Quantum information approach to the description of quantum phase transitions

O. Castaños

Instituto de Ciencias Nucleares, UNAM

Guy Paic Fest (December 1, 2012)

Quantum information approach Puebla, México

Guy Paic and the ICN

- 1996-1998, new development plan of the ICN.
- Creation of the Department: High energy physics.
- 2001-2002, Guy agreed to come to Mexico at the ICN.
- Cátedra Patrimonial de Excelencia Nivel II (CONACyT).
- Purpose: Create a laboratory to support measurements and test of detectors mainly related with the ALICE experiment.
- April 2003 to March 2005
- Got a position in June 2005.

A B K A B K

- The laboratory was equiped: to develop and test detectors
- Members 1 researcher, 2 posdocs, 3 PhD students, and 1 M. Sc. student
- Construction of a electronic card to characterize the scintillators for the ACORDE detector
- Design of an emulator of signals to test the data acquisition system of ALICE
- Several simulations related with the V0 detector and the analysis of data of ALICE.
- Design of a very high momentum particle identification detector for ALICE

э

Guy Paic and the ICN

Silver Juchiman Award

Guy Paic Fest (December 1, 2012)

Quantum information approach Puebla, México

- Quantum phase transitions
- Information concepts
 - Fidelity and Fidelity Susceptibility
- Entanglement
 - Linear and von Neumann Entropies
- Conclusions

- Typically they are driven by purely quantum fluctuations
- Characterized by the vanishing, in the thermodynamic limit, of the energy gap
- Sudden change, non analytical, in the ground state properties of a system
- Classically they are determined by the stability properties of the potential energy surface, the order is determined by the Ehrenfest classification
- This can be extended to the quantum case: Expectation value of the Hamiltonian with respect to a variational function

Family of potentials

V = V(x, c) ,

with $\mathbf{x} = (\mathbf{x}_1, \cdots \mathbf{x}_n)$ and $\mathbf{c} = (\mathbf{c}_1, \mathbf{c}_2, \cdots, \mathbf{c}_k)$.

Equilibrium and stability properties:

$$\frac{\partial V}{\partial x_j} = 0\,, \qquad \frac{\partial^2 V}{\partial x_j \; \partial x_k} > 0\,.$$

State equation: $x^{(p)} = x^{(p)}(c_1, c_2, \cdots, c_k)$

A phase transition occurs when the point $x^{(p)}(c)$ cross the separatrix of the physical system. The separatrix is the union of the bifurcation and Maxwell sets.

Ground state energy for a system of N particles

$$\langle H \rangle = E(x_{\alpha}, c_{j}) \rightarrow \mathcal{E} = \frac{E(x_{\alpha}, c_{j})}{N}$$

with $\alpha = 1, \cdots n$ and $j = 1, 2, \cdots, k$.

Bifurcation and Maxwell sets: $\frac{\partial \mathcal{E}}{\partial x_k} = 0$

$$\begin{split} \mathcal{E}_{i,j} &= \left. \frac{\partial^2 \mathcal{E}}{\partial x_i \, \partial x_j} \right|_{x^{(p)}(c)}, \\ \mathcal{E}^{(p)} &= \left. \mathcal{E}^{(p+1)} \right., \quad \left\{ \frac{\partial \mathcal{E}^{(p)}}{\partial c_j} - \frac{\partial \mathcal{E}^{(p+1)}}{\partial c_j} \right\} \delta c_j = 0. \end{split}$$

Guy Paic Fest (December 1, 2012)

(日) (圖) (필) (필) (필)

Quantum phase transitions

• A finite temperature, a quantum system is a mixture of pure states, where each one occurs with probability

$$P_k = 1/Z \exp\left(-\beta E_k\right),$$

with $\beta = \frac{1}{\kappa_B T}$ and the partition function $Z = \sum_i \exp(-\beta E_i)$.

• The expectation value of an operator is given in terms of the density operator

$$\langle \hat{O} \rangle = \sum_i \, P_i \langle \psi_i | \hat{O} | \psi_i \rangle = \text{Tr}(\rho \, \hat{O}) \, .$$

- At T = 0 only the ground state contributes
- For $T \neq 0$, the quantum state is determined by the condition of minimum free energy instead of minimum energy.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・ うらる

Energy and information

Since 1961, from the Landauer principle, is known the mantra: information is physical

The reason the Maxwell demon cannot violate the second law: in order to observe a molecule, it must first forget the results of previous observations. Forgetting results, or discarding information, is thermodynamically costly ($\Delta S_e = k_B \ln 2$)

Hamiltonian Model

The Ising model for two spins 1/2 or qubits^{*}

$$H = \sigma_z^{(1)} \sigma_z^{(2)} + B_0 \left(\sigma_z^{(1)} + \sigma_z^{(2)} \right) ,$$

where the coupling of the qubits has been taken to be the unity. The $\sigma_z^{(1)}$ are Pauli matrices and B_0 is a magnetic field.

In terms of the total angular momentum, the Hamiltonian can be written

$$H = 2\hat{J}_z^2 - 1 + 2B_0 \hat{J}_z ,$$

where $2J_z=\sigma_z^{(1)}+\sigma_z^{(2)}.$

* J. Zhang, X. Peng, N. Rajendran, and D. Suter, Phys. Rev. Latt. 100, 100501 (2008)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ○ ○ ○

Solution

Energies and eigenstates

Semiclassical solution

$$\mathsf{H} = \cos^2\,\theta - 2\mathsf{B}_0\,\cos\,\theta$$

where the variational state is given by

$$|\mathfrak{j}=1,\,\theta\rangle=\frac{1-\cos\theta}{2}\,|1,1\rangle+\sqrt{\frac{1-\cos^2\theta}{2}}\,|1,0\rangle+\frac{1+\cos\theta}{2}\,|1,-1\rangle\,.$$

Critical points $\theta_c : \{0, \pi, \arccos B_0\}.$

Energies and eigenstates

Guy Paic Fest (December 1, 2012)

< 47 ▶

E ► < E ►</p>

Energies and fidelity

Above in red color, the semiclassical energies and in blue color the quantum ones. Below the fidelity between the quantum solutions with B_1 and B_2 . We add a probe qubit with the interaction $\epsilon \sigma_z^{(p)} (\sigma_z^{(1)} + \sigma_z^{(2)})$. Thus one has two effective Hamiltonians one with $B_1 = B_0 + \epsilon$, the other with $B_2 = B_0 - \epsilon$. At the right, we consider a small magnetic field Β_χ.

Guy Paic Fest (December 1, 2012)

Fidelity

For two pure states, $\rho_1 = |\chi\rangle\langle\chi|$ and $\rho_2 = |\varphi\rangle\langle\varphi|$, the fidelity is defined by

 $F(|\chi\rangle\langle\chi|,|\Phi\rangle\langle\Phi|) = |\langle\chi|\Phi\rangle|^2$,

the transition probability from one state to another. Its geometric interpretation is the closeness of states.

For one mixed state ρ_2 , one has

 $F(|\chi\rangle\langle\chi|,\rho_2\,)=\langle\chi|\rho_2\,|\chi\rangle\,,$

that denotes the probability to be a pure state.

For mixed states the fidelity should satisfy the properties:

 $0 \leq F(\rho_1, \rho_2) \leq 1 \tag{1}$

$$F(\rho_1, \rho_2) = F(\rho_2, \rho_1)$$
 (2)

$$F(U\rho_1, U\rho_2) = F(\rho_1, \rho_2)$$
(3)

▲ロト ▲周ト ▲画ト ▲画ト 三直 - のへで

Uhlmann-Jozsa proved that

$$F(\rho_1,\rho_2) = \left\{ Tr\left(\sqrt{\sqrt{\rho_1} \rho_2 \sqrt{\rho_1}} \right) \right\}^2,$$

satisfies the previous properties. Another definition satisfying the same properties was given by Mendonca et al, i.e.,

$$F(\rho_1,\rho_2) = Tr(\rho_1 \ \rho_2) + \sqrt{1 - Tr(\rho_1^2)} \sqrt{1 - Tr(\rho_2^2)} \,.$$

The fidelity has a fundamental role in communication theory because measures the accuracy of a transmission.

Fidelity and Fidelity Susceptibility

The fidelity (P. Zanardi and N. Paunkovic, Phys. Rev. E 74 (2006)) can be used to determine when the ground state of a quantum system presents a sudden change as function of a control parameter. If we denote that parameter by λ one has

 $F(\lambda,\lambda+\delta\lambda)=|\langle\psi(\lambda)|\psi(\lambda+\delta\lambda)\rangle|^2\;.$

Taylor series expansion of the fidelity

$$F(\lambda_c\,,\lambda_c\,+\,\delta\lambda) = F(\lambda_c\,,\lambda_c\,) + \delta\lambda \left.\frac{dF}{d\lambda}\right|_{\lambda=\lambda_c} \,+\, (\delta\lambda)^2 \left.\frac{1}{2!} \left.\frac{d^2\,F}{d\lambda^2}\right|_{\lambda=\lambda_c} \,+\, \cdots\,,$$

the first derivative is zero because the fidelity is a minimum and the fidelity susceptibility is defined by (W. You et al Phys. Rev. E 76 (2007))

$$\chi_F = 2 \frac{1 - F(\lambda_c \,, \lambda_c \,+\, \delta \lambda)}{(\delta \lambda)^2} \,. \label{eq:chi}$$

It is dependent of the Hamiltonian term that causes the phase transition.

Guy Paic Fest (December 1, 2012)

▲日▼ ▲母▼ ▲日▼ ▲日▼ ヨー シタク

Suppose Alice and Bob are trying to create n copies of a particular bipartite state $|\Phi\rangle$, such that Alice hold the part A and Bob the part B. They are not allowed any quantum communication between them. However they have a large collection of shared singlet pairs $|\Psi_{-}\rangle$.

How many singlet pairs must they use up in order to create n copies of $|\Phi\rangle$? The answer is they need to create roughly $nS_{\nu N}(\Phi)$, the von Neumann entropy.

Examples, the so called Bell states

$$\begin{split} |\Phi_{\pm}\rangle &= \frac{1}{\sqrt{2}} \Big(|+,+\rangle \pm |-,-\rangle \Big) \,, \\ |\Psi_{\pm}\rangle &= \frac{1}{\sqrt{2}} \Big(|+,-\rangle \pm |-,+\rangle \Big) \,. \end{split}$$

which have maximum linear and von Neumann entropies.

- 20

Linear and VN Entropies

(a) The linear entropy is defined by $S_L = 1 - Tr(\rho_2^2)$

$$\rho = \frac{1}{2} \left(|+,+\rangle \langle +,+| \ + \ |+,+\rangle \langle -,-| \ + \ |-,-\rangle \langle +,+| \ + \ |-,-\rangle \langle -,-| \right),$$

Tracing over the first subsystem one gets

$$\rho_2 = \frac{1}{2} \left(|+\rangle \langle +| + |-\rangle \langle -| \right),$$

which implies that $S_L = 1/4$. (b) The von Neumann entropy

$$S_{\nu\,N}\,=-\sum_k\,\lambda_k\,\ln\lambda_k$$

where λ_k denote the eigenvalues of the reduced density matrix of the subsystem 2. For the Bell state, it is immediate that $S_{\nu N} = \ln 2 = 0.693$.

Guy Paic Fest (December 1, 2012)

3

Purity and von Neumann Entropy

In blue color, the von Neuman entropy and in cyan color the purity. Both as functions of the magnetic field B_{0} .

$$\rho_{L} = |+,+\rangle\langle+,+|, \quad \rho_{M} = \frac{1}{2} \left(|+,-\rangle\langle-,+|+|-,+\rangle\langle+,-|\right), \quad \rho_{R} = |-,-\rangle\langle-,-|.$$

The linear entropy is defined by $P=1-Tr(\rho_2^2)$ where $\rho_2=Tr_1(\rho_A)$ with A=L,M, y R. The von Neumann entropy

$$S_{\nu N} = -\sum_k \lambda_k \ln \lambda_k$$

where λ_k denote the eigenvalues of the reduced density matrix ρ_2 .

글 에 에 글 어

$$H = \hat{a}^{\dagger}\,\hat{a} + \omega_A\,\hat{J}_z + \frac{\gamma}{\sqrt{N}}\left(\hat{a}^{\dagger} + \hat{a}\right)\left(\hat{J}_+ + \hat{J}_-\right) \ . \label{eq:H}$$

This can describe: (i) the interaction between many atoms and a single mode e.m. field of a cavity and (2) the interaction of many qubits with a single harmonic oscillator.

$$\mathsf{H} = \hat{\mathsf{J}}_z + \frac{\gamma_x}{2j-1}\,\hat{\mathsf{J}}_x^2 + \frac{\gamma_y}{2j-1}\,\hat{\mathsf{J}}_y^2 \ .$$

This Hamiltonian has been used to test many body approximations (LMG) or as a model of a two-mode Bose-Einstein condensate.

▲ロト ▲母ト ▲ヨト ▲ヨト 三ヨ - 釣A@

Scaling behavior of the fidelity susceptibility

where the thermodynamic value $\gamma_{x c} = -1$.

Guy Paic Fest (December 1, 2012)

注入 くさん

3

Scaling behavior of the fidelity susceptibility

Now, we consider $\gamma_y = -0.5$. and the same set of number of particles mentioned before.

Separatrix of the LMG model

There are three regions Phys. Rev B 72 (2005); Phys. Rev B 74(2006). Phase transitions occur when one crosses these regions, we could establish the order of the phase transitions. For $\gamma_{x c} = -0.1$; one finds that $\chi_{max} \approx N^2$ and $(\gamma_{x c} - \gamma_{max}) \approx N^{-1}$. For other crossings of second order phase transitions one gets $\chi_{max} \approx N^{4/3}$ and $(\gamma_{x c} - \gamma_{max}) \approx N^{-2/3}$. The point (-1, -1) is special because it has a third order phase transition ($\gamma_y = -\gamma_x - 2$).

Linear and VN entropies for the Dicke Model

At the left, the maximum values are

 $(N, \gamma) = \{(20, 0.572), (40, 0.543), (100, 0.523), (200, 0.514), (400, 0.509), (1000, 0.505)\},\$

while at the right one has

 $(N, \gamma) = \{(20, 0.571), (40, 0.544), (100, 0.524), (200, 0.515), (400, 0.509), (1000, 0.505)\}.$

By means of the fidelity one gets

 $(N, \gamma) = \{(20, 0.568), (40, 0.543), (100, 0.524), (200, 0.515), (400, 0.509), (1000, 0.505)\}.$

We show for the Dicke model that the coupling parameter and the maximum fidelity susceptibility also satisfy

$$(\gamma_{max} - \gamma_c) \approx N^{-\frac{2}{3}}$$
, $\chi_{max} \approx N^{\frac{4}{3}}$.

Guy Paic Fest (December 1, 2012)

- $\bullet\,$ Determine quantum phase crossovers, which goes to the thermodynamical limit when $N\to\infty.$
- The fidelity, fidelity susceptibility, and the linear or Von Neumann entropies give information about the quantum phase transitions for a finite number of particles, together with their scaling behavior.
- A special crossing of the triple point of the LMG model has the behavior $\chi_{max} \approx N^2$, $(\gamma_{xc} \gamma_{max}) \approx N^{-1}$.
- Other crossings of second order phase transitions yield $\chi_{m\alpha x} \approx N^{4/3}$, $(\gamma_{x\,c} \gamma_{m\alpha x}) \approx N^{-2/3}$. A similar behavior for the second order quantum phase transition of the Dicke model was obtained.

▲日▼ ▲母▼ ▲日▼ ▲日▼ ヨー シタク

Thank you very much for your attention

Work done in collaboration with R. López-Peña, J. G. Hirsch, and E. Nahmad-Achar:

- PHYSICAL REVIEW B 72, 012406 (2005)
- PHYSICAL REVIEW B 74, 104118 (2006)
- Phys. Scr. 79 (2009) 065405 (14pp)
- Phys. Scr. 80 (2009) 055401 (11pp)
- Annals of Physics 325 (2010) 325344
- PHYSICAL REVIEW A 83, 051601(R) (2011)
- PHYSICAL REVIEW A 84, 013819 (2011)
- PHYSICAL REVIEW A 86, 023814 (2012)

A B K A B K

э

< A 1