9We have used sin� ⇡ 1 which is a good approximation for tan� > 3.
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with their predictions for the PMNS mixing angles, CP violating phase and neutrino
masses. Furthermore, values of ma, mb and ⌘ that may be characterised as providing
“good” fits (or at least fits with �2 close to the minimal value) lie comfortably within
±10% of their respective best fit values. We are left with an expression for YB that is
linear in M

1

, multiplied by a numerical factor that ultimately depends only on n. Taking
into account the variability of the mass matrix parameters, we estimate that the numerical
factor may also vary by up to ±10% without significantly impacting the fits to neutrino
masses and mixing angles. In terms of placing bounds on M

1

, this far outweighs the
current error on the experimental value for YB, which is approximately ±0.6%. CSD(2)
predicts a best fit with ⌘ = 0, while CSD(n) with n > 5 predict best fits with ⌘ = ⇡, both
giving sin ⌘ = 0, which implies a zero baryon asymmetry. Furthermore, these values of n
give very poor fits to lepton data. As such, they will not be discussed further here.
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m
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3 27.3 2.62 2.17 34.4 8.39 44.5 -92.2 8.69 49.5 3.98

4 36.6 1.95 2.63 34.3 8.72 38.4 -120 8.61 49.8 8.82

5 45.9 1.55 2.88 34.2 9.03 34.4 -142 8.53 50.0 33.8

Table 1: Table of best fit parameters for two right-handed neutrino CSD(n) model for 3 
n  5. For comparison CSD(2) (not shown) has �2 = 95.1. Note that we have fixed ⌘ to be
positive corresponding to negative �

CP

. We have not displayed the Majorana phases which
are also predicted but practically unobservable since m

1

= 0 in this class of two right-handed
neutrino models. Angles refer to the PDG standard parametrisation [31].

Note that from Eq. 16, we have m̃
1,µ = m̃

1,⌧ = ma, whose best fit values for each CSD(n)
are given in Table 1. This enables us to estimate log

10

(AµµKµ) = log
10

(A⌧⌧K⌧ ), from
the results in Eqs. 14-16, with which we obtain the washout factors from the numerical
solutions to the Boltzmann equations given in [23]. Hence, for n = (3, 4, 5), we obtain the
corresponding washout factors ⌘

1,µ = (0.0236, 0.0166, 0.0126). Inserting numerical values
also for mb and ⌘ from Table 1 into Eq. 25, we arrive at the following predictions9:

CSD(3) : YB ⇠ 2.2 ⇥ 10�11
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1010 GeV
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1

fixed in each case, |a| may be calculated to be of order 10�3 using ma =
v2

u|a|2/M
1

, since ma is known. On the other hand only the combination mb = v2

u|b|2/M
2

is fixed by neutrino data and the separate parameters |b| and M
2

are not determined
from leptogenesis.

9We have used sin� ⇡ 1 which is a good approximation for tan� > 3.
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Washouts depend on ma 

3 inputs 6 outputs (incl. CP phase)

Björkeroth, de Anda, de Medeiros Varzielas and S.F.K. 1505.05504

Note the correlations: 
leptogenesis phase



Towards a complete 
A4xSU(5) SUSY GUT

Björkeroth, de Anda, de Medieoros Varzielas and S.F.K. 1503.03306

◦ Renormalisable at GUT scale, SU(5) breaking potential, spontaneously broken CP. 

◦ The MSSM is reproduced with R-parity emerging from a discrete Z4R . 

◦ Doublet-triplet splitting is achieved through the Missing Partner mechanism. 

◦ mu term is generated at the correct scale. 

◦ Proton decay is sufficiently suppressed. 

◦ It solves the strong CP problem through the Nelson-Barr mechanism . 

◦ Explains quark mass hierarchies, mixing angles and the CP phase.

◦ Reproduces minimal predictive seesaw model via A4 vacuum alignments with CSD(3).

See talk by de Anda  
for full discussion

Quite complete model!



A to Z of Flavour with Pati-Salam 
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Figure 1: A to Z of flavour with Pati-Salam, where A ⌘ A4 and Z ⌘ Z5. The left-handed families
form a triplet of A4 and are doublets of SU(2)L. The right-handed families are distinguished by Z5

and are doublets of SU(2)R. The SU(4)C unifies the quarks and leptons with leptons as the fourth
colour, depicted here as white.

2 Overview of the model

2.1 Symmetries of the model

The model is based on the Pati-Salam gauge group [26], with A
4

⇥Z
5

family symmetry,

SU(4)C ⇥ SU(2)L ⇥ SU(2)R ⇥ A
4

⇥ Z
5

. (1)

The quarks and leptons are unified in the PS representations as follows,

Fi = (4, 2, 1)i =

✓
u u u ⌫
d d d e

◆

i

! (Qi, Li),

F c
i = (4̄, 1, 2)i =

✓
uc uc uc ⌫c

dc dc dc ec

◆

i

! (uc
i , d

c
i , ⌫

c
i , e

c
i), (2)

where the SM multiplets Qi, Li, uc
i , d

c
i , ⌫

c
i , e

c
i resulting from PS breaking are also shown

and the subscript i (= 1, 2, 3) denotes the family index. The left-handed quarks and
leptons form an A

4

triplet F , while the three (CP conjugated) right-handed fields F c
i are

A
4

singlets, distinguished by Z
5

charges ↵,↵3, 1, for i = 1, 2, 3, respectively. Clearly the
Pati-Salam model cannot be embedded into an SO(10) Grand Unified Theory (GUT)
since di↵erent components of the 16-dimensional representation of SO(10) would have
to transform di↵erently under A

4

⇥Z
5

, which is impossible. On the other hand, the PS
gauge group and A

4

could emerge directly from string theory (see e.g. [28]).

2.2 Pati-Salam breaking

The Pati-Salam gauge group is broken at the GUT scale to the SM,

SU(4)C ⇥ SU(2)L ⇥ SU(2)R ! SU(3)C ⇥ SU(2)L ⇥ U(1)Y , (3)

4

Right-handed quarks and 
leptons distinguished by Z5

Left-handed quarks 
and leptons triplets of A4

A4 ⇥ Z5 ⇥ SU(4)C ⇥ SU(2)L ⇥ SU(2)R

S.F.K. 1406.7005 



• Y � ⇤ Y u is the only non-diagonal matrix is responsible for all quark and lepton
mixing, which is fully specified once a, b, c are fixed by up quark masses

• Lepton mixing angles and CP violation are predicted for the phenomenological
range of m2/m3, assuming a relative phase of 2⌅/5 between the first and second
columns.

• The Cabibbo angle is predicted to be ⇥C ⌅ 1/4 or ⇥C ⌅ 14⇥ at leading order

• The other quark mixing angles and CP violating phase are zero at leading order

The first set of relations (which are valid at the Pati-Salam breaking scale) are just the
usual Georgi-Jarlskog (GJ) relations from SU(5) [19]. The tetra-model also yields an
SO(10)-like pattern of Dirac and heavy Majorana neutrino masses widely studied in the
literature [22]. However the light physical Majorana neutrino masses are not so hierar-
chical since the powers of � cancel in the see-saw mechanism. It has recently been shown
that the serious di⌅culties facing thermal leptogenesis in SO(10)-like models may be
circumvented when the production from the next-to-lightest right-handed neutrinos and
flavour e�ects are properly taken into account [23], so the prospects for thermal lepto-
genesis in the tetra-model look promising. Finally, it is noteworthy that the Cabibbo
angle is successfully predicted at leading order (to within one degree) as a consequence
of the vacuum alignment and quark-lepton unification, providing the Cabibbo connec-
tion between quark and lepton mixing. This is one of the main successes of the model,
being a consequence of the (1, 4, 2) vacuum alignment which also successfully reproduces
lepton mixing, as we now discuss.

3.2 Leading order lepton mixing

In this subsection we discuss the leading order predictions for PMNS mixing which arise
from the vacuum alignment.

The physical e�ective neutrino Majorana mass matrix m� is determined from the
columns of Y � via the see-saw mechanism,

m� = �v2u Y
�M�1

R Y �T , (29)

where the Majorana neutrino mass matrix m� , defined by 1 L� = �1
2m

�⇤L⇤c
L + h.c., is

diagonalised by

U�L m
� UT

�L
=

�

⇤
m1 0 0
0 m2 0
0 0 m3

⇥

⌅. (30)

1Note that this convention for the light e�ective Majorana neutrino mass matrix m� di�ers by an
overall complex conjugation compared to that used in the Mixing Parameter Tools package [24].
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Explains the Cabibbo angle

Physical neutrino masses in a normal hierarchy CSD(4)

Y u = Y ⌫ =

0

@
0 b�4 0
a�8 4b�4 0
a�8 2b�4 c

1

A , MR =

0

@
�16M̃

1

0 0
0 �8M̃

2

0
0 0 M̃

3

1

A (7)

The down-type quark and charged lepton masses are then given by,

me =
md

3
, mµ = 3ms, m⌧ = mb. (8)

These are the well-known Georgi-Jarlskog (GJ) relations [15], although here they arise
from a new mechanism, namely due to non-singlet fields which appear in the denomi-
nator of e↵ective operators and split the messenger masses [17]. The viablity of the GJ
relations is discussed in [18].

The strong hierarchy of up quark masses is given by,

mu : mc : mt ⇠ �8 : �4 : 1, (9)

where, in terms of the Wolfenstein parameter �, we have assumed,

✏ =
h✓i
⇤

⇠ �4. (10)

The main results follow directly from the simple forms of matrices above:

• me =
md
3

, mµ = 3ms, m⌧ = mb (yd, ys, yb chosen to fit the down quark masses)

• mD
⌫1 = mu = |a|vu✏2/

p
17, mD

⌫2 = mc =
p
17|b|vu✏, mD

⌫3 = mt = |c|vu

• M
1

: M
2

: M
3

⇠ m2

u : m2

c : m
2

t (RH neutrino masses are very hierarchical)

• For example, M
1

⇠ 10 TeV, M
2

⇠ 1010 GeV, M
3

⇠ 1016 GeV

• The model predicts a normal neutrino hierarchy, (mD
⌫3)

2

M3
⌧ (mD

⌫2)
2

M2
, (m

D
⌫1)

2

M1

• For example, m
1

⇠ 0.3 meV, m
2

⇠ 8.5 meV, m
3

⇠ 50 meV (normal hierarchy)

• Y ⌫ = Y u is the only non-diagonal matrix is responsible for all quark and lepton
mixing, which is fully specified once a, b, c are fixed by up quark masses

• Lepton mixing angles and CP violation are predicted for the phenomenological
range of m

2

/m
3

, assuming a relative phase of 2⇡/5 between the first and second
columns.

• The Cabibbo angle is predicted to be ✓C ⇡ 1/4 or ✓C ⇡ 14� at leading order

• The other quark mixing angles and CP violating phase are zero at leading order

4

SO(10)-like diagonal RHN masses

All CP phases are fifth roots of unity due to Z5

4.3 Numerical results for quark mixing

With the phases fixed by the choice of discrete choice of phases n = 2, m = 3, as
discussed in the previous subsection, the only free parameters are a, b, c in the up sector,
and A, B, C and y0

d, y0

s , y0

b in the down sector matrices, where we have explicitly removed
the phases from these parameters, in order to make them real,

Y u =

0

@
0 be�i3⇡/5 ✏c

ae�i3⇡/5 4be�i3⇡/5 0
ae�i3⇡/5 2be�i3⇡/5 c

1

A . (69)

Y d =

0

@
y0

de�i2⇡/5 0 Ay0

de�i2⇡/5

By0

de�i3⇡/5 y0

se�i2⇡/5 Cy0

de�i3⇡/5

By0

de�i3⇡/5 0 y0

b + Cy0

de�i3⇡/5

1

A (70)

Note that we have introduced a small correction term ✏ in the (1, 3) entry of Y u which
will mainly a↵ect ✓q

13

. Physically this corresponds to a small admixture of the first
component of the Higgs triplet h

3

contributing to the physical light Higgs state Hu, as
discussed in Appendix B. The previous analytic results were for ✏ = 0, but we find
numerically that the best fit to CKM parameters requires a non-zero value of ✏.

For the following results, we shall fix the parameters which approximately determine
the six quark masses at the high scale to be,

a = 1.6.10�5, b = 0.8.10�3, c = 0.75, (71)

y0

d = 0.9.10�5, y0

s = 1.4.10�4, y0

b = �0.9.10�2, (72)

Although the quark results are insensitive to the sign of y0

b , the lepton sector results lead
to a better fit with the negative sign of y0

b as discussed later. Using the Mixing Parameter
Tools (MPT) package [38], in Fig.5 we show the CKM parameters for di↵erent choices
of A, B as a function of C. ✓q

23

is really only sensitive to C only, while ✓q
12

is mainly
sensitive to B. ✓q

13

and �q are both sensitive A. The e↵ect of the correction ✏ is to
shift the blue dashed curve to the red solid curve, lowering ✓q

13

while leaving ✓q
23

almost
unchanged, allowing the best fit of the CKM parameters for C = 36.

To take a concrete example, for the red solid at the value C = 36, with the above
input parameters A = 9, B = 7 (c.f. Eq.65) and ✏ = �2.4 ⇥ 10�3, we find the quark
Yukawa eigenvalues at the high scale,

yu = 3.9.10�6, yc = 3.3.10�3, yt = 0.75, (73)

yd = 0.81.10�5, ys = 1.5.10�4, yb = 0.91.10�2 (74)

and the CKM parameters at the high scale,

✓q
12

= 13.02�, ✓q
13

= 0.17�, ✓q
23

= 2.09�, �q = 70.4�. (75)
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5.4 Modified Georgi-Jarlskog relations

Since the charged lepton masses are known with much higher precision than the down
type quark masses, the down Yukawa couplings in practice will be predicted from in-
putting the charged lepton masses in order to accurately fix y0

d, y0

s , y0

b . Comparing Y e

in Eq.90 to Y d in Eq.70, we find that we do not get exactly the GJ relations in Eq.37
due to the o↵-diagonal elements which also involve Clebsch factors. Numerically we find
that, for y0

b negative and the other parameters as above, the Yukawa eigenvalues at the
GUT scale are approximately related as,

ye =
yd

2.6
, yµ = 2.8ys, y⌧ = 0.97yb, (93)

while for y0

b positive we find,

ye =
yd

3.0
, yµ = 2.7ys, y⌧ = 1.05yb. (94)

These may be compared to the phenomenological relation [3],
����
yµ

ys

yd

ye

���� = 10.7+1.8
�0.8. (95)

For example for y0

b negative we find the RHS to be 7.3 which di↵ers by more than 4
sigma. In order to bring this relation into better agreement with experiment we would
need to increase this ratio, for example by increasing the muon Yukawa eignenvalue
compared to the strange quark Yukawa eigenvalue. One way to do this is to introduce
a flavon �d15

2

with the same charges as �d
2

but in the adjoint 15 of SU(4)C . The middle
diagram in Fig.3 involving �d15

2

involves a Clebsch factor of +9 as compared to the factor
of -3 with �d

2

[35]. Below the PS the colour singlet component of �d15

2

mixes with �d
2

, to
yield a light flavon combination,

�d0

2

= �d15

2

cos � + sin ��d
2

. (96)

Hence middle diagram in Fig.3 involving �d0
2

implies the relation,

y0

µ

y0

s

= 9 cos � � 3 sin �. (97)

For example by suitable choice of the mixing angle � we can arrange y0

µ = 4.5y0

s ,

Y e =

0

@
�(y0

d/3)e�i2⇡/5 0 Ay0

de�i2⇡/5

By0

de�i3⇡/5 �4.5y0

se�i2⇡/5 �3Cy0

de�i3⇡/5

By0

de�i3⇡/5 0 y0

b � 3Cy0

de�i3⇡/5

1

A . (98)

By comparing Y e in Eq.98 to Y d in Eq.70, we find the modified GJ relations,

ye =
yd

2.6
, yµ = 4.1ys, y⌧ = 0.97yb, (99)

23

form of e↵ective neutrino mass matrix, after the see-saw mechanism has been applied.

5.1 Convention

The neutrino Yukawa matrix Y ⌫ is defined in a LR convention by 2

L = �vuY ⌫
↵i⌫

↵
L

⌫i
R

+ h.c.

where ↵ = e, µ, ⌧ labels the three left-handed neutrinos and i = 1, 2, 3 labels the three
right-handed neutrinos.

The physical e↵ective neutrino Majorana mass matrix m⌫ is determined from the
columns of Y ⌫ via the see-saw mechanism,

m⌫ = �v2

u Y ⌫M�1

R

Y ⌫T , (76)

where the light Majorana neutrino mass matrix m⌫ is defined by 3 L⌫ = �1

2

m⌫⌫
L

⌫c
L

+
h.c., while the heavy right-handed Majorana neutrino mass matrix MR is defined by
LR

⌫ = �1

2

MR⌫c
R

⌫
R

+ h.c. and m⌫ is diagonalised by

U⌫L m⌫ UT
⌫L

=

0

@
m

1

0 0
0 m

2

0
0 0 m

3

1

A. (77)

The PMNS matrix is then given by

U
PMNS

= UeLU †
⌫L

. (78)

We use a standard parameterization U
PMNS

= Rl
23

U l
13

Rl
12

P l in terms of sl
ij = sin(✓l

ij),
cl

ij = cos(✓l
ij), the Dirac CP violating phase �l and further Majorana phases contained

in P l = diag(ei
�l1
2 , ei

�l2
2 , 1). The standard PDG parameterization [37] di↵ers slightly due

to the definition of Majorana phases which are by given by P l
PDG

= diag(1, ei
↵21
2 , ei

↵31
2 ).

Evidently the PDG Majorana phases are related to those in our convention by ↵
21

=
�l

2

� �l
1

and ↵
31

= ��l
1

, after an overall unphysical phase is absorbed by UeL .

5.2 See-saw mechanism

The neutrino Yukawa and Majorana matrices are as in Eq.27, with Y ⌫ = Y u in Eq.69,

Y ⌫ =

0

@
0 be�i3⇡/5 0

ae�i3⇡/5 4be�i3⇡/5 0
ae�i3⇡/5 2be�i3⇡/5 c

1

A , MR ⇡

0

@
M

1

e8i⇡/5 0 0
0 M

2

e4i⇡/5 0
0 0 M

3

1

A , (79)

2This LR convention for the Yukawa matrix di↵ers by an Hermitian conjugation compared to that
used in the Mixing Parameter Tools package [38] due to the RL convention used there.

3Note that this convention for the light e↵ective Majorana neutrino mass matrix m⌫ di↵ers by an
overall complex conjugation compared to that used in the Mixing Parameter Tools package [38].
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2.5 Two light Higgs doublets

The model will involve Higgs bi-doublets of two kinds, hu which lead to up-type quark
and neutrino Yukawa couplings and hd which lead to down-type quark and charged
lepton Yukawa couplings. In addition a Higgs bidoublet h

3

, which is also an A
4

triplet,
is used to give the third family Yukawa couplings.

After the PS and A
4

breaking, most of these Higgs bi-doublets will get high scale
masses and will not appear in the low energy spectrum. In fact only two light Higgs
doublets will survive down to the TeV scale, namely Hu and Hd. The precise mechanism
responsible for this is quite intricate and is discussed in Appendix B. Analogous Higgs
mixing mechanisms are implicitly assumed in many models, but are rarely discussed
explicitly (however for an example within SO(10) see [33]).

The basic idea is that the light Higgs doublet Hu with hypercharge Y = +1/2,
which couples to up-type quarks and neutrinos, is a linear combination of components
of the Higgs bi-doublets of the kind hu and h

3

, while the light Higgs doublet Hd with
hypercharge Y = �1/2, which couples to down-type quarks and charged leptons, is a
linear combination of components of Higgs bi-doublets of the kind hd and h

3

,

hu, h
3

! Hu, hd, h
3

! Hd. (14)

2.6 Yukawa operators

The renormalisable Yukawa operators, which respect PS and A
4

symmetries, have the
following form, leading to the third family Yukawa couplings shown, using Eqs.2,14,

F.h
3

F c
3

! Q
3

Huuc
3

+ Q
3

Hddc
3

+ L
3

Hu⌫
c
3

+ L
3

Hdec
3

, (15)

where we have used Eqs.2,14. The non-renormalisable operators, which respect PS and
A

4

symmetries, have the following form,

F.�u
i huF c

i ! Q.h�u
i iHuuc

i + L.h�u
i iHu⌫

c
i , (16)

F.�d
i hdF c

i ! Q.h�d
i iHddc

i + L.h�d
i iHdec

i , (17)

where i = 1 gives the first column of each Yukawa matrix, while i = 2 gives the second
column and we have used Eqs.2,14. Thus the third family masses are naturally larger
since they correspond to renormalisable operators, while the hierarchy between first and
second families arises from a hierarchy of flavon VEVs.

2.7 Yukawa matrices

Inserting the vacuum alignments in Eqs.12 and 13 into Eqs.16 and 17, together with the
renormalisable third family couplings in Eq.15, gives the Yukawa matrices of the form,

Y u = Y ⌫ =

0

@
0 b 0
a 4b 0
a 2b c

1

A , Y d ⇠ Y e ⇠

0

@
y0

d 0 0
0 y0

s 0
0 0 y0

b

1

A . (18)

7

4.3 Numerical results for quark mixing

With the phases fixed by the choice of discrete choice of phases n = 2, m = 3, as
discussed in the previous subsection, the only free parameters are a, b, c in the up sector,
and A, B, C and y0

d, y0

s , y0

b in the down sector matrices, where we have explicitly removed
the phases from these parameters, in order to make them real,

Y u =

0

@
0 be�i3⇡/5 ✏c

ae�i3⇡/5 4be�i3⇡/5 0
ae�i3⇡/5 2be�i3⇡/5 c

1

A . (69)

Y d =

0

@
y0

de�i2⇡/5 0 Ay0

de�i2⇡/5

By0

de�i3⇡/5 y0

se�i2⇡/5 Cy0

de�i3⇡/5

By0

de�i3⇡/5 0 y0

b + Cy0

de�i3⇡/5

1

A (70)

Note that we have introduced a small correction term ✏ in the (1, 3) entry of Y u which
will mainly a↵ect ✓q

13

. Physically this corresponds to a small admixture of the first
component of the Higgs triplet h

3

contributing to the physical light Higgs state Hu, as
discussed in Appendix B. The previous analytic results were for ✏ = 0, but we find
numerically that the best fit to CKM parameters requires a non-zero value of ✏.

For the following results, we shall fix the parameters which approximately determine
the six quark masses at the high scale to be,

a = 1.6.10�5, b = 0.8.10�3, c = 0.75, (71)

y0

d = 0.9.10�5, y0

s = 1.4.10�4, y0

b = �0.9.10�2, (72)

Although the quark results are insensitive to the sign of y0

b , the lepton sector results lead
to a better fit with the negative sign of y0

b as discussed later. Using the Mixing Parameter
Tools (MPT) package [38], in Fig.5 we show the CKM parameters for di↵erent choices
of A, B as a function of C. ✓q

23

is really only sensitive to C only, while ✓q
12

is mainly
sensitive to B. ✓q

13

and �q are both sensitive A. The e↵ect of the correction ✏ is to
shift the blue dashed curve to the red solid curve, lowering ✓q

13

while leaving ✓q
23

almost
unchanged, allowing the best fit of the CKM parameters for C = 36.

To take a concrete example, for the red solid at the value C = 36, with the above
input parameters A = 9, B = 7 (c.f. Eq.65) and ✏ = �2.4 ⇥ 10�3, we find the quark
Yukawa eigenvalues at the high scale,

yu = 3.9.10�6, yc = 3.3.10�3, yt = 0.75, (73)

yd = 0.81.10�5, ys = 1.5.10�4, yb = 0.91.10�2 (74)

and the CKM parameters at the high scale,

✓q
12

= 13.02�, ✓q
13

= 0.17�, ✓q
23

= 2.09�, �q = 70.4�. (75)
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tan� Input Output

5

a 1.235⇥10�5
yu 2.92 ⇥10�6

✓

q
12 13.027�

b 3.537⇥10�4
yc 1.43 ⇥10�3

✓

q
13 0.1802�

c 5.443⇥10�1
yt 5.34 ⇥10�1

✓

q
23 2.054�

y

0
d 2.866⇥10�5

yd 4.30 ⇥10�6
�

q 69.18�

y

0
s 4.466⇥10�4

ys 9.51 ⇥10�5

y

0
b -3.686⇥10�2

yb 7.05 ⇥10�3

M1 1.328⇥105 �m

2
21 7.38 ⇥10�5 eV2

✓

l
12 34.3�

M2 1.901⇥109 �m

2
31 2.48 ⇥10�3 eV2

✓

l
13 8.67�

M3 8.889⇥1015 ✓

l
23 45.8�

✏ -2.196⇥10�3
ye 1.97 ⇥10�6

�

l -86.7�

A 11.4 yµ 4.16 ⇥10�4

B 6.92 y⌧ 7.05 ⇥10�3

C 45.8

x 4.75

Table 1: Best fit with tan� = 5, corresponding to �2
= 7.85.

tan� Input Output

10

a 4.528⇥10�6
yu 2.88 ⇥10�6

✓

q
12 13.027�

b 3.446⇥10�4
yc 1.41 ⇥10�3

✓

q
13 0.1802�

c 5.229⇥10�1
yt 5.20 ⇥10�1

✓

q
23 2.054�

y

0
d 5.690⇥10�5

yd 4.85 ⇥10�6
�

q 69.21�

y

0
s 8.864⇥10�4

ys 9.60 ⇥10�5

y

0
b -7.345⇥10�2

yb 7.38 ⇥10�3

M1 1.793⇥104 �m

2
21 7.50 ⇥10�5 eV2

✓

l
12 34.3�

M2 1.793⇥109 �m

2
31 2.46 ⇥10�3 eV2

✓

l
13 8.67�

M3 2.436⇥1016 ✓

l
23 45.8�

✏ -2.221⇥10�3
ye 1.98 ⇥10�6

�

l -86.7�

A 11.5 yµ 4.19 ⇥10�4

B 6.93 y⌧ 7.15 ⇥10�3

C 46.2

x 4.76

Table 2: Best fit with tan� = 10, corresponding to �2
= 12.7.

1

A to Z of Flavour with Pati-Salam 
15 inputs 20 outputs

m1 ⇡ 0

tan� Input Output

5

a 1.235⇥10�5
yu 2.92 ⇥10�6

✓

q
12 13.027�

b 3.537⇥10�4
yc 1.43 ⇥10�3

✓

q
13 0.1802�

c 5.443⇥10�1
yt 5.34 ⇥10�1

✓

q
23 2.054�

y

0
d 2.866⇥10�5

yd 4.30 ⇥10�6
�

q 69.18�

y

0
s 4.466⇥10�4

ys 9.51 ⇥10�5

y

0
b -3.686⇥10�2

yb 7.05 ⇥10�3

M1 1.328⇥105 �m

2
21 7.38 ⇥10�5 eV2

✓

l
12 34.3�

M2 1.901⇥109 �m

2
31 2.48 ⇥10�3 eV2

✓

l
13 8.67�

M3 8.889⇥1015
✓

l
23 45.8�

✏ -2.196⇥10�3
ye 1.97 ⇥10�6

�

l -86.7�

A 11.4 yµ 4.16 ⇥10�4

B 6.92 y⌧ 7.05 ⇥10�3

C 45.8

x 4.75

Table 1: Best fit with tan� = 5, corresponding to �2
= 7.85.

tan� Input Output

10

a 4.528⇥10�6
yu 2.88 ⇥10�6

✓

q
12 13.027�

b 3.446⇥10�4
yc 1.41 ⇥10�3

✓

q
13 0.1802�

c 5.229⇥10�1
yt 5.20 ⇥10�1

✓

q
23 2.054�

y

0
d 5.690⇥10�5

yd 4.85 ⇥10�6
�

q 69.21�

y

0
s 8.864⇥10�4

ys 9.60 ⇥10�5

y

0
b -7.345⇥10�2

yb 7.38 ⇥10�3

M1 1.793⇥104 �m

2
21 7.50 ⇥10�5 eV2

✓

l
12 34.3�

M2 1.793⇥109 �m

2
31 2.46 ⇥10�3 eV2

✓

l
13 8.67�

M3 2.436⇥1016
✓

l
23 45.8�

✏ -2.221⇥10�3
ye 1.98 ⇥10�6

�

l -86.7�

A 11.5 yµ 4.19 ⇥10�4

B 6.93 y⌧ 7.15 ⇥10�3

C 46.2

x 4.76

Table 2: Best fit with tan� = 10, corresponding to �2
= 12.7.
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SO(10) GUT 

main prediction: extra 16+16bar at TeV scale

Figure 1: The web of dualities

through an intricate web of dualities (Figure 1). In this sense, there is evidence that despite the apparent multitude
of di↵erent theories, these are in fact di↵erent faces of a single unified theory.

In light of the success that led to the discovery of M-Theory, Vafa [2] applied a similar non-perturbative limit
to type II-B theory, in which he found that the theory could e↵ectively be described as a 12-dimensional theory,
despite the fact there are no sensible 12-dimensional supergravity theories. This limit was called F-Theory, and while
very recent it is being heavily studied and developed. More interestingly, F-Theory it has been proven to be a rich
framework for model build of SUSY GUTs.

SO(10) SUSY GUTS from M Theory on G2 Manifolds

While the full formulation of M-Theory is still unknown and home to a lot of speculation, its low energy limit as a
11-dimensional supergravity can be used to probe physics in an M-Theoretical context. When we refer to M-Theory
as a framework to do phenomenology we are then referring to the 11-dimensional supergravity theory as the starting
point and not the unknown full membrane theory,

The viability of M-Theory as a starting point for phenomenology started as it was shown – by Bobby Acharya and
collaborators [3] – when the extra seven dimensions are compactified on singular G2 holonomy manifolds, M-Theory
would be endowed with gauge interactions and chiral superfields in gauge irreps. This happens as the compactified
space admits a 3-fold with an orbifold singularity supporting the gauge fields, while localised conical singularities on
this 3-fold support chiral superfields in irreps of the associated gauge interaction. The conical singularities are of
ADE-type, and this construction is engineered in analogy with Heterotic compactification setups.

A crucial point of the framework is that if the compactification is fluxless the moduli fields cannot have a perturba-
tive superpotential due to an exact Peccei-Quinn symmetry. This symmetry enforces the axions – which are the real
moduli complex partners in the chiral superfield – to have a shift-symmetry that in conjugation with holomorphicity
prevents non-perturbative contributions to the superpotential [4]. As a consequence, moduli only couple to matter chi-
ral superfields through Kahler interactions and have an exponentially suppressed superpotential contribution through
non-perturbative membrane instantons actions. As the superpotential is the order parameter of SUSY breaking, this
then means there will be a natural suppression between non-SUSY mechanics and the Planck scale [5].

Early semi-realistic constructions involved an SU(5) gauge group, for each the derived model was named G2MSSM
as it also had the same particle content as of the MSSM. The model relied in an idea by Witten [6], where the
combination of geometric discrete symmetries and the topological nature of the compactified space, provide a natural
discrete symmetry that does not commute with the gauge group. This in turn allows one to allow for a GUT scale
mass to the triplet coloured partners of the MSSM Higgses, and therefore solve the doublet-triplet problem of SU(5)
SUSY GUTs.

The original model/approach, su↵ered some shortcomings, for example neutrinos only have Majorana mass term,
and R-parity violation constraints are not naturally/generically met. Furthermore, there is a natural expectation that
the resulting 4-dimensional theory could be realised with a larger GUT group as such constructions are normal in
order corners of string/M-Theory.

One has then the motivation to search for larger gauge group realisations of M-Theory compactified onG2 manifolds.
With this in mind we (me, Steve, and our collaborators in King’s College London Acharya, Bozek, Pongkitivanichkul)
started out by looking for E6 realisations in an attempt to make a connection to some results from E6MSSM [7].

Early work on E6

There are some crucial quantities in this framework called Wilson lines. Since the compactified space needs not to be
simply connected (meaning that the fundamental group ⇡1 is not trivial, hence allowing the space to have holes and

2
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Acharya, Bozek, M.C.Romao, 
S.F.K. and Pongkitivanichkul 
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Testing SUSY flavour models 

present the flavour structure of the low energy �s in terms of their � suppression, which

should be compared to Eqs. (7.6-7.8),

�u
LL ⇠

0

@
1 �4 �6

· 1 �5

· · 1

1

A , �u
RR ⇠

0

@
1 �4 �6

· 1 �5

· · 1

1

A , �u
LR ⇠

0

@
�8 0 �7

0 �4 �6

0 �7 1

1

A , (7.9)

�d
LL ⇠

0

@
1 �3 �4

· 1 �2

· · 1

1

A , �d
RR ⇠
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@
1 �4 �4

· 1 �4

· · 1

1

A , �d
LR ⇠

0

@
�6 �5 �5

�5 �4 �4

�6 �6 �2

1

A , (7.10)
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0
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· 1 �4

· · 1

1

A , �e
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0

@
1 �3 �4

· 1 �2

· · 1

1

A , �e
LR ⇠

0

@
�6 �5 �6

�5 �4 �6

�5 �4 �2

1

A . (7.11)

8 Numerical analysis

8.1 Parameter range

Numerical results for the running quark and charged lepton masses as well as for the

quark mixing angles at the GUT scale can be found in [43]. The matching conditions

from the SM to the MSSM are imposed at the SUSY scale and read:

ySM
u,c,t ⇡ yMSSM

u,c,t sin �̄,

ySM
d,s ⇡ (1 + ⌘̄q) yMSSM

d,s cos �̄,

ySM
e,µ ⇡ (1 + ⌘̄l) yMSSM

e,µ cos �̄,

ySM
b ⇡ (1 + ⌘̄b) yMSSM

b cos �̄,

ySM
⌧ ⇡ yMSSM

⌧ cos �̄ (8.1)

and

✓q,SM
i3 ⇡ 1 + ⌘̄q

1 + ⌘̄b

✓q,MSSM
i3 , ✓q,SM

12

⇡ ✓q,MSSM
12

, �q,SM ⇡ �q,MSSM , (8.2)

where:

⌘̄b = ⌘0
q + ⌘A � ⌘0

l, ⌘̄q = ⌘q � ⌘0
l, ⌘̄l = ⌘l � ⌘0

l (8.3)
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Table 4. The charge assignments of the matter, Higgs and flavon superfields in the S4 × SU(5) model of [139]. The U(1) shaping symmetry
constrains the set of operators allowed in the superpotential.

Matter fields Higgs fields Flavon fields

T3 T F νc H5 H5 H45 φu
2 φ̃u

2 φd
3 φ̃d

3 φd
2 φν

3′ φν
2 φν

1 η

SU(5) 10 10 5 1 5 5 45 1 1 1 1 1 1 1 1 1
S4 1 2 3 3 1 1 1 2 2 3 3 2 3′ 2 1 1
U(1) 0 5 4 −4 0 0 1 −10 0 −4 −11 1 8 8 8 7

provides the source of the higher order correction to the right-
handed neutrino mass matrix which is essential in generating
a large reactor angle. In principle, all independent invariant
products of the S4 representations have to be considered for
each of these terms; in practice, there is often only one possible
choice. In our example, the second and the third term of
equation (10.12) would give rise to several independent terms.
However, the contractions specified by the subscripts 1 and 3
single out a unique choice. Within a given UV completion, the
existence and non-existence of certain messenger fields can
justify such a construction.

The Yukawa matrices are generated when the flavon fields
acquire their VEVs. The explicit form of these matrices
depends on the S4 basis which we choose as given in
appendix C. Adopting the F -term alignment mechanism
which requires to introduce a U(1)R symmetry as well as new
driving fields, see section 7.2, is has been shown in [139, 144]
that the following alignments can be obtained,

〈φu
2 〉 = ϕu

2

(
0
1

)
, 〈φ̃u

2 〉 = ϕ̃u
2

(
0
1

)
, (10.14)

〈φd
3 〉 = ϕd

3




0
1
0



 , 〈φ̃d
3 〉 = ϕ̃d

3




0
−1
1



 , 〈φd
2 〉 = ϕd

2

(
1
0

)
,

(10.15)

〈φν
3′ 〉 = ϕν

3′




1
1
1



 , 〈φν
2 〉 = ϕν

2

(
1
1

)
, 〈φν

1 〉 = ϕν
1 . (10.16)

Inserting these vacuum alignments and the Higgs VEVs vu

and vd yields a diagonal up-type quark mass matrix Mu ≈
diag (ϕu

2 ϕ̃u
2 /M2, ϕu

2 /M , 1) vu as well as down-type quark and
charged lepton mass matrices

Md ≈





0 (ϕd
2 )2ϕ̃d

3 /M3 −(ϕd
2 )2ϕ̃d

3 /M3

−(ϕd
2 )2ϕ̃d

3 /M3 ϕd
2 ϕ̃d

3 /M2 −ϕd
2 ϕ̃d

3 /M2

+(ϕd
2 )2ϕ̃d

3 /M3

0 0 ϕd
3 /M




vd,

(10.17)

Me ≈





0 −(ϕd
2 )2ϕ̃d

3 /M3 0

(ϕd
2 )2ϕ̃d

3 /M3 −3 ϕd
2 ϕ̃d

3 /M2 0

−(ϕd
2 )2ϕ̃d

3 /M3 3 ϕd
2 ϕ̃d

3 /M2 ϕd
3 /M

+(ϕd
2 )2ϕ̃d

3 /M3




vd.

(10.18)

The factors of −3 in Me originate from the second term of
equation (10.12) involving the Georgi-Jarlskog Higgs field
H45 [120]. Note that the 1-2 and 2-1 entries, which originate
from the same superpotential term, have identical absolute

values; together with the zero texture in the 1-1 entry, this
allows for a simple realization of the GST relation in the
S4 × SU(5) model. In the neutrino sector we find the Dirac
neutrino mass matrix and the right-handed neutrino mass
matrix

mLR ≈




1 0 0
0 0 1
0 1 0



 vu,

MRR ≈




ϕν

1 + 2ϕν
3′ ϕν

2 − ϕν
3′+

ϕd
2 〈η〉
M

ϕν
2 − ϕν

3′

ϕν
2 − ϕν

3′+
ϕd

2 〈η〉
M

ϕν
2 + 2ϕν

3′ ϕν
1 − ϕν

3′

ϕν
2 − ϕν

3′ ϕν
1 − ϕν

3′ ϕν
2 + 2ϕν

3′+
ϕd

2 〈η〉
M



 .

(10.19)

It is clear from equations (10.17)–(10.19) that the fermion
masses and mixings are solely determined by the scales of the
flavon VEVs. In order to achieve viable GUT scale hierarchies
of the quark masses and mixing angles [121], we have to
assume

ϕu
2 ∼ ϕ̃u

2 ∼ λ4M,

ϕd
3 ∼ λ2M, ϕ̃d

3 ∼ λ3M, ϕd
2 ∼ λM, (10.20)

where λ denotes the Wolfenstein parameter. With these
magnitudes, the charged fermion mass matrices are fixed
completely,

Mu ∼




λ8 0 0
0 λ4 0
0 0 1



 vu, Md ∼




0 λ5 λ5

λ5 λ4 λ4

0 0 λ2



 vd,

Me ∼




0 λ5 0
λ5 3λ4 0
λ5 3λ4 λ2



 vd. (10.21)

Due to the GJ factor of −3 and the texture zero in the 1-1 entry,
we obtain viable charged lepton masses. With the vanishing
off-diagonals in the third column of Me, there is only a non-
trivial 12 mixing in the left-handed charged lepton mixing VeL

,
see section 3.4. This mixing, θ e

12 ≈ λ/3, will contribute to the
total PMNS mixing as a charged lepton correction.

Turning to the neutrino sector, we first observe that the
Dirac neutrino Yukawa term does not involve any flavon field.
As the family symmetry S4 remains unbroken by mLR , the
mixing pattern of the effective light neutrino mass matrix mν

LL

(obtained from the type I see-saw mechanism) is exclusively
determined by the structure of MRR . Dropping the higher
order terms which are written in red, we note that the leading
order structure of MRR , and with it mν

LL, is of tri-bimaximal
form22. This can be easily seen by verifying that the flavon

22 Similar to the A4 × SU(5) model of section 10.1, the masses of the light
neutrinos are not related by any mass sum rule as the right-handed neutrino
mass matrix MRR is generated from the VEVs of three independent flavon
fields.
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ãe
21

�5 ãd
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7 Mass insertion parameters

In supersymmetry, flavour changing processes are induced by the mismatch of fermion

and sfermion mass eigenstates. Having changed the basis of the superfields to the SCKM

basis, the Yukawa matrices are diagonal. Thus, the o↵-diagonal entries of the scalar mass

matrices determine the size of the resulting FCNCs. As both the left- and the right-handed

fermions have their own scalar partners, there are three types of scalar mass matrices

m2

˜f
LL

= (m̃2

f )LL + Ỹf Ỹ †
f �2

u,d , (7.1)

m2

˜f
RR

= (m̃2

f )RR + Ỹ †
f Ỹf�

2

u,d , (7.2)

m2

˜f
LR

= Ãf�u,d � µỸf�d,u . (7.3)

In these expressions, the first contribution originates from the soft breaking Lagrangian,

while the second term is the supersymmetric F -term contribution to the scalar masses.

We note that it is formally possible to define m2

˜f
RL

⌘ (m2

˜f
LR

)†.

From the model building perspective, a convenient measure of flavour violation is

provided by a set of dimensionless parameters, known as the mass insertion parameters.

These are defined as [7]

(�f
LL)ij =

(m2

˜f
LL

)ij

hm
˜fi2

LL

, (�f
RR)ij =

(m2

˜f
RR

)ij

hm
˜fi2

RR

, (�f
LR)ij =

(m2

˜f
LR

)ij

hm
˜fi2

LR

, (7.4)
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7 Mass insertion parameters

In supersymmetry, flavour changing processes are induced by the mismatch of fermion

and sfermion mass eigenstates. Having changed the basis of the superfields to the SCKM

basis, the Yukawa matrices are diagonal. Thus, the o↵-diagonal entries of the scalar mass

matrices determine the size of the resulting FCNCs. As both the left- and the right-handed

fermions have their own scalar partners, there are three types of scalar mass matrices

m2
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LL

= (m̃2
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LR

= Ãf�u,d � µỸf�d,u . (7.3)

In these expressions, the first contribution originates from the soft breaking Lagrangian,

while the second term is the supersymmetric F -term contribution to the scalar masses.

We note that it is formally possible to define m2

˜f
RL

⌘ (m2

˜f
LR

)†.

From the model building perspective, a convenient measure of flavour violation is

provided by a set of dimensionless parameters, known as the mass insertion parameters.

These are defined as [7]

(�f
LL)ij =

(m2

˜f
LL

)ij

hm
˜fi2

LL

, (�f
RR)ij =

(m2

˜f
RR

)ij

hm
˜fi2

RR

, (�f
LR)ij =

(m2

˜f
LR

)ij

hm
˜fi2

LR

, (7.4)

21

Charged-lepton sector:

Ãe
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13

�6

ãe
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23

�6

ãe
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ẽ
23

�2

· · b
02

1

A . (6.22)

7 Mass insertion parameters

In supersymmetry, flavour changing processes are induced by the mismatch of fermion

and sfermion mass eigenstates. Having changed the basis of the superfields to the SCKM

basis, the Yukawa matrices are diagonal. Thus, the o↵-diagonal entries of the scalar mass

matrices determine the size of the resulting FCNCs. As both the left- and the right-handed

fermions have their own scalar partners, there are three types of scalar mass matrices

m2
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LL

= (m̃2

f )LL + Ỹf Ỹ †
f �2

u,d , (7.1)
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2

u,d , (7.2)
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LR

= Ãf�u,d � µỸf�d,u . (7.3)

In these expressions, the first contribution originates from the soft breaking Lagrangian,

while the second term is the supersymmetric F -term contribution to the scalar masses.

We note that it is formally possible to define m2

˜f
RL

⌘ (m2

˜f
LR

)†.

From the model building perspective, a convenient measure of flavour violation is

provided by a set of dimensionless parameters, known as the mass insertion parameters.

These are defined as [7]
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Parameter Our naive expectation Our range Exp. bound

|(�d
LL)23| O

⇣
2 R

q

⌘ �2

1+6.5 x
|b01=b02 ⇡ 4 ⇥ 10�3

⌘
O(10�5

, 5 ⇥ 10�2) O(10�2
, 10�1)

|(�d
RR)23| O

⇣
�4

1+6.1 x
⇡ 4 ⇥ 10�4

⌘
O(10�5

, 10�2) O(10�1
, 1)

|(�d
LR)23| O

⇣
�

d

A0 �4

m2
0(1+6 x)

⇡ 10�6
⌘

O(10�9
, 5 ⇥ 10�4) O(10�3

, 10�2)

|(�d
RL)23| O

⇣
�

d

A0 �6

m2
0(1+6 x)

⇡ 5 ⇥ 10�8
⌘

O(10�11
, 5⇥10�6) O(10�2)

Table 1: Range for (�d
AB)23, A, B = L, R parameters, as extracted from our model (second

and third columns) to be compared with experimental bounds from M. Arana-Catania,
S. Heinemeyer and M. J. Herrero (2014) [arxiv:1405.6960] (fourth column).

Parameter Our naive expectation Our range Exp. bound

|(�d
LL)13| O

⇣
2 R

q

⌘ �4

1+6.5 x
⇡ 2 ⇥ 10�4

⌘
O(10�6

, 10�3) O(10�2)|
LL=RR

, O(10�1
, 1)

|(�d
RR)13| O

⇣
�4

1+6.1 x
⇡ 4 ⇥ 10�4

⌘
O(10�5

, 10�2)

|(�d
LR)13| O

⇣
�

d

A0 �5

m2
0(1+6 x)

⇡ 2 ⇥ 10�7
⌘

O(10�9
, 10�5) O(10�2

, 10�1)
|(�d

RL)13| O
⇣

�
d

A0 �6

m2
0(1+6 x)

⇡ 5 ⇥ 10�8
⌘

O(10�11
, 5⇥10�6)

Table 2: Range for (�d
AB)13, A, B = L, R parameters, as extracted from our model (second

and third columns) to be compared with experimental bounds from A. Masiero , S.K.
Vempati and O. Vives (2007) [arxiv:0711.2903] (fourth column). The limits for RR and
RL can be obtained by interchanging L$R.

Parameter Exp. boundq��Re
⇥
(�d

LL)2
12

⇤�� O(10�3)|
LL=RR

, O (10�2
, 10�1)

q��Im
⇥
(�d

LL)2
12

⇤�� O(10�4)|
LL=RR

, O (10�3
, 10�2)

q��Re
⇥
(�d

LR)2
12

⇤�� O (10�3
, 10�2)

��Im
⇥
(�d

LR)12

⇤�� O (10�5
, 10�4)

Table 3: Experimental bounds on (�d
AB)12, A, B = L, R parameters from A. Masiero ,

S.K. Vempati and O. Vives (2007) [arxiv:0711.2903]

1

Parameter Our range
|(�d

LL)12| O (10�5
, 5 ⇥ 10�2)

|(�d
RR)12| O (10�5

, 10�2)
|(�d

LR)12,21| O (10�9
, 10�5)

Table 4: Our range for (�d
AB)12, A, B = L, R parameters.

Parameter Our naive expectation Our range Exp. bound
|(�e

LL)12| O
✓

1+
2 R

l

⌘

N

1+0.5 x

1+0.5 x
�

4 ⇡ 10�3

◆
O(10�6

, 5 ⇥ 10�2)
O(10�5

, 10�4)
|(�e

LL)23,13| O(10�2
, 10�1)

|(�e
RR)12| O

⇣
2
3

�3

1+0.15 x
⇡ 6 ⇥ 10�3

⌘
O(10�5

, 5 ⇥ 10�2) O(10�3
, 10�2)

|(�e
RR)23| O

⇣
3 �2

1+0.15 x
⇡ 10�1

⌘
O(10�3

, 10�1) O(10�1
, 1)

|(�e
RR)13| O

⇣
1
3

�4

1+0.15 x
⇡ 7 ⇥ 10�4

⌘
O(5⇥10�5

, 5⇥10�3) O(10�1
, 1)

|(�e
LR)12,21| O

✓
�

d

A0�5

m2
0

p
(1+0.15 x)(1+0.5 x)

⇡ 5⇥10�6

◆ O(10�10
, 10�4) O(10�6

, 10�5)
|(�e

LR)31| O(10�10
, 5 ⇥ 10�4) O(10�2

, 10�1)
|(�e

LR)13| O
✓

�
d

A0�6

m2
0

p
(1+0.15 x)(1+0.5 x)

⇡ 10�6

◆ O(10�11
, 5 ⇥ 10�6) O(10�2

, 10�1)
|(�e

LR)23| O(10�10
, 10�4) O(10�2

, 10�1)

|(�e
LR)32| O

✓
�

d

A0�4

m2
0

p
(1+0.15 x)(1+0.5 x)

⇡ 10�5

◆
O(10�9

, 10�3) O(10�2
, 10�1)

Table 5: Range for (�e
AB)ij, A, B = L, R parameters, as extracted from our model (second

and third columns) to be compared with experimental bounds from M. Arana-Catania,
S. Heinemeyer and M. J. Herrero (2013) [arxiv:1304.2783] (fourth column).

⌘ =
1

16⇡

2
ln

✓
MGUT

MLow

◆
, ⌘N =

1

16⇡

2
ln

✓
MGUT

MR

◆
. (0.1)

For MGUT ⇡ 2 ⇥ 1016 GeV, MR ⇡ 1014 GeV and MLow ⇡ 103 GeV, ⌘ ⇡ 0.19 is of the

order of our expansion parameter � ⇡ 0.22 and ⌘N ⇡ 0.03.

2

µ ! e�

⌧ ! µ�

Bs

Dimou, Hagedorn, S.F.K., Luhn (to appear)

Testing SUSY flavour models 



Conclusions
GUT x Discrete Family Symmetry very predictive framework

Direct models: Klein and T from Delta(6n2), zero Dirac phase

Semi-direct models: partial symmetry S or SU, allows smaller 
groups, lepton mixing sum rules, possible CP phase predictions

Indirect models: allows A4 with CSD alignments, gives 
minimal predictive seesaw with CSD(3) being most successful

A4xSU(5) SUSY GUT based on CSD(3), quite complete

A to Z Pati-Salam based on CSD(4), unifies RH neutrinos

Good motivation for discrete symmetries from string/F-theory

SUSY flavour models mimic MFV but with testable deviations


