Reconstrucción de objetos colimados y su aplicación en la búsqueda de nueva física en ATLAS

Cristina Oropeza Barrera

Universidad Iberoamericana

Seminario de Altas Energías ICN-UNAM IF-UNAM

04. Junio. 2014

Shower Deconstruction

Contenido

- ATLAS
- Jets
- Algoritmos de reconstrucción
- Subestructura
- Jet grooming
- Resonancias *tī*t
 - Introducción
 - Análisis
 - Resultados
- 3 Shower Deconstruction
 - Algoritmo
 - Aplicaciones
- ④ Conclusiones

Shower Deconstruction

Contenido

- ATLAS
- Jets
- Algoritmos de reconstrucción
- Subestructura
- Jet grooming
- 2 Resonancias tt̄
 - Introducción
 - Análisis
 - Resultados
- 3 Shower Deconstruction
 - Algoritmo
 - Aplicaciones
- 4 Conclusiones

Shower Deconstruction

Contenido

- ATLAS
- Jets
- Algoritmos de reconstrucción
- Subestructura
- Jet grooming
- 2 Resonancias tī
 - Introducción
 - Análisis
 - Resultados
- 3 Shower Deconstruction
 - Algoritmo
 - Aplicaciones

Shower Deconstruction

Contenido

- ATLAS
- Jets
- Algoritmos de reconstrucción
- Subestructura
- Jet grooming
- 2 Resonancias tī
 - Introducción
 - Análisis
 - Resultados
- 3 Shower Deconstruction
 - Algoritmo
 - Aplicaciones

ATLAS

Shower Deconstruction

Conclusiones

A Toroidal LHC ApparatuS

ATLAS

- Excelente desempeño durante 2011 y 2012
- Eficiencia > 95%

0000000000		
Jets		
¿Qué es	un jet?	
QCD	(il K	
	Parton level	π, Κ,
	9,9 p	
	p	Particle Jet Energy depositions in calorimeters

Resonancias $t\bar{t}$

Shower Deconstruction

Conclusiones

Algoritmos de reconstrucción

Reconstrucción de jets

Before: Many Particles, Complicated Event

After: Few Jets Can easily identify dijet structure

Shower Deconstruction

Conclusiones

Algoritmos de reconstrucción

Algoritmos modernos

Dos tipos: cone y sequential clustering.

Cone – Cluster particles in a radius Example: **SISCone**

Clustering – Successively recombine pairs of objects to make jets

Examples: *k*_T, *anti-k*_T, *Cambridge-Aachen*

Los algoritmos de sequential clustering actualmente más utilizados.

Subestructura

Subestructura de jets: Motivación

Las energías alcanzadas por el LHC permiten explorar un nuevo espacio fase en el que se producen partículas con un gran *boost*.

Esto requiere de nuevas técnicas debido a que:

- Los productos de decaimiento se encuentran altamente colimados.
- Ocurren interacciones múltiples que contaminan a los jets.

Estudiar la subestructura de los jets puede ayudarnos a discriminar la señal proveniente de una partícula pesada de un proceso de QCD

 \rightarrow jet grooming

arXiv:1306.4945

ATLAS Collaboration, Performance of jet substructure techniques for large-R jets in proton-proton collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector, JHEP09 (2013) 076

Jet grooming

Mass-drop Filtering

- C/A jets. El último paso del algoritmo se revierte para dividir al jet en dos, j_1 y j_2 , tal que $m_{j_1} > m_{j_2}$.
- Se busca que $m_{j_1}/m_{jet} < \mu_{frac}$ y que la división sea simétrica.
- Los componentes de j₁ y j₂ son reagrupados con C/A y filtrados, tal que sólo los tres subjets con mayor p_T sobreviven.

Resonancias $t\bar{t}$

Shower Deconstruction

Conclusiones

Jet grooming

Mass-drop Filtering

Jets en ATLAS	Resonancias <i>tī</i>	Shower Deconstruction	Conclusiones
0000000000			
let grooming			

- Se apoya en el hecho de que contaminación de pile-up, MPI, ISR y FSR es más suave.
- Algoritmo k_t para crear subjets de tamaño R_{sub} .
- Si $p_T^i / p_T^{jet} < f_{cut}$ se elimina el subjet.
- Jets originados por gluones o quarks ligeros típicamente pierden $\sim 30-50\%$ de su masa.

Trimming

Resonancias $t\bar{t}$

Shower Deconstruction

Conclusiones

Jet grooming

Trimming

Jets en ATLAS ○○○○○○○○●○	Resonancias <i>tī</i> 000000000000	Shower Deconstruction	Conclusiones
Jet grooming			

- Remueve componentes de bajo p_T y gran separación angular.
- Algoritmos k_t o C/A.
- En cada paso se toma una decisión sobre si se debe incorporar o no el componente, basándose en: $p_T^{j_2}/p_T^{j_1+j_2} > z_{cut} \circ \Delta R_{j_1,j_2} < R_{cut}.$
- Si alguno de los dos criterios es satisfecho, j₁ y j₂ se combinan. Si no, j₂ se descarta y el algoritmo continúa.

Pruning

Shower Deconstruction

Conclusiones

Jet grooming

Pruning

Introducción

El top quark y física BSM

El top quark es la partícula fundamental conocida más pesada:

- Acoplamiento con el Higgs ≈ 1 .
 - Papel especial en el rompimiento de simetría EW.
- Decae antes de hadronizar.
 - Oportunidad única para estudiar a un quark aislado.

¿Para qué estudiar al top?

- Poner a prueba predicciones del ME.
- Comparar con cálculos de QCD.
- Caracterizar backgrounds para distintos procesos.
- Buscar nueva física.

Varias extensiones del ME predicen la existencia de partículas pesadas que decaen principalmente en pares de top quarks.

Resonancias $t\overline{t}$

Shower Deconstruction

Conclusiones

Introducción

Modelos de Referencia

- Topcolour assisted technicolour (TC2) leptophobic Z'
 - Resonancia angosta ($\sim 1\%$ menor que la resolución experimental)
 - Spin 1
 - Muestras generadas con PYTHIA
- Randall-Sundrum Kaluza-Klein gluons gKK
 - Resonancia ancha (\sim 10-15% mismo orden que la resolución experimental)
 - Spin 1
 - Muestras generadas con MADGRAPH+PYTHIA

ATLAS-CONF-2013-052

ATLAS Collaboration, A search for $t\bar{t}$ resonances in lepton plus jets events with ATLAS using 14 fb⁻¹ of proton-proton collisions at $\sqrt{s} = 8$ TeV, Conference Note.

Resonancias $t\overline{t}$

Shower Deconstruction

Conclusiones

Análisis

Estrategia de Análisis

Canal de Decaimiento

Señal experimental:

- leptón de alto p_T
- 4 jets
- energía perdida

Estrategia

Combinación de 2 topologías de $t\bar{t}$:

Resonancias $t\overline{t}$

Shower Deconstruction

Conclusiones

Análisis

Selección

*Trimming

Shower Deconstruction

Análisis

Reconstrucción

Masa invariante $m_{t\bar{t}}$

- $W_{lep} = leptón + MET$ Componente p_z del neutrino usando la masa del W como restricción.
- Resolved:

Método χ^2 . Combinación de jets que minimiza:

$$\chi^2 = \left[\frac{m_{jj} - m_W}{\sigma_W}\right]^2 + \left[\frac{m_{jjb} - m_{jj} - m_{th-W}}{\sigma_{th-W}}\right]^2 + \left[\frac{m_{j\ell\nu} - m_{t\ell}}{\sigma_{t\ell}}\right]^2 + \left[\frac{(\rho_{T,jjb} - \rho_{T,j\ell\nu}) - (\rho_{T,th} - \rho_{T,t\ell})}{\sigma_{diffp_T}}\right]^2$$

• Boosted:

top leptónico = W_{lep} + akt4 jet de mayor p_T cerca del leptón top hadrónico = akt10 jet

Resonancias $t\bar{t}$

Shower Deconstruction

Conclusiones

Análisis

Reconstrucción

Resonancias $t\overline{t}$

Shower Deconstruction

Conclusiones

Análisis

Eficiencia de reconstrucción

Para masas arriba de 1 TeV, la topología boosted es más eficiente. Sin embargo, resolved aún contribuye \rightarrow combinación

Resonancias $t\bar{t}$

Shower Deconstruction

Conclusiones

Análisis

Reconstrucción

Universidad Iberoamericana

Cristina Oropeza Barrera

Shower Deconstruction

Análisis

Backgrounds

Procesos con mismo estado final

- $t\bar{t}$ del ME: estimado usando MC (MC@NLO)
- W+jets: forma estimada usando MC (Alpgen), normalización usando datos.
- Single-top: estimado usando MC (AcerMC + Pythia y MC@NLO).
- Multijets: normalización y forma estimadas usando datos (MM).
- **③** Z+jets: estimado usando MC (Alpgen).
- *VV*: estimado usando MC (Herwig + Jimmy).

Resonancias $t\bar{t}$

Shower Deconstruction

Análisis

Errores Sistemáticos

	Resolved selection		Boosted selection	
Systematic Uncertainties	total bkg.	Z'	total bkg.	Z'
Luminosity	2.9	4	3.3	4
PDF	2.9	5	6	2.9
ISR/FSR	0.2	-	0.7	-
Parton shower and fragm.	5	-	4	-
tt normalization	8	-	9	-
tī EW virtual correction	2.2	-	4	-
tī Generator	1.5	-	1.6	-
W+jets $b\bar{b}+c\bar{c}+c$ vs. light	0.8	-	1.0	-
W+jets bb variation	0.2	-	0.4	-
W+jets c variation	1.1		0.6	-
W+jets normalization	2.1	-/	1.0	-
Multi-Jet norm, e+jets	0.6		0.3	-
Multi-Jet norm, µ+jets	1.8	-	0.3	-
JES, small-radius jets	6	2.2	0.7	0.5
JES+JMS, large-radius jets	0.3	4	17	3.3
Jet energy resolution	1.6	0.4	0.6	0.7
Jet vertex fraction	1.7	2.3	2.1	2.4
b-tag efficiency	4	1.8	3.4	6
c-tag efficiency	1.4	0.3	0.7	0.9
Mistag rate	0.7	0.3	0.7	0.1
Electron efficiency	1.0	1.1	1.0	1.0
Muon efficiency	1.5	1.5	1.6	1.6
All systematic uncertainties	14	9	22	9

Resonancias $t\overline{t}$

Shower Deconstruction

Conclusiones

Análisis

Data/MC

Universidad Iberoamericana

Cristina Oropeza Barrera

Jets en ATLAS 0000000000	Resonancias tt 00000000000000	Shower Deconstruction	Conclusiones
Resultados			

$m_{t\bar{t}}$

Buscar excesos o déficits en el espectro de $m_{t\bar{t}}$ respecto a las predicciones del ME. Ninguna desviación significativa es observada.

ts en ATLAS	Resonancias t ī	Shower Deconstruction	Conc
	00000000000000		
sultados			

Límites

Límites en la sección eficaz de los modelos de referencia:

Se excluyen con un nivel de confianza del 95%:

- $0.5 < m_{Z'} < 1.8 \text{ TeV}$
- $0.5 < m_{g_{KK}} < 2.0 ~{\rm TeV}$

lusiones

Algoritmo

Shower Deconstruction

Algoritmo para estudiar la subestructura de fat jets e identificar y reconstruir partículas pesadas de alto p_T (boosted).

- Combina información del hard scatter, ISR/FSR y color.
- Propuesto por Davison Soper y Michael Spannowsky.
- Discriminante χ_{SD} optimizado para distinguir una señal de procesos iniciados por un gluón.
- Este análisis explora el uso de SD para identificar top quarks.

arXiv:1102.3480

D. E. Soper and M. Spannowsky, *Finding physics signals with shower deconstruction*, Phys. Rev. D84 (2011) 074002.

arXiv:1211.3140

D. E. Soper and M. Spannowsky, *Finding top quarks with shower deconstruction*, Phys. Rev. D87 (2013) 054012.

ATLAS-CONF-2014-003

ATLAS Collaboration, *Performance of shower deconstruction in ATLAS*, Conference Note.

Shower Deconstruction

Conclusiones

Algoritmo

Parton shower

- hard scattering
- (QED) initial/final state radiation
- partonic decays, e.g. $t \rightarrow bW$
- parton shower evolution
- nonperturbative gluon splitting
- colour singlets
- colourless clusters
- cluster fission
- cluster \rightarrow hadrons
- hadronic decays

Una configuración específica de *N* subjets puede generarse de muchas maneras. Cada una de ellas constituye una shower history.

Algoritmo

Shower Deconstruction

- En cada shower history, los subjets se clasifican en categorías: señal: productos del top, radiación del top e ISR. background: ISR y FSR.
- Probabilidad de que una shower history dada ocurra: probabilidad de fragmentación en cada vértice (tomando en cuenta conexiones de color) y factores de Sudakov para cada propagador.
- Los subjets de señal y background tienen estructuras de color y cinemática diferentes.
- Las shower histories se usan para construir χ_{SD} :

$$\chi_{SD}(\{p\}_N) = \frac{P(\{p\}_N|S)}{P(\{p\}_N|B)} = \frac{\sum_{histories} P(\{p, c^j\}_N|S)}{\sum_{histories} P(\{p, c^j\}_N|B)}$$

Shower Deconstruction

Conclusiones

Algoritmo

Shower Deconstruction

- χ_{SD} sólo puede calcularse si los subjets son compatibles (cinemáticamente) con el decaimiento hadrónico de un top quark:
 - Al menos 3 subjets.
 - Dos o más subjets deben tener una masa cercana a m_W.
 - Se puede sumar al menos un subjet más para alcanzar m_t .

Parameter	Nominal value
Subjet R parameter	0.2
Number of leading subjets to consider	9
Large-R jet R parameter	1
Minimum subjet $p_{\rm T}$	20 GeV
W mass	80.4 GeV
W mass window	± 12 GeV
Initial shower scale	$Q^2 = p_T^2 + m^2$
Top quark mass	172.3 GeV
Top quark mass window	± 40 GeV

Shower Deconstruction

Algoritmo

Shower Deconstruction

Ejemplo:

Evento de $Z' \rightarrow t\bar{t}$ con $m_{Z'} = 1.75$ TeV y 6 C/A subjets. 1,500 (35,000) shower histories posibles para señal (background). Tres historias con mayor probabilidad para la señal:

Shower Deconstruction

Algoritmo

Shower Deconstruction

Ejemplo:

Evento de $Z' \rightarrow t\bar{t}$ con $m_{Z'} = 1.75$ TeV y 6 C/A subjets. 1,500 (35,000) shower histories posibles para señal (background). Tres historias con mayor probabilidad para la señal:

Shower Deconstruction

Algoritmo

Shower Deconstruction

Ejemplo:

Evento de $Z' \rightarrow t\bar{t}$ con $m_{Z'} = 1.75$ TeV y 6 C/A subjets. 1,500 (35,000) shower histories posibles para señal (background). Tres historias con mayor probabilidad para la señal:

Resonancias $t\overline{t}$

Shower Deconstruction

Conclusiones

Algoritmo

Shower Deconstruction

El output del algoritmo es χ_{SD} y su logaritmo es usado como discriminante entre señal y background.

Aplicaciones

SD como top tagger

- Misma selección y muestra de datos que el análisis de resonancias (boosted).
- C/A subjets con R=0.2 y $p_T > 20$ GeV como input a SD.
- Jets que satisfacen los requisitos del algoritmo se denotan como χ_{SD} (pass).

Aplicaciones

SD como top tagger

- Misma selección y muestra de datos que el análisis de resonancias (boosted).
- C/A subjets con R=0.2 y $p_T > 20$ GeV como input a SD.
- Jets que satisfacen los requisitos del algoritmo se denotan como χ_{SD} (pass).

Shower Deconstruction

Aplicaciones

SD como top tagger

Distribución de log(χ_{SD}) para eventos con χ_{SD} (pass).

En todos los casos, la distribución observada es descrita razonablemente bien por las predicciones de MC y no hay una dependencia significativa en el pile-up.

Aplicaciones

SD como top tagger

¿Cómo se compara SD con otros taggers?

- Estudio realizado en simulaciones.
- log(χ_{SD}) tiene un valor promedio de 5 para top jets y un valor de 2 para multijets.
- $log(\chi_{SD})$ puede usarse para discriminar señal de background.

Aplicaciones

SD como top tagger

¿Cómo se compara SD con otros taggers?

- Efecto de errores sistemáticos no tomado en cuenta.
- SD tiene la mejor tasa de rechazo de background en un rango amplio de eficiencia.
- 70% de los top jets satisfacen los requerimientos del algoritmo.

Conclusiones

- En el LHC se producen partículas de gran *p*_T cuyos productos se encuentran altamente colimados.
- Esto, en combinación con el número cada vez mayor de colisiones paralelas, hacen que las técnicas estándar de reconstrucción no sean eficientes.
- El estudio de la subestructura de jets es necesaria para no perder sensitividad a procesos de nueva física.
- Análisis como la búsqueda de resonancias que decaen pares de top quarks son ideales para probar estas técnicas.
- Hasta ahora, ninguna desviación de las predicciones del ME ha sido observada.