

From Tier-2 to Tier-1

Lukas Nellen ICN-UNAM lukas@nucleares.unam.mx

2nd Symposium on Grid Computing in the Americas, ICN-UNAM, November 3, 2014

Tier structure

• Tier 0

- CERN and Wigner Research Center (Hungary)
- First copy data
- First pass reconstruction
- Oata distribution to Tier 1 centers
- Tier 1
 - I3 centres worldwide, 7 for ALICE, none in the Americas
 - Data copy
 - Reconstruction and simulation
 - Oata distribution to Tier 2 centers
- Tier 2
 - Institutions, Universities: ~160 centers

WLCG tier hierarchy

Motivation for setting up a Tier 1 data center

Needed

Challenging

Possible

The need for a new Tier 1 for ALICE

- Second copy data storage
 - Tier-1 centres responsible for safe-keeping of raw data
 - More space needed to hold backup copies
- No data center in the Americas
 Support regional distribution
- Additional processing power for the collaboration
 - Output Collaborators are expected to contribute
 - Will be the Mexican contribution in computing

Challenges

New step in advanced computing in Mexico

- Oata intense science
- Intense network usage

• Motor to drive development of infrastructure

- Network
- Data centres
- Attract new users
- Provide high-level, reliable service
 - High uptime
 - Short response time to problems
 - Onder international scrutiny

Project possible

- OGTIC-UNAM experience in providing advanced computing services
- ICN-UNAM experience in providing grid services
- Have trained personnel
- Network infrastructure improving
- Output For the project

Hardware expansion

Expand storage

- Currently about 570TB available
- Cross the 1PB threshold
- Will need continuous expansion
 - LHC will produce data for 20 years

• Expand processing power

- Currently 512 Hyper-threaded cores 1024 job slots
- 4900 HEP-SPEC 06
 4900 HEP-SPEC 06
 - In the center of the playing field
 - room to move up

Network upgrades

• UNAM operates 1Gbps link to US

- Opgrade technically possible
- Looking into funding

OUDI (Mexican NREN) network expanding

- Output UNAM has 10Gbps connection capability
- Alternative connection

• Links shared for now

Evaluate need for exclusive link

Backup system

Have to back up data
 prepared for multi-PB scale

- Traditionally: Tape
 - Additional technology
 - Not presently in use at the UNAM
- New possibility: Disk
 - Hierarchical storage
 - Build on local knowledge
- Evaluation options
 Looking for funding

Operational challenges

• Need short response time

- More personnel needed
 - Have trained experts
 - Lack operators for routine monitoring and first level attention to problems

• High uptime expected

- Stability
- Spares
- Maintenance
- Stricter than for most (all?) academic computing centers in Mexico

Network for steady operations

Bandwidth: 10Gbps

based on previous experience and data challenges

Reliability

- Achieved by redundant links
- More than one provider, if possible

Regular upgrades and expansions

• Storage has to keep up with data

- Expand storage
 - oprimary and secondary storage has to grow
- 20 years of operation expected
- Possible long-term storage of scientific, LHC data required
- Computing power
 - expand
 - modernise servers

Operations costs

Personnel

- operators
- experts
- Travel
 - Meetings of data center operators
 - Expert workshops
 - Training

 Existing funding schemes can cover some, but not all, cost of operations
 Need special budget

Occasionally asked questions

• Why Tier-1 in Mexico

- Can be done: Proof of Mexico's technological abilities.
- Each country contributes to the computing power of the collaboration, it is one of the contributions expected from a mature country.
- Why not use commercial computing, e.g., cloud services?
 - Rule of thumb: running your own installation more economic if you manage to get more than ~75% use.
 - Local installation provides opportunity to train new experts in computing.

Local synergy / spin-off

HAWC

- primary data center
- ~500TB on disk, preparing to cross 1PB threshold

Oark Energy Spectroscopic Instrument

- Mexican collaborators staring
- Approached us for support

Pierre Auger Observatory

Grid node, supporting production

Grid projects

Participation in Latin-American grid collaborations

- EELA, GISELA
- ROC-LA

• Creation of a Certification Authority

Training

• Support and train staff in other data centres

Output Certified tutors for EGI middle-ware

Conclusions

Moving from Tier 2 to Tier 1 is

- challenging
- possible
- Front line projects provide stimulus for development
 - Expand infrastructure
 - Output Attract and support new users and communities