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Chiral fields at GUT scale
SU(5), SU(7) GUTs

UGUTF:
Kim, PRL 45, 1916 (1980);
 arXiv:1503.03104;
JEK, D.Y.Mo, S. Nam,
 JKPS 66, 894 (2015) [arXiv:
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From Z(12-I) orbifold
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These are special cases of anti-SU(N)
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J determinant as  
a phase in CKM matrix
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J determinant as  
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1. Jarlskog phase 
    in CKM matrix 
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The Jarlskog determinant is                                                                                                                   
J=|Im V_{11} V_{22} V_{12}* V_{21}*|, or |Im V_{ii}V_{jj}V_{ij}*V_{ji}*|

Let J be                                                                                                                   
J=Im V_{11} V_{33} V_{13}* V_{31}*. Then, on 1=Det V

imaginary part of 
this is J 

unitarity of V 

                                                                                                             
Similar considerations for other elements give the imaginary 
part as         [(1-|V_{21}|^2) -|V_{31}|^2 +(1-|V_{11}|)^2]J=J 



Kim-Seo form of J: J=Im (V_{31}* V_{22}* V_{13}*)



JEK, M-S. Seo, PoS DSU2012 (2012) 009 [arXiv:1211.0357[hep-ph]] 

JEK, D.Y. Mo, S. Nam, JKPS 66 (2015) 894 [arXiv:1402.2978[hep-ph]] 
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JEK, M-S. Seo, PoS DSU2012 (2012) 009 [arXiv:1211.0357[hep-ph]] 

JEK, D.Y. Mo, S. Nam, JKPS 66 (2015) 894 [arXiv:1402.2978[hep-ph]] 

Kim-Seo form of J: J=Im (V_{31}* V_{22}* V_{13}*)

By looking at the KS form of J, we can see the 
importance of physical CP violation effect. 



2. Maximal CP violation 
in quark sector 

J E Kim.   “UGUTF and maximal CP violation”, FLASY15@Mexico, 2 July  2015.      10/45



We used Det(V)=1. If it were not 
so, we can multiply a common 
phase to all q=2/3 quarks to 
make Det=1. It corresponds to a 
rotation of J triangle.
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Making Det=real with 1st row real is 
rotating it such that the phase 
appears at origin.                                                                                                    

The 1st row is real.                                                                                                        
One side becomes x-axis.                              

We used Det(V)=1. If it were not 
so, we can multiply a common 
phase to all q=2/3 quarks to 
make Det=1. It corresponds to a 
rotation of J triangle.
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There are 6 Jarlskog triangles. One of them 
corresponds to B-meson decay to K.              
PDG gives alpha or our delta almost 90 
degrees.                                                                                                    

J E Kim.   “UGUTF and maximal CP violation”, FLASY15@Mexico, 2 July  2015.      12/45



There are 6 Jarlskog triangles. One of them 
corresponds to B-meson decay to K.              
PDG gives alpha or our delta almost 90 
degrees.                                                                                                    

                                                                                                           
We can consider another J: B decaying 
to pi meson. This has two long sides.                           

J E Kim.   “UGUTF and maximal CP violation”, FLASY15@Mexico, 2 July  2015.      12/45



There are 6 Jarlskog triangles. One of them 
corresponds to B-meson decay to K.              
PDG gives alpha or our delta almost 90 
degrees.                                                                                                    

                                                                                                           
We can consider another J: B decaying 
to pi meson. This has two long sides.                                                                                                                                      

So, delta=90 degrees is a maximal CP 
violation! in KS parametrization. In other 
parametrizations too.                             
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This is PDG compilation.     or 
     is our     .  



This is PDG compilation.     or 
     is our     .  

PDG determines   



This is PDG compilation.     or 
     is our     .  

This implies that the weak CP 
violation in the quark sector is 
almost maximal with some real 
angles fixed. Here, the 
parametrization must allow 90 
degrees.

PDG determines   



In the quark sector, we can consider the leading CP 
violation term is maximal !! Also, simple in formulae. 

Further corrections may lower the value a bit.

Since we know the weak CP phase, the final state 
interaction phase can be estimated. D. Y. Mo has 

already talked about this: the first try in particle 
physics to calculate the phase shift analysis 

problem in  quantum mechanics. The order is 
about -180(Delta I=1/2), and 27(penguin) degrees.  
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Maximal CP violation 
in lepton sector? 
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Maximal CP violation 
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In the recent T2K experiment [Y. Oyama at Planck 
2015, A. Fiorentini here], deltaPMNS seems to be +- 90 
degrees at 2 sigma level. Whether it is true or not, it is  
worthwhile to ask a question on it. See also, D.V. Forero-
M. Tortola-J. Valle, arXiv:1405.7540.  
      Determination of deltaPMNS may choose deltaCKM in certain 
models.
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N(N-1)/2+ N chiral fields are  
grouped into  

Anti-SU(N) model

First example:
JEK, PRL 45,
1916 (1980)
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An early example is a spinor of SO(14)
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• One SU(5) 
family

• Two SU(5) 
anti-family, 
and one 
SU(5) family 

• Net result:  
0 SU(5) 
family

An early example is a spinor of SO(14)
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Used these in JEK, PRL 45, 1916 (1980): 
shifted hypercharges, for 2 SM q’s & 3 l’s
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Used these in JEK, PRL 45, 1916 (1980): 
shifted hypercharges, for 2 SM q’s & 3 l’s

 t can decay to b by scalar 
exchange, but not by W exchange,  
and  

not 3/8.
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• Deadend of SO(4N+2). 

• Family unification in SU(N): 
Georgi (1979): SU(11) model
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handed families                                            

Family unified GUTs,  
Unification of GUT families (UGUTF) 

   and 
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• The simplest case is  SU(7) with
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• The simplest case is  SU(7) with

• For example,  SU(8) with      

    contains more non-singlet fields.
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After the heterotic string compactification, this 
field theoretic models were not considered 
much. String compactification contains the GUT 
breaking mechanism intrinsically. 
But, the weak mixing angle problem is serious 
and it is better to have a GUT with
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After the heterotic string compactification, this 
field theoretic models were not considered 
much. String compactification contains the GUT 
breaking mechanism intrinsically. 
But, the weak mixing angle problem is serious 
and it is better to have a GUT with

Can we succeed in finding a UGUTF 
from string?
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SM is SU(5) subgroup: Then, 
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SM is SU(5) subgroup: Then, 

SM is SO(10) subgroup with intermediate SU(5): Then, 

This is true even for the flipped SU(5) if 
extra U(1) coupling is the same as that of SU(5).  

J E Kim.   “UGUTF and maximal CP violation”, FLASY15@Mexico, 2 July  2015.      26/45



Georgi-Quinn-Weinberg expression is
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Georgi-Quinn-Weinberg expression is

Since there is no more funny particles 
beyond 16 of SO(10),  
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Georgi-Quinn-Weinberg expression is

Since there is no more funny particles 
beyond 16 of SO(10),  

UGUTF is the one for an acceptable weak mixing 
angle.

J E Kim.   “UGUTF and maximal CP violation”, FLASY15@Mexico, 2 July  2015.      27/45



In early SM-like construction [Ibanez-Kim-Nilles-Quevedo(1987), 
Casas-Munoz(1988)],  where the weak mixing angle problem could not 
be resolved. Only if GUT is somehow working at the compactification 
scale, then an appropriate weak mixing angle can be obtained. 
Flipped SU(5) from heterotic string: JEK-Kyae,  
                            Antoniadis-Ellis-Hagelin-Nanopoulos (1988) 
Large extra dimensions: DESY group, Buchmueller et al. 
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In early SM-like construction [Ibanez-Kim-Nilles-Quevedo(1987), 
Casas-Munoz(1988)],  where the weak mixing angle problem could not 
be resolved. Only if GUT is somehow working at the compactification 
scale, then an appropriate weak mixing angle can be obtained. 
Flipped SU(5) from heterotic string: JEK-Kyae,  
                            Antoniadis-Ellis-Hagelin-Nanopoulos (1988) 
Large extra dimensions: DESY group, Buchmueller et al. 

Standard models from non-prime orbifolds: 
   Many papers by the Bonn-DESY-Ohio group 
   JEK-Ji-hun Kim-Kyae   
But these were not family unification models.
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If we find different SO(10) subgroups at different fixed 
points, then there is a possibility that the weak mixing  
angle is 3/8. But it is not so obvious to me. 
  

GUTs containing SU(5) is an automatic solution 
to the weak mixing angle problem.
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In addition we want to unify families a la Georgi. So far, there 
has not been any model, from string, on the unification of GUT 
families. 
Here, we must resolve the   
      doublet-triplet splitting problem.    
      existence of GUT Higgs to break  
                the GUT group down to the SM.  
       bonus: simpifies fermion mass matrix testure
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In addition we want to unify families a la Georgi. So far, there 
has not been any model, from string, on the unification of GUT 
families. 
Here, we must resolve the   
      doublet-triplet splitting problem.    
      existence of GUT Higgs to break  
                the GUT group down to the SM.  
       bonus: simpifies fermion mass matrix testure

Compactification for UGUTF from heterotic string:   
       SM gauge group can be studied  
                with applicable phenomenologies   
      Unresolved issue: moduli stabilization: this 
      may be found in other method.
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Anti-SU(N)
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Anti-SU(N)
N
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Anti-SU(N)

First paper: JEK, PRL45, 1916 (1980).   
       Flipped-SU(5): S. M. Barr, PLB 112, 219 (1982), 
            J. Derendinger, JEK, D. Nanopoulos, PLB139, 170 (1984).

N
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Three two-tori:
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Three two-tori:

 untwisted string
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Three two-tori:

fixed points, and 
twisted string

 untwisted string
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Z(12-I) model. Representation 35 is possible 
only in U. 
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Z(12-I) model. Representation 35 is possible 
only in U. 

We require
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e1

e2Z12

e1

e2
Z3

Triangle 
Cushion:SU(3)                                                                                                       
Triangle 
cushion

So, 3a3 contains integers. 
No Wilson line effect at  

T3, and T6.



At T3, the fixed points cannot be distinguished by 
Wilson lines, since Wilson line is numbers with  
multiples of 1/3. Z(12-I) has numbers of multiples  
of 1/12. So, numbers in 3V are multiples of 1/4. 
At two-dimensional torus, Z4 has multiplicity 2.
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At T3, the fixed points cannot be distinguished by 
Wilson lines, since Wilson line is numbers with  
multiples of 1/3. Z(12-I) has numbers of multiples  
of 1/12. So, numbers in 3V are multiples of 1/4. 
At two-dimensional torus, Z4 has multiplicity 2.

90 degrees

So, we have two         from T3. 
Total 3 families.

Lattice shift  
identifies



J E Kim.   “UGUTF and maximal CP violation”, FLASY15@Mexico, 2 July  2015.      35/45



A=2

A=6

J E Kim.   “UGUTF and maximal CP violation”, FLASY15@Mexico, 2 July  2015.      35/45



A=2

A=6

A=-8

A=-1

A=1

J E Kim.   “UGUTF and maximal CP violation”, FLASY15@Mexico, 2 July  2015.      35/45



A=2

A=6

A=-8

A=-1

A=1

J E Kim.   “UGUTF and maximal CP violation”, FLASY15@Mexico, 2 July  2015.      35/45



A=2

A=6

A=-8

A=-1

A=1

J E Kim.   “UGUTF and maximal CP violation”, FLASY15@Mexico, 2 July  2015.      35/45

2 from here



A=2

A=6

A=-8

A=-1

A=1

J E Kim.   “UGUTF and maximal CP violation”, FLASY15@Mexico, 2 July  2015.      35/45

2 from here 1 from here



A=2

A=6

A=-8

A=-1

A=1

J E Kim.   “UGUTF and maximal CP violation”, FLASY15@Mexico, 2 July  2015.      35/45

JEK, JHEP 1506 
(2015) 114 [1503.03104]

2 from here 1 from here



t quark and missing 
partner mechanism



For Yukawa couplings, we use just the effective  
field theory approach. There may be other supp 
factors which are assumed to be O(1). 
t quark Yukawa coupling is, from           at T3,

J E Kim.   “UGUTF and maximal CP violation”, FLASY15@Mexico, 2 July  2015.      38/45



For Yukawa couplings, we use just the effective  
field theory approach. There may be other supp 
factors which are assumed to be O(1). 
t quark Yukawa coupling is, from           at T3,

On the other hand, b quark Yukawa coupling   is
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Since our theory is a GUT, we must realize the  
doublet-triplet splitting. Some examples are 

1) Kawamura’s 5D SU(5) GUT with Z2 fixed points. 
2) Dimopoulos-Georgi fine-tuned SU(5)
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Since our theory is a GUT, we must realize the  
doublet-triplet splitting. Some examples are 

1) Kawamura’s 5D SU(5) GUT with Z2 fixed points. 
2) Dimopoulos-Georgi fine-tuned SU(5)

Being GUT, we need to answer on the doublet-triplet 
splitting problem.
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This kind was already noted in 1980 in the 
SU(7) model (JEK). The SU(7) UGUTF is the almost 
unique possibility for family unification. 
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In our UGUTF with anti-SU(5) subgroup, the CKM and 
PMNS matrices use W couplings.   
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In our UGUTF with anti-SU(5) subgroup, the CKM and 
PMNS matrices use W couplings.   

These W couplings define the 
CKM and PMNS matrices.   
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The CKM and PMNS matrices arise 
when diagonalizing quark and mass 
matrices. Quarks and leptons are 
related here: 5-bar    

J E Kim.   “UGUTF and maximal CP violation”, FLASY15@Mexico, 2 July  2015.      43/45



The CKM and PMNS matrices arise 
when diagonalizing quark and mass 
matrices. Quarks and leptons are 
related here: 5-bar    

J E Kim.   “UGUTF and maximal CP violation”, FLASY15@Mexico, 2 July  2015.      43/45



The CKM and PMNS matrices arise 
when diagonalizing quark and mass 
matrices. Quarks and leptons are 
related here: 5-bar    

J E Kim.   “UGUTF and maximal CP violation”, FLASY15@Mexico, 2 July  2015.      43/45



The CKM and PMNS matrices arise 
when diagonalizing quark and mass 
matrices. Quarks and leptons are 
related here: 5-bar    

Using the bases where e and d masses 
are diagonalized, only neutrino and u-
quark masses are important.  
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The CKM and PMNS matrices arise 
when diagonalizing quark and mass 
matrices. Quarks and leptons are 
related here: 5-bar    

Using the bases where e and d masses 
are diagonalized, only neutrino and u-
quark masses are important.  

Thus, CKM and 
PMNS matrices are  
related 
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J = c1c2c3s1s2s3 sin(deltaCKM)  2

J = C1C2C3S1S2S3 sin(deltaPMNS)  2



Even though si  is not equal to Si, |deltaCKM| and |deltaPMNS| can be 
equal.  We may satisfy the following in this program 

if CP violation is spontaneous a la Froggatt-Nielsen by ONE complex 
vev of a SM singlet X. [JEK-Nam, 1506.08491]
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(22) element is very large as in many 
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(i) There are three possibilities for                           :            ,       ,         of PDG book.                     

(i) If 1st row = real, or 1st column = real                                                 
a            is                                             
Kobayashi-Maskawa parametrization,                                                  
Kim-Seo parametrization               

(i) If both 1st row = real, and 1st column = real, then 

                      =         : Chau-Keung-Maiani  parametrization

(i) The identity             = Imaginary part of  
V(31)*V(22)*V(13)* was very useful.
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6. Conclusion

1. Jarlskog det. is J=Im V31* V22* V13 * in the KS form. 

3. GUT family unification in SU(7)xU(1) from Z(12-I).

2.                is maximal.

4. Doublet-Triplet splitting is possible in anti-SU(N).

5.                            possibility with spontaneous CP     
     violation (cf:T2K on deltaPMNS = -90 )

o

6. Our model is free from gravity worries: from string.


