Contribution ID: 3 Type: not specified

A precise determination of the K*(1410) resonance parameters through \tau^-\to K^-\eta^{(\prime)}\nu_\tau decays

Abstract content

We have studied the $\tau^- \to K^- \eta^{(\prime)} \nu_{\tau}$ decays within Chiral Perturbation Theory including resonances as explicit degrees of freedom. We have considered three different form factors according to treatment of final-state interactions. In increasing degree of soundness: Breit-Wigner, exponential resummation and dispersive representation. We find that although the first one fails in accounting for the data on the $K\eta$ mode, the other two approaches provide good fits to them which are sensitive to the $K^*(1410)$ pole parameters, that are determined to be $M_{K^*(1410)} K^*(1330^{+27} {-41})MeV$ and $Gamma\{K^{*}_{\tau} = 122^{+2}\}MeV$. These values are competitive with the standard determ $to(K pi)^- nu taude cays$. The corresponding predictions for the $to(K - ta)^- tau^- to(K^- tau)$ and hint to the discovery of this decay mode in the near future.

Summary

Primary author(s): Dr. ROIG, Pablo (IF-UNAM)

Co-author(s): Prof. ESCRIBANO, Rafel (IFAE (Barcelona, Spain)); Mr. GONZÁLEZ-SOLÍS, Sergi

(IFAE (Barcelona, Spain))

Presenter(s): Dr. ROIG, Pablo (IF-UNAM)